1.3 Subspaces of Vector Spaces

- Subspace:
 - $(V,+,\cdot)$: a vector space
 - $\begin{cases} W \neq \Phi \\ W \subseteq V \end{cases}$: a nonempty subset of V
 - $(W,+,\cdot)$: The nonempty subset *W* is called a subspace **if** *W* **is a vector space** under the operations of vector addition and scalar multiplication defined on *V*
- Trivial subspace:

Every vector space V has at least two subspaces

(1) Zero vector space $\{0\}$ is a subspace of V (It satisfies the ten axioms)

(2) V is a subspace of V

 $\stackrel{\text{\tiny \ensuremath{\ensuremat$

- Examination of whether *W* being a subspace
 - Since the vector operations defined on *W* are the same as those defined on *V*, and most of the ten axioms inherit the properties for vector operations, it is not needed to verify those axioms
 - Therefore, the following theorem tells us it is sufficient to test for the closure conditions under vector addition and scalar multiplication to identify that a nonempty subset of a vector space is a subspace
- Theorem 1.4: Test whether a nonempty subset being a subspace If W is a nonempty subset of a vector space V, then W is a subspace of V if and only if the following conditions hold
 (1) If u and v are in W, then u+v is in W
 (2) If u is in W and c is any scalar, then cu is in W

1.26

Pf:

- 1. Note that if u, v, and w are in W, then they are also in V.
 Furthermore, W and V share the same operations.
 Consequently, vector space axioms 2, 3, 7, 8, 9, and 10 are satisfied automatically
- 2. Suppose that the closure conditions hold in Theorem 1.4, i.e., the axioms 1 and 6 for vector spaces are satisfied
- 3. Since the axiom 6 is satisfied (i.e., *c***u** is in *W* if **u** is in *W*), we can obtain

3.1. for a scalar c = 0, $c\mathbf{u} = \mathbf{0} \in W \implies \exists \text{ zero vector in } W$ $\Rightarrow \text{ axiom 4 is satisfied}$ 3.2. for a scalar c = -1, $(-1)\mathbf{u} \in W \Rightarrow \exists -\mathbf{u} \equiv (-1)\mathbf{u}$ $\text{ st. } \mathbf{u} + (-\mathbf{u}) = \mathbf{u} + (-1)\mathbf{u} = \mathbf{0}$ $\Rightarrow \text{ axiom 5 is satisfied}$ • Ex 2: A subspace of $M_{2\times 2}$

Let *W* be the set of all 2×2 symmetric matrices. Show that *W* is a subspace of the vector space $M_{2\times 2}$, with the standard operations of matrix addition and scalar multiplication Sol:

First, we knon that W, the set of all 2×2 symmetric matrices, is an nonempty subset of the vector space M_{2×2}
Second,

$$A_{1} \in W, A_{2} \in W \Longrightarrow (A_{1} + A_{2})^{T} = A_{1}^{T} + A_{2}^{T} \equiv A_{1} + A_{2} \quad (A_{1} + A_{2} \in W)$$

$$c \in R, A \in W \Longrightarrow (cA)^{T} = cA^{T} \equiv cA \quad (cA \in W)$$
The definition of a symmetric matrix A is that $A^{T} = A$

• Ex 3: The set of singular matrices is not a subspace of $M_{2\times 2}$ Let *W* be the set of singular (noninvertible) matrices of order 2. Show that *W* is not a subspace of $M_{2\times 2}$ with the standard matrix operations

Sol:

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \in W, \ B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \in W$$
$$Q \ A + B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I \notin W \quad (W \text{ is not closed under vector addition})$$

 $\therefore W$ is not a subspace of $M_{2\times 2}$

• Ex 4: The set of first-quadrant vectors is not a subspace of R^2 Show that $W = \{(x_1, x_2) : x_1 \ge 0 \text{ and } x_2 \ge 0\}$, with the standard operations, is not a subspace of R^2

Sol:

Let $\mathbf{u} = (1, 1) \in W$ $\therefore (-1)\mathbf{u} = (-1)(1, 1) = (-1, -1) \notin W$ (*W* is not closed under scalar multiplication)

 $\therefore W$ is not a subspace of R^2

• Ex 6: Identify subspaces of R^2

Which of the following two subsets is a subspace of R^2 ? (a) The set of points on the line given by x+2y=0(b) The set of points on the line given by x+2y=1

Sol:

(a)
$$W = \{(x, y) \mid x + 2y = 0\} = \{(-2t, t) \mid t \in R\}$$
 (Note: the zero vector
(0,0) is on this line)
Let $\mathbf{v}_1 = (-2t_1, t_1) \in W$ and $\mathbf{v}_2 = (-2t_2, t_2) \in W$
 $\mathbf{Q} \ \mathbf{v}_1 + \mathbf{v}_2 = (-2(t_1 + t_2), t_1 + t_2) \in W$ (closed under vector addition)
 $c\mathbf{v}_1 = (-2(ct_1), ct_1) \in W$ (closed under scalar multiplication)

 $\therefore W$ is a subspace of R^2

(b) $W = \{(x, y) \mid x + 2y = 1\}$ (Note: the zero vector (0, 0) is not on this line) Consider $\mathbf{v} = (1, 0) \in W$ $Q(-1)\mathbf{v} = (-1, 0) \notin W$ $\therefore W$ is not a subspace of R^2

- Note: Subspaces of R^2
 - (1) *W* consists of the *single point* $\mathbf{0} = (0, 0)$ (trivial subspace) (2) *W* consists of all points on a *line* passing through the origin (3) R^2 (trivial subspace)

1.32

 $W = R^2$

• Ex 8: Identify subspaces of R^3

Which of the following subsets is a subspace of R^3 ? (a) $W = \{(x_1, x_2, 1) \mid x_1, x_2 \in R\}$ (Note: the zero vector is not in W) (b) $W = \{(x_1, x_1 + x_3, x_3) \mid x_1, x_3 \in R\}$ (Note: the zero vector is in W) Sol: (a)

Consider $\mathbf{v} = (0, 0, 1) \in W$ Q $(-1)\mathbf{v} = (0, 0, -1) \notin W$ $\therefore W$ is not a subspace of R^3

Consider
$$\mathbf{v} = (v_1, v_1 + v_3, v_3) \in W$$
 and $\mathbf{u} = (u_1, u_1 + u_3, u_3) \in W$
 $\mathbf{Q} \ \mathbf{v} + \mathbf{u} = (v_1 + u_1, (v_1 + u_1) + (v_3 + u_3), v_3 + u_3) \in W$
 $c\mathbf{v} = (cv_1, (cv_1) + (cv_3), cv_3) \in W$

 $\therefore W$ is closed under vector addition and scalar multiplication, so W is a subspace of R^3

- Note: Subspaces of R^3
 - (1) *W* consists of the single point $\mathbf{0} = (0, 0, 0)$ (trivial subspace)
 - (2) W consists of all points on a *line* passing through the origin
 - (3) W consists of all points on a *plane* passing through the origin (The W in problem (b) is a plane passing through the origin)
 (4) R³ (trivial subspace)
 - X According to Ex. 6 and Ex. 8, we can infer that if W is a subspace of a vector space V, then both W and V must contain the same zero vector **0**

• Theorem 1.5: The intersection of two subspaces is a subspace If *V* and *W* are both subspaces of a vector space *U*,

then the intersection of *V* and *W* (denoted by $V \cap W$) is also a subspace of *U*

Pf:

(1) For v₁ and v₂ in V ∩ W, since v₁ and v₂ are in V (and W), v₁ + v₂ is in V (and W). Therefore, v₁ + v₂ is in V ∩ W
(2) For v₁ in V ∩ W, since v₁ is in V (and W), cv₁ is in V (and W). Therefore, cv₁ is in V ∩ W

Consequently, we can conclude the intersection of *V* and *W* $(V \cap W)$ is also a subspace of *U*

* However, the union of two subspaces is not a subspace

Keywords in Section 1.3:

- subspace
- trivial subspace