¿QUÉ ES UN GEN?

Un **gen** es la unidad funcional básica de la herencia, porta la información que se transmite de una generación a la siguiente.

Desde el punto de vista físico se trata de un pequeño segmento de la doble hélice que conforma a la molécula de ADN.

INTRODUCCIÓN A LA GENÉTICA

La genética es una ciencia que ocupa un lugar primordial en la biología. Estudia la herencia y variación en los organismos.

Los genes pueden estudiarse a nivel molecular, bioquímico, celular, orgánico, familiar, poblacional o evolutivo.

La herencia fija los moldes o patrones biológicos, mientras que el medio ambiente, interno y externo, modula el desarrollo y las actividades del individuo.

ÁREAS DE ESTUDIO DE LA GENÉTICA

- (i) de la transmisión,
- (ii) molecular: se refiere a la naturaleza química de la herencia.
- (iii) de poblaciones: composición genética de individuos miembros de una población y cómo cambia en función del tiempo y espacio geográfico, es decir, **micro y macroevolución**.

Reseña Histórica de la Genética

Gregor Mendel (1860s)

Estableció las leyes de la herencia mediante experimentos con guisantes.

Watson y Crick (1953)

Propusieron la estructura de doble hélice del ADN.

(1)

Friedrich Miescher (1869)

Descubrió el ADN, identificando el material genético.

HISTORIA DE LA GENETICA EN ECUADOR

Paleogenética: patología malformativa precolombina.

Hermida (1986; 1991; 1992).

- Venus dicephalus: cultura Valdivia (7000 años AA).
- Polidactilia, ectrodactilia: cultura Chorrera (1500 años AA).
- Enanos y gigantes: culturas La Tolita y Jama-Coaque (500 años AA).

CASO CLINICO

Figura 1. Fotos clínicas de ambos pies del caso 1.

- 1. Describa lo que observa en la imagen
- 2. ¿Qué provoca este cuadro?

Ectrodactilia

- Trastorno genético poco frecuente.
- Incidencia de 1:90,000 a 100,000 nacidos vivos.
- No ligada al sexo.
- Malformación congénita: hendidura central en manos y pies, agenesia e hipoplasia de los metatarsianos, metacarpianos y falanges.
- Etimología: ektroma (aborto) y daktylos (dedos).
- En 1829 Von Walther y Cruvelhier la describió como "crab-claw foot".

- -Puede ser unilateral o bilateral, presentarse en forma aislada o simultáneamente con deformidades en las manos.
- -Con frecuencia se presenta como parte del síndrome EEC "ectrodactilia, displasia ectodérmica y hendidura".
- -Se relaciona con agentes teratogénicos: derivados del ácido retinoico, cadmio, etanol, cafeína, cocaína y ácido valproico.
- -Autosómico dominante, con penetrancia genética variable.
- -Las deformidades son ocasionadas por alteraciones cromosómicas asociadas a mutaciones en cinco diferentes locus.

TERMINOLOGÍA

Locus Alelos

Loci Displasia

Autosómico dominante Agenesia

Autosómico recesivo Hipoplasia

Penetrancia Eugenesia

Teratógenos Codones

Telómeros Cromosomas

ACTIVIDAD PRACTICA: TALLER EN CLASE - GLOSARIO

HISTORIA DE LA GENETICA EN ECUADOR

A fines del siglo XVII, ocurrieron tres revoluciones científicas:

- 1) Teoría Celular: 1666: Hooke
- 2) Teoría Evolucionista y Mendeliana,
- 3) Genética Molecular y Biotecnología.

PERÍODO ANTIGUO O PRECITOGENÉTICO

1666: Hooke descubrió la célula.

Siglo XVIII: Linneo propuso una clasificación rigurosamente científica.

1809: Una especie proviene de sus antecesoras (Lamarck)

1771: Bichat. Teoría Celular de la herencia.

1792: Von Baer propuso que los organismos se desarrollan a partir del *cruce* de un espermatocito con un óvulo.

1834: Teoría del homúnculo. Teoría metafísica de De Vries: evolución por saltos catastróficos.

1839: Padre Solano, desarrollo científico biogenético.

1899: Se describieron malformaciones cardiacas y se promovió la protección de la descendencia, mediante la promulgación de leyes de divorcio por causas biológicas.

1915: auge de la Embriología, herencia patológica.

1945: Herdoiza escribe sobre "La herencia consanguínea".

1946: Espinosa "Significado de la Genética y posibles aplicaciones de esta ciencia".

1947: Estudios sobre biología del cáncer.

1954: Arias, estudio de malformaciones congénitas como la fisura labio-palatina.

1962: Amen y Weilbauer: herencia de los trastornos sanguíneos.

1965: Pérez, estudio cromosómico en médula ósea para diagnóstico de leucemias.

1968, Torres realiza un estudio sobre el síndrome de Down.

PERÍODO DE LA GENÉTICA Y CITOGENÉTICA CLÁSICA

- Redescubrimiento de las leyes de Mendel por Tschermak, De Vries y Correns.
- Darwinismo y evolucionismo: teoría de la adecuación de los organismos al medio; selección natural, variabilidad, supervivencia del más apto.
- Mendel: Determinación matemática de las leyes básicas de la herencia. Citológicamente corroborado en 1910 por Morgan, quien observó los cromosomas.
- La Citogenética tiene un gran avance, debido al descubrimiento de técnicas y a la readecuación de otras ya existentes.

1987: Paz-y-Miño, estudios cromosómicos en cáncer. Primera biopsia corial.

1990: Varas realiza el primer estudio de incidencia de malformaciones congénitas.

1990: Paz-y- Miño (RNCAVCH).

Primeros pasos en Genética de poblaciones con estudios de frecuencias génicas.

2002: ensayos con técnicas de citogenética molecular. (FISH) para alteraciones cromosómicas.

Ácidos Nucleicos: ADN

Estructura del ADN

Compuesto por nucleótidos con bases, azúcar y fosfato.

- Adenina (A)
- Timina (T)
- Citosina (C)
- Guanina (G)

Doble Hélice

Estructura estable gracias a puentes de H entre las bases.

Funciones del ADN

Almacenamiento Genético

Replicación

ADN polimerasa duplica el ADN antes de la división celular.

Reparación

Mecanismos de corrección de errores para mantener la integridad genética.

Ácidos Nucleicos: ARN

Estructura del ARN

Similar al ADN pero con uracilo en lugar de timina.

- Adenina (A)
- Uracilo (U)
- Citosina(C)
- Guanina (G)

Tipos de ARN

- ARN mensajero (ARNm)
- ARN de transferencia (ARNt)
- ARN ribosómico (ARNr)

Cumplen funciones clave en la síntesis proteica.

Transcripción: ADN a ARN

Inicio

ARN polimerasa se une a promotores en el ADN.

Elongación

Síntesis de ARN complementario a la cadena de ADN.

Maduración

Procesos de splicing, capping y poliadenilación del ARN.

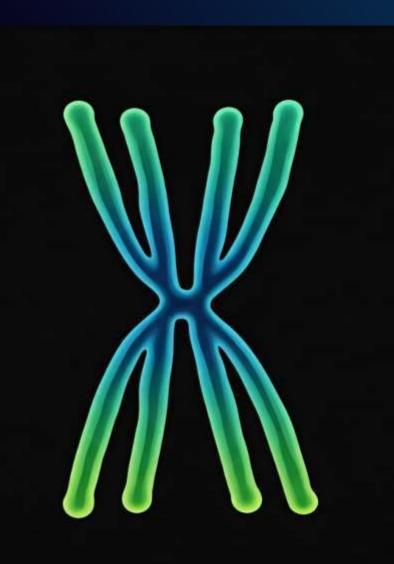
Traducción: ARN a Proteína

1

Codones

Secuencias de 3 nucleótidos codifican aminoácidos.

2


Síntesis

Ribosomas y ARNt ensamblan la cadena proteica.

Fases

- Inicio
- Elongación
- Terminación

Mecanismos de Transmisión de la Herencia

Cromosomas Humanos

46 cromosomas organizados en 23 pares, portadores de genes.

Mitosis y Meiosis

División celular que permite crecimiento y diversidad genética.

Herencia Autosómica

- Dominante
- Recesiva

Expresión de la Herencia Genética

Genes y Alelos

Dominancia y recesividad determinan características.

Interacción Génica

- Epistasis
- Pleiotropía

Influencia del Ambiente

Modula la expresión genética y fenotipo.