1.1 Vectors in \mathbb{R}^n

• An ordered *n*-tuple:

a sequence of *n* real numbers (x_1, x_2, \dots, x_n)

• R^n -space:

the set of all ordered *n*-tuples

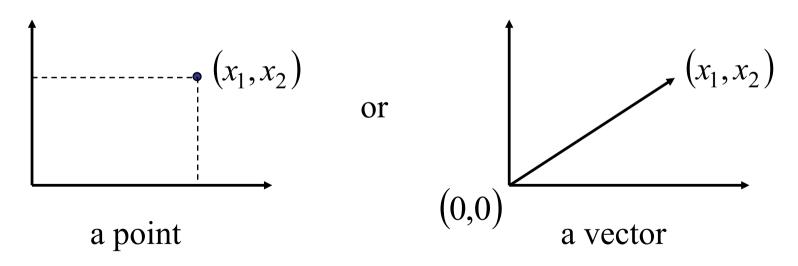
- n = 1 R^{1} -space = set of all real numbers (R^{1} -space can be represented geometrically by the x-axis)
- n = 2 R^2 -space = set of all ordered pair of real numbers (x_1, x_2) $(R^2$ -space can be represented geometrically by the *xy*-plane)
- n = 3 R^3 -space = set of all ordered triple of real numbers (x_1, x_2, x_3) $(R^3$ -space can be represented geometrically by the *xyz*-space)

n = 4 R^4 -space = set of all ordered quadruple of real numbers (x_1, x_2, x_3, x_4)

• Notes:

(1) An *n*-tuple (x₁, x₂, ..., x_n) can be viewed as a point in Rⁿ with the x_i's as its coordinates
(2) An *n*-tuple (x₁, x₂, ..., x_n) also can be viewed as a vector **x** = (x₁, x₂, ..., x_n) in Rⁿ with the x_i's as its components

• Ex:



X A vector on the plane is expressed geometrically by a directed line segment whose initial point is the origin and whose terminal point is the point (x_1, x_2)

$$\mathbf{u} = (u_1, u_2, \dots, u_n), \quad \mathbf{v} = (v_1, v_2, \dots, v_n) \quad \text{(two vectors in } \mathbb{R}^n)$$

• Equality:

$$\mathbf{u} = \mathbf{v}$$
 if and only if $u_1 = v_1, u_2 = v_2, \dots, u_n = v_n$

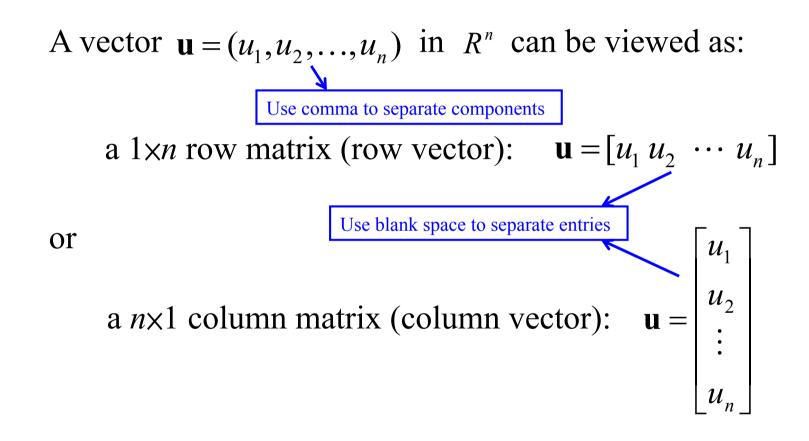
- Vector addition (the sum of **u** and **v**): $\mathbf{u} + \mathbf{v} = (u_1 + v_1, u_2 + v_2, \dots, u_n + v_n)$
- Scalar multiplication (the scalar multiple of **u** by *c*): $c\mathbf{u} = (cu_1, cu_2, \dots, cu_n)$
- Notes:

The sum of two vectors and the scalar multiple of a vector in R^n are called the standard operations in R^n • Difference between **u** and **v**:

$$\mathbf{u} - \mathbf{v} \equiv \mathbf{u} + (-1)\mathbf{v} = (u_1 - v_1, u_2 - v_2, u_3 - v_3, ..., u_n - v_n)$$

- Zero vector:
 - $\mathbf{0} = (0, 0, ..., 0)$

• Notes:



X Therefore, the operations of matrix addition and scalar multiplication generate the same results as the corresponding vector operations (see the next slide)

Vector additionScalar multiplication
$$\mathbf{u} + \mathbf{v} = (u_1, u_2, \dots, u_n) + (v_1, v_2, \dots, v_n)$$
 $c\mathbf{u} = c(u_1, u_2, \dots, u_n)$ $= (u_1 + v_1, u_2 + v_2, \dots, u_n + v_n)$ $= (cu_1, cu_2, \dots, cu_n)$

Regarded as
$$1 \times n$$
 row matrix
 $\mathbf{u} + \mathbf{v} = [u_1 \ u_2 \ \cdots \ u_n] + [v_1 \ v_2 \ \cdots \ v_n]$
 $c\mathbf{u} = c[u_1 \ u_2 \ \cdots \ u_n]$
 $= [u_1 + v_1 \ u_2 + v_2 \ \cdots \ u_n + v_n]$
 $= [cu_1 \ cu_2 \ \cdots \ cu_n]$

Regarded as $n \times 1$ column matrix

$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ \vdots \\ u_n + v_n \end{bmatrix} \qquad c\mathbf{u} = c \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} = \begin{bmatrix} cu_1 \\ cu_2 \\ \vdots \\ u_n \end{bmatrix}$$

- Theorem 1.1: Properties of vector addition and scalar multiplication
 - Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^n , and let c and d be scalars
 - (1) $\mathbf{u}+\mathbf{v}$ is a vector in \mathbb{R}^n (closure under vector addition)
 - (2) $\mathbf{u}+\mathbf{v} = \mathbf{v}+\mathbf{u}$ (commutative property of vector addition)
 - (3) $(\mathbf{u}+\mathbf{v})+\mathbf{w} = \mathbf{u}+(\mathbf{v}+\mathbf{w})$ (associative property of vector addition)
 - (4) $\mathbf{u}+\mathbf{0} = \mathbf{u}$ (additive identity property)
 - (5) $\mathbf{u}+(-\mathbf{u}) = \mathbf{0}$ (additive inverse property) (Note that $-\mathbf{u}$ is just the notation of the additive inverse of \mathbf{u} , and $-\mathbf{u} = (-1)\mathbf{u}$ will be proved in Thm. 4.4.)
 - (6) $c\mathbf{u}$ is a vector in \mathbb{R}^n (closure under scalar multiplication)
 - (7) $c(\mathbf{u}+\mathbf{v}) = c\mathbf{u}+c\mathbf{v}$ (distributive property of scalar multiplication over vector addition)
 - (8) $(c+d)\mathbf{u} = c\mathbf{u}+d\mathbf{u}$ (distributive property of scalar multiplication over realnumber addition)
 - (9) $c(d\mathbf{u}) = (cd)\mathbf{u}$ (associative property of multiplication)
 - (10) $1(\mathbf{u}) = \mathbf{u}$ (multiplicative identity property)
 - * Except Properties (1) and (6), these properties of vector addition and scalar multiplication actually inherit the properties of matrix addition and scalar multiplication in Ch 2 because we can regard vectors in R^n as special cases of matrices 4.8

• Ex 5: Practice standard vector operations in R^4

Let $\mathbf{u} = (2, -1, 5, 0)$, $\mathbf{v} = (4, 3, 1, -1)$, and $\mathbf{w} = (-6, 2, 0, 3)$ be vectors in \mathbb{R}^4 . Solve **x** in each of the following cases.

(a)
$$x = 2u - (v + 3w)$$

(b) $3(x+w) = 2u - v+x$

Sol: (a)
$$\mathbf{x} = 2\mathbf{u} - (\mathbf{v} + 3\mathbf{w})$$

 $= 2\mathbf{u} + (-1)(\mathbf{v} + 3\mathbf{w})$
 $= 2\mathbf{u} - \mathbf{v} - 3\mathbf{w}$ (distributive property of scalar multiplication over vector
 $= (4, -2, 10, 0)^{-1} - (4, 3, 1, -1) - (-18, 6, 0, 9)$
 $= (4 - 4 + 18, -2 - 3 - 6, 10 - 1 - 0, 0 + 1 - 9)$
 $= (18, -11, 9, -8)$

(b)
$$3(\mathbf{x} + \mathbf{w}) = 2\mathbf{u} - \mathbf{v} + \mathbf{x}$$

 $3\mathbf{x} + 3\mathbf{w} = 2\mathbf{u} - \mathbf{v} + \mathbf{x}$ (distributive property of scalar multiplication over vector addition)
 $3\mathbf{x} - \mathbf{x} = 2\mathbf{u} - \mathbf{v} - 3\mathbf{w}$ (subtract $(3\mathbf{w} + \mathbf{x})$ from both sides)
 $2\mathbf{x} = 2\mathbf{u} - \mathbf{v} - 3\mathbf{w}$
 $\mathbf{x} = \mathbf{u} - \frac{1}{2}\mathbf{v} - \frac{3}{2}\mathbf{w}$ (scalar multiplication for the both sides with a scalar to be 1/2)
 $= (2, -1, 5, 0) + (-2, \frac{-3}{2}, \frac{-1}{2}, \frac{1}{2}) + (9, -3, 0, \frac{-9}{2})$
 $= (9, \frac{-11}{2}, \frac{9}{2}, -4)$

• Notes:

(1) The zero vector $\mathbf{0}$ in \mathbb{R}^n is called the additive identity in \mathbb{R}^n (see Property 4)

(2) The vector –u is called the additive inverse of u (see Property 5)

- Theorem 1.2: (Properties of additive identity and additive inverse)
 Let v be a vector in Rⁿ and c be a scalar. Then the following properties are true
- (1) The additive identity is unique, i.e., if $\mathbf{v}+\mathbf{u} = \mathbf{v}$, \mathbf{u} must be $\mathbf{0}$
- (2) The additive inverse of **v** is unique, i.e., if $\mathbf{v}+\mathbf{u} = \mathbf{0}$, **u** must be $-\mathbf{v}$
- (3) 0v = 0
- (4) $c\mathbf{0} = \mathbf{0}$

These three properties are valid for any vector space and will be proved on Slides 4.22-4.23

(5) If $c\mathbf{v} = \mathbf{0}$, either c = 0 or $\mathbf{v} = \mathbf{0}^{\mathsf{I}}$ (6) $-(-\mathbf{v}) = \mathbf{v}^{\mathsf{Since} - \mathbf{v} + \mathbf{v} = \mathbf{0}}$, the additive inverse of $-\mathbf{v}$ is \mathbf{v} , i.e., \mathbf{v} can be expressed as $-(-\mathbf{v})^{\mathsf{I}}$. Note that \mathbf{v} and $-\mathbf{v}$ are the additive inverses for each other) 4.11

• Linear combination in R^n :

The vector **x** is called a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ if it can be expressed in the form

 $\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n$, where c_1, c_2, \dots, c_n are real numbers • Ex 6:

Given
$$\mathbf{x} = (-1, -2, -2)$$
, $\mathbf{u} = (0,1,4)$, $\mathbf{v} = (-1,1,2)$, and
 $\mathbf{w} = (3,1,2)$ in \mathbb{R}^3 , find a, b , and c such that $\mathbf{x} = a\mathbf{u}+b\mathbf{v}+c\mathbf{w}$.
Sol:

$$-b + 3c = -1$$

$$a + b + c = -2$$

$$4a + 2b + 2c = -2$$

$$\Rightarrow a = 1, b = -2, c = -1$$
Thus $\mathbf{x} = \mathbf{u} - 2\mathbf{v} - \mathbf{w}$

Keywords in Section 1.1:

- ordered *n*-tuple
- R^n -space
- equal
- vector addition
- scalar multiplication
- zero vector
- additive identity
- additive inverse
- linear combination