1.5 Basis and Dimension

A basis S must have enough vectors to span V, but not so many vectors that one of them could be written as a linear combination of the other vectors in S

Notes:

(1) the standard basis for R^3 :

 $\{i, j, k\}$, for i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1)

(2) the standard basis for R^n : { $e_1, e_2, ..., e_n$ }, for e_1 =(1,0,...,0), e_2 =(0,1,...,0),..., e_n =(0,0,...,1) Ex: For R^4 , {(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)}

Express any vector in Rⁿ as the linear combination of the vectors in the standard basis: the coefficient for each vector in the standard basis is the value of the corresponding component of the examined vector, e.g., (1, 3, 2) can be expressed as 1 · (1, 0, 0) + 3 · (0, 1, 0) + 2 · (0, 0, 1)

(3) the **standard basis** for $m \times n$ matrix space:

{
$$E_{ij} \mid 1 \le i \le m$$
, $1 \le j \le n$ }, and in E_{ij}
 $\begin{cases} a_{ij} = 1 \\ \text{other entries are zero} \end{cases}$

Ex: 2×2 matrix space: $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$

(4) the standard basis for $P_n(x)$: $\{1, x, x^2, ..., x^n\}$ Ex: $P_3(x) \quad \{1, x, x^2, x^3\}$ • Ex 2: The nonstandard basis for R^2

Show that $S = \{\mathbf{v}_1, \mathbf{v}_2\} = \{(1, 1), (1, -1)\}$ is a basis for R^2

(1) For any
$$\mathbf{u} = (u_1, u_2) \in \mathbb{R}^2$$
, $c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 = \mathbf{u} \implies \begin{cases} c_1 + c_2 = u_1 \\ c_1 - c_2 = u_2 \end{cases}$

Because the coefficient matrix of this system has a **nonzero determinant**, the system has a unique solution for each **u**. Thus you can conclude that S spans R^2

(2) For
$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 = \mathbf{0} \implies \begin{cases} c_1 + c_2 = 0 \\ c_1 - c_2 = 0 \end{cases}$$

Because the coefficient matrix of this system has a **nonzero determinant**, you know that the system has only the trivial solution. Thus you can conclude that *S* is linearly independent

According to the above two arguments, we can conclude that *S* is a (nonstandard) basis for R^2

- Theorem 1.8: Uniqueness of basis representation for any vectors
 If S = {v₁, v₂, ..., v_n} is a basis for a vector space V, then every vector in V can be written in one and only one way as a linear combination of vectors in S
 Pf:
 - $\therefore S \text{ is a basis} \Rightarrow \begin{cases} (1) \operatorname{span}(S) = V \\ (2) S \text{ is linearly independent} \end{cases}$ \therefore span(S) = V Let $\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_n \mathbf{v}_n$ $\mathbf{v} = b_1 \mathbf{v}_1 + b_2 \mathbf{v}_2 + \ldots + b_n \mathbf{v}_n$ $\Rightarrow \mathbf{v} + (-1)\mathbf{v} = \mathbf{0} = (c_1 - b_1)\mathbf{v}_1 + (c_2 - b_2)\mathbf{v}_2 + \dots + (c_n - b_n)\mathbf{v}_n$ \therefore S is linearly independent \Rightarrow with only the trivial solution \Rightarrow coefficients for \mathbf{v}_i are all zero $\Rightarrow c_1 = b_1, c_2 = b_2, ..., c_n = b_n$ (i.e., unique basis representation)_{4.61}

•Theorem 1.9: Bases and linear dependence

If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a basis for a vector space *V*, then every set containing more than *n* vectors in *V* is linearly dependent (In other words, every linearly independent set contains at most *n* vectors)

Pf:

Let
$$S_1 = {\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_m}$$
, $m > n$

$$\therefore$$
 span $(S) = V$

$$\mathbf{u}_{1} = c_{11}\mathbf{v}_{1} + c_{21}\mathbf{v}_{2} + \dots + c_{n1}\mathbf{v}_{n}$$
$$\mathbf{u}_{2} = c_{12}\mathbf{v}_{1} + c_{22}\mathbf{v}_{2} + \dots + c_{n2}\mathbf{v}_{n}$$
$$\vdots$$
$$\mathbf{u}_{m} = c_{1m}\mathbf{v}_{1} + c_{2m}\mathbf{v}_{2} + \dots + c_{nm}\mathbf{v}_{n}$$

Consider $k_1 \mathbf{u}_1 + k_2 \mathbf{u}_2 + \ldots + k_m \mathbf{u}_m = \mathbf{0}$ (if k_i 's are not all zero, S_1 is linearly dependent) $\Rightarrow d_1 \mathbf{v}_1 + d_2 \mathbf{v}_2 + \ldots + d_n \mathbf{v}_n = \mathbf{0}$ ($d_i = c_{i1}k_1 + c_{i2}k_2 + \ldots + c_{im}k_m$) $\therefore S$ is L.I. $\Rightarrow d_i = 0 \quad \forall i$ i.e., $c_{11}k_1 + c_{12}k_2 + \cdots + c_{1m}k_m = 0$ $c_{21}k_1 + c_{22}k_2 + \cdots + c_{2m}k_m = 0$ \vdots $c_{n1}k_1 + c_{n2}k_2 + \cdots + c_{nm}k_m = 0$

- ∵ Theorem 1.1: If the homogeneous system has fewer equations (*n* equations) than variables (k₁, k₂, ..., k_m), then it must have infinitely many solutions
- $\therefore m > n \Rightarrow k_1 \mathbf{u}_1 + k_2 \mathbf{u}_2 + \ldots + k_m \mathbf{u}_m = \mathbf{0} \text{ has nontrivial (nonzero) solution}$ $\Rightarrow S_1 \text{ is linearly dependent}$

• Theorem 1.10: Number of vectors in a basis

If a vector space V has one basis with n vectors, then every basis for V has n vectors

Pf: X According to Thm. 1.9, every linearly independent set contains at most n vectors in a vector space if there is a basis of n vectors spanning that vector space

 $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ $S' = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m\}$ are two bases with different sizes for *V*

S is a basis spanning V $S' \text{ is a set of L.I. vectors} \Rightarrow m \le n$ S' is a basis spanning V $S \text{ is a set of L.I. vectors} \Rightarrow n \le m$

For R³, since the standard basis {(1, 0, 0), (0, 1, 0), (0, 0, 1)} can span this vector space, you can infer any basis that can span R³ must have exactly 3 vectors
For example, S = {(1, 2, 3), (0, 1, 2), (-2, 0, 1)} in Ex 5 on Slide 4.44 is another basis of R³ (because S can span R³ and S is linearly independent), and S has 3 vectors 4.64

• Dimension:

The dimension of a vector space V is defined to be the number of vectors in a basis for V

V: a vector space S: a basis for V

 $\Rightarrow \dim(V) = \#(S)$ (the number of vectors in a basis S)

Finite dimensional:

A vector space V is finite dimensional if it has a basis consisting of a finite number of elements

Infinite dimensional:

If a vector space V is not finite dimensional, then it is called infinite dimensional

- (3) Given dim(V) = n, if W is a subspace of $V \Rightarrow \dim(W) \le n$
 - X For example, if $V = R^3$, you can infer the dim(V) is 3, which is the number of vectors in the standard basis
 - X Considering $W = R^2$, which is a subspace of R^3 , due to the number of vectors in the standard basis, we know that the dim(W) is 2, that is smaller than dim(V)=34.66

- Ex: Find the dimension of a vector space according to the standard basis
 - * The simplest way to find the dimension of a vector space is to count the number of vectors in the "standard" basis for that vector space

(1) Vector space $R^n \implies \text{standard basis} \{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ $\Rightarrow \dim(R^n) = n$

(2) Vector space $M_{m \times n} \implies$ standard basis $\{E_{ij} \mid 1 \le i \le m, 1 \le j \le n\}$ and in $E_{ij} \begin{cases} a_{ij} = 1 \\ \text{other entries are zero} \end{cases}$ $\implies \dim(M_{m \times n}) = mn$

(3) Vector space $P_n(x) \Rightarrow$ standard basis $\{1, x, x^2, \dots, x^n\}$ $\Rightarrow \dim(P_n(x)) = n+1$

(4) Vector space $P(x) \implies$ standard basis $\{1, x, x^2, ...\}$ $\Rightarrow \dim(P(x)) = \infty$ • Ex 9: Determining the dimension of a subspace of R^3

(a)
$$W = \{(d, c - d, c): c \text{ and } d \text{ are real numbers}\}$$

(b) $W = \{(2b, b, 0): b \text{ is a real number}\}$

Sol: (Hint: find a set of L.I. vectors that spans the subspace, i.e., find a basis for the subspace.)

(a)
$$(d, c - d, c) = c(0, 1, 1) + d(1, -1, 0)$$

 $\Rightarrow S = \{(0, 1, 1), (1, -1, 0)\} (S \text{ is L.I. and } S \text{ spans } W)$
 $\Rightarrow S \text{ is a basis for } W$
 $\Rightarrow \dim(W) = \#(S) = 2$
(b) $\because (2b, b, 0) = b(2, 1, 0)$
 $\Rightarrow S = \{(2, 1, 0)\} \text{ spans } W \text{ and } S \text{ is L.I.}$
 $\Rightarrow S \text{ is a basis for } W$
 $\Rightarrow \dim(W) = \#(S) = 1$

Ex 11: Finding the dimension of a subspace of M_{2×2}
 Let W be the subspace of all symmetric matrices in M_{2×2}.
 What is the dimension of W?

Sol:

$$W = \left\{ \begin{bmatrix} a & b \\ b & c \end{bmatrix} | a, b, c \in R \right\}$$

$$\because \begin{bmatrix} a & b \\ b & c \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\Rightarrow S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\} \text{ spans } W \text{ and } S \text{ is L.I.}$$

$$\Rightarrow S \text{ is a basis for } W \Rightarrow \dim(W) = \#(S) = 3$$

• Theorem 1.11: Methods to identify a basis in an *n*-dimensional space

Let V be a vector space of dimension n

(1) If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a linearly independent set of vectors in *V*, then *S* is a basis for *V*

(2) If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ spans *V*, then *S* is a basis for *V* (Both results are due to the fact that #(S) = n)

4.70

Keywords in Section 1.5:

- basis
- dimension
- finite dimension
- infinite dimension