Consideremos dos funciones reales de variable real, f, g: R \rightarrow R si $D_f \cap D_g \neq \phi$.

Igualdad de funciones

Diremos que las funciones f y g son iguales sí y sólo sí.

i)
$$D_f = D_g$$

ii) $f(x) = g(x) \Rightarrow \forall x \in D_f = D_g$

Ejemplo:

Las funciones
$$f(x) = x^3 - 1$$
, $g(x) = x^3 - 1$

Son iguales porque $D_f = D_g = R$ y f(x) = g(x).

Eiemplo:

Las funciones $f(x) = \sqrt{(x-1)(x-6)}$ y $g(x) = \sqrt{x-1}\sqrt{x-6}$ no son iguales puesto que $D_f = <-\infty,1] \cup [6,+\infty>$ y $D_g = [6,+\infty>$ de donde $D_f \neq D_g$ Eiemplo:

Las funciones $f(x) = 2x^2 - 7x$, $x \in <0,5$] y $g(x) = 2x^2 - 7x$, $x \in [1,9]$ no son iguales a pesar de tener la misma regla de correspondencia, debido a que sus dominios no coinciden.

Operaciones con funciones

Dos funciones f y g pueden combinarse para formar nuevas funciones f+g, f-g, f.g y f/g de un modo semejante a como sumamos, restamos, multiplicamos y dividimos números reales (Precálculo, James Stewart).

Suma de funciones

Si f y g son dos funciones con dominio Df y Dg respectivamente, entonces a la suma de f y g denotado por f + g se define:

$$i) \ D_{f+g} = D_f \cap D_g$$

$$ii) \ (f+g)(x) = f(x) + g(x) \quad \forall x \in D_f \cap D_g$$

Diferencia de funciones

Si f y g son dos funciones con dominio Df y Dg respectivamente, entonces a la diferencia de f y g denotado por f - g se define:

$$i) \ D_{f-g} = D_f \cap D_g$$

$$ii) \ (f-g)(x) = f(x) - g(x) \quad \forall x \in D_f \cap D_g$$

Multiplicación de funciones

Si f y g son dos funciones con dominio Df y Dg respectivamente, entonces a la multiplicación de f y g denotada por f.g se define:

i)
$$D_{f,g} = D_f \cap D_g$$

ii) $(f,g)(x) = f(x), g(x) \quad \forall x \in D_f \cap D_g$

Cociente de funciones

Si f y g son dos funciones con dominio Df y Dg respectivamente, entonces al cociente de f y g denotado por f/g se define:

$$i) \quad D_{f/g} = D_f \cap D_g - \left\{ x \in D_g/g(x) = 0 \right\}$$

$$ii) \left(\frac{f}{g} \right)(x) = \frac{f(x)}{g(x)}, \ \forall x \in D_{f/g}$$

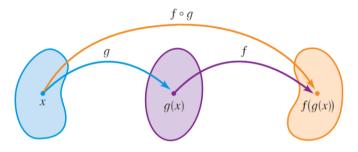
(Análisis matemático I, Eduardo Espinoza Ramos)

Composición de funciones

Dadas dos funciones f y g, la **función compuesta** $f \circ g$ (también llamada **composición** de f y g) está definida por

$$(f \circ g)(x) = f(g(x))$$

El dominio de $f \circ g$ es el conjunto de toda x en el dominio de g tal que g(x) está en el dominio de f. En otras palabras, $(f \circ g)(x)$ está definida siempre que tanto g(x) como f(g(x)) estén definidas.



$$D_{fog} == \{x \in D_g / x \in D_g \land g(x) \in D_f\}$$

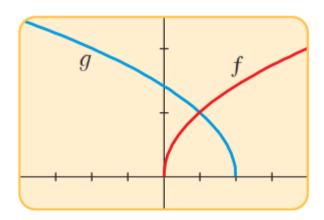
Nota:

$$(gof)(x) = g(f(x))$$

$$D_{gof} = \{x \in D_f / x \in D_f \land f(x) \in D_g\}$$

Si $f(x) = \sqrt{x}$ y $g(x) = \sqrt{2 - x}$, encuentre las siguientes funciones y sus dominios. (a) $f \circ g$ (b) $g \circ f$ (c) $f \circ f$ (d) $g \circ g$

Las gráficas de las funciones iniciales son:



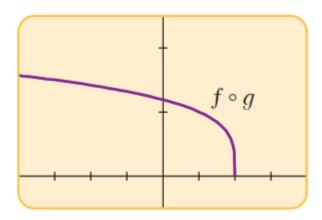
(a)
$$(f \circ g)(x) = f(g(x))$$
 Definición de $f \circ g$

$$= f(\sqrt{2-x})$$
 Definición de g

$$= \sqrt[4]{2-x}$$
 Definición de f

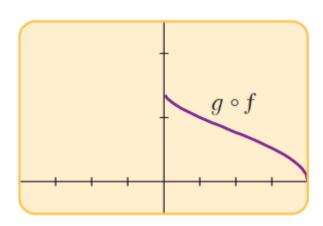
$$= \sqrt[4]{2-x}$$

El dominio de $f \circ g$ es $\{x \mid 2 - x \ge 0\} = \{x \mid x \le 2\} = (-\infty, 2]$.



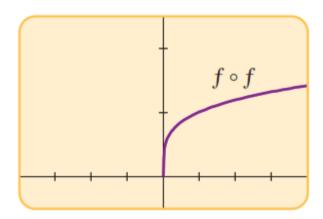
(b)
$$(g \circ f)(x) = g(f(x))$$
 Definición de $g \circ f$
 $= g(\sqrt{x})$ Definición de f
 $= \sqrt{2 - \sqrt{x}}$ Definición de g

Para que \sqrt{x} esté definida, debemos tener $x \ge 0$. Para que $\sqrt{2 - \sqrt{x}}$ esté definida, debemos tener $2 - \sqrt{x} \ge 0$, es decir, $\sqrt{x} \le 2$, o $x \le 4$. Entonces, tenemos $0 \le x \le 4$ de modo que el dominio de $g \circ f$ es el intervalo cerrado [0, 4].



(c)
$$(f \circ f)(x) = f(f(x))$$
 Definición de $f \circ f$
 $= f(\sqrt{x})$ Definición de f
 $= \sqrt[4]{x}$ Definición de f
 $= \sqrt[4]{x}$

El dominio de $f \circ f$ es $[0, \infty)$.



(d)
$$(g \circ g)(x) = g(g(x))$$
 Definición de $g \circ g$

$$= g(\sqrt{2-x})$$
 Definición de g

$$= \sqrt{2-\sqrt{2-x}}$$
 Definición de g

Esta expresión está definida cuando $2 - x \ge 0$ y $2 - \sqrt{2 - x} \ge 0$. La primera desigualdad quiere decir que $x \le 2$, y la segunda es equivalente a $\sqrt{2 - x} \le 2$, o $2 - x \le 4$, o $x \ge -2$. Por tanto, $-2 \le x \le 2$, de modo que el dominio de $g \circ g$ es [-2, 2].

