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Special Matrices and Gauss-Siedel



Introduction

• Certain matrices have particular structures that can be
exploited to develop efficient solution schemes.

• A banded matrix is a square matrix that has all elements
equal to zero, with the exception of a band centered on the
main diagonal. These matrices typically occur in solution of
differential equations.

• The dimensions of a banded system can be quantified by two
parameters: the band width BW and half-bandwidth HBW.
These two values are related by BW=2HBW+1.



Banded matrix



4

Tridiagonal Systems
• A tridiagonal system has a bandwidth of 3:
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• An efficient LU decomposition method, called Thomas 
algorithm, can be used to solve such an equation. The 
algorithm consists of three steps: decomposition, forward 
and back substitution, and has all the advantages of LU 
decomposition.



Fig 11.2



Cholesky Decomposition

6

l This method is suitable for only symmetric systems 
where: 
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Cholesky Decomposition
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Pseudocode for Cholesky’s LU 
Decomposition algorithm (cont’d)



Gauss-Siedel

• Iterative or approximate methods provide an
alternative to the elimination methods. The Gauss-
Seidel method is the most commonly used iterative
method.

• The system [A]{X}={B} is reshaped by solving the
first equation for x1, the second equation for x2,
and the third for x3, …and nth equation for xn. We
will limit ourselves to a 3x3 set of equations.



Gauss-Siedel
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Now we can start the solution process by choosing
guesses for the x’s. A simple way to obtain initial
guesses is to assume that they are zero. These
zeros can be substituted into x1 equation to
calculate a new x1=b1/a11.



Gauss-Siedel

• New x1 is substituted to calculate x2 and x3. The
procedure is repeated until the convergence
criterion is satisfied:
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Jacobi  iteration Method

An alternative approach, called Jacobi iteration,
utilizes a somewhat different technique. This
technique includes computing a set of new x’s on the
basis of a set of old x’s. Thus, as the new values are
generated, they are not immediately used but are
retained for the next iteration.



Gauss-Siedel

The Gauss-Seidel method The Jacobi iteration method



Convergence Criterion for Gauss-Seidel Method

• The gauss-siedel method is similar to the technique of 
fixed-point iteration.

• The Gauss-Seidel method has two fundamental 
problems as any iterative method:

1. It is sometimes non-convergent, and
2. If it converges, converges very slowly.

• Sufficient conditions for convergence of two linear 
equations, u(x,y) and v(x,y) are:
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Convergence Criterion for Gauss-Seidel 
Method (cont’d)

• Similarly, in case of two simultaneous equations, the 
Gauss-Seidel algorithm can be expressed as:
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Convergence Criterion for Gauss-Seidel 
Method (cont’d)

Substitution into convergence criterion of two linear 
equations yield:

In other words, the absolute values of the slopes must be 
less than unity for convergence:

That is, the diagonal element must be greater than the off-
diagonal element for each row.
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Gauss-Siedel Method- Example 1
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• Guess x1, x2, x3= zero for the first guess
Iter.     x1 x2 x3 |ea,1|(%) |ea,2| (%) |ea,3| (%)
0            0                0                     0               - - -

1         2.6167  -2.7945         7.005610       100             100            100
2         2.990557    -2.499625     7.000291       12.5           11.8           0.076



Improvement of Convergence Using 
Relaxation 

• Where l is a weighting factor that is assigned a 
value between [0, 2]

• If  l = 1 the method is unmodified.
• If   l is between  0 and 1 (under relaxation) this is 

employed to make a non convergent system to 
converge.

• If   l is between  1 and 2 (over relaxation) this is 
employed to accelerate the convergence.
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Gauss-Siedel Method- Example 2
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Rearrange so that 
the equations are 
diagonally dominant 
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Gauss-Siedel Method- Example 2

iteration unknown value ea maximum ea
0 x1 0

x2 0
x3 0

1 x1 2.5 100.00%
x2 7.166667 100.00%
x3 -2.7619 100.00% 100.00%

2 x1 4.08631 38.82%
x2 8.155754 12.13%
x3 -1.94076 42.31% 42.31%

3 x1 4.004659 2.04%
x2 7.99168 2.05%
x3 -1.99919 2.92% 2.92%



Gauss-Siedel Method- Example 2

The same computation can be developed with relaxation where 
l = 1.2

First iteration:

Relaxation yields: 

Relaxation yields: 

Relaxation yields: 
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Gauss-Siedel Method- Example 2

Iter. unknown value relaxation ea maximum ea
1 x1 2.5 3 100.00%

x2 7.3333333 8.8 100.00%
x3 -2.314286 -2.777143 100.00% 100.000%

2 x1 4.2942857 4.5531429 34.11%
x2 8.3139048 8.2166857 7.10%
x3 -1.731984 -1.522952 82.35% 82.353%

3 x1 3.9078237 3.7787598 20.49%
x2 7.8467453 7.7727572 5.71%
x3 -2.12728 -2.248146 32.26% 32.257%

4 x1 4.0336312 4.0846055 7.49%
x2 8.0695595 8.12892 4.38%
x3 -1.945323 -1.884759 19.28% 19.280%


