Inecuaciones Exponenciales

Las inecuaciones exponenciales en una incógnita son de la forma:

$$a^{f(x)} > a^{g(x)} \lor a^{f(x)} < a^{g(x)}$$

donde f(x) y g(x) son expresiones en x, $a \in R^+$, $a \ne 1$.

Para resolver estas inecuaciones, se consideran dos casos:

1º CASO.- Si a > 1, entonces los exponentes de la inecuación dada son desiguales en el mismo sentido prefijado, es decir:

Si
$$a^{f(x)} > a^{g(x)} \iff f(x) > g(x)$$

Si $a^{f(x)} < a^{g(x)} \iff f(x) < g(x)$

2º CASO.- Si 0 < a < 1, entonces los exponentes de la inecuación dada son desiguales en sentido contrario al prefijado, es decir:</p>

Si
$$a^{f(x)} > a^{g(x)} \Leftrightarrow f(x) < g(x)$$

Si $a^{f(x)} < a^{g(x)} \Leftrightarrow f(x) > g(x)$

Inecuaciones Irracionales

Las inecuaciones irracionales en una incógnita son de la forma:

$$F(x, \sqrt{P_2(x)}, \sqrt[3]{P_3(x)}, ..., \sqrt[n]{P_n(x)}) > 0 \quad 6 \quad F(x, \sqrt{P_2(x)}, \sqrt[3]{P_3(x)}, ..., \sqrt[n]{P_n(x)}) < 0$$

donde $P_2(x), P_3(x), ..., P_n(x)$ son monomios o polinomios diferentes de cero.

Para que la solución de la inecuación sea válida debe resolverse antes la condición $P_i(x) \ge 0$, i = 2,3,...,n en las expresiones con una radical par, cuyo conjunto solución constituirá el universo o dentro del cuál se resuelve la inecuación dada. Debe observarse que $\sqrt{P(x)}$, quiere decir, $(+\sqrt{P(x)})$ y si se desea la raíz negativa se escribirá expresamente como $(-\sqrt{P(x)})$; es decir:

i)
$$\forall P(x) \ge 0$$
 , $\sqrt{P(x)} \ge 0$ ii) $\sqrt{P(x)} = 0 \iff P(x) = 0$

para resolver las inecuaciones radicales se debe tener en cuenta las siguientes propiedades:

(4) i) Si n es un entero positivo par.

$$a_1$$
) $\forall P(x) \ge 0$ $\therefore \sqrt[n]{P(x)} \ge 0 \iff P(x) \ge 0$

$$a_2$$
) $\sqrt[n]{P(x)} = 0 \Leftrightarrow P(x) = 0$

$$a_3$$
) $\sqrt[n]{P(x)} \le \sqrt[n]{Q(x)} \Leftrightarrow 0 \le P(x) \le Q(x)$

$$b_1$$
) $\sqrt[n]{P(x)} \ge 0 \iff P(x) \ge 0$

$$b_2$$
) $\sqrt[n]{P(x)} < 0 \iff P(x) < 0$

$$b_3$$
) $\sqrt[n]{P(x)} \le \sqrt[n]{Q(x)} \iff P(x) \le Q(x)$

Las propiedades b_1), b_2) indican que $\sqrt[n]{P(x)}$ tienen el mismo signo que P(x) si n es impar.

OBSERVACIÓN.- Cuando en una expresión existen k radicales par entonces se calculan los universos relativos $U_1, U_2, ..., U_k$ para cada radical y el universo general será $U = U_1 \cap U_2 \cap ... \cap U_k$.

- 1° Para las inecuaciones irracionales de las formas:
 - a) $\sqrt{P(x)} > Q(x)$. La solución se obtiene así:

$$\sqrt{P(x)} > Q(x) \Leftrightarrow (P(x) \ge 0 \ \Lambda \ [Q(x) \le 0 \ V \ (P(x) \ge 0 \ \Lambda \ P(x) > Q^2(x))])$$

b) $\sqrt{P(x)} \ge Q(x)$; la solución se obtiene así:

$$\sqrt{P(x)} \ge Q(x) \Leftrightarrow [P(x) \ge 0 \ \Lambda \ (Q(x) \le 0 \ V \ [P(x) \ge 0 \ \Lambda \ P(x) \ge Q^2(x)])]$$

- 2° Para las inecuaciones irracionales de las formas:
 - a) $\sqrt{P(x)} < Q(x)$; la solución se obtiene así:

$$\sqrt{P(x)} < Q(x) \iff [(P(x) \ge 0 \ \Lambda \ (Q(x) > 0 \ \Lambda \ P(x) < Q^2(x))]$$

b)
$$\sqrt{P(x)} \le Q(x)$$
; la solución se obtiene así:

$$\sqrt{P(x)} \le Q(x) \iff P(x) \ge 0 \ \Lambda \ [Q(x) \ge 0 \ \Lambda \ P(x) \le Q^2(x)]$$

3° Para las inecuaciones irracionales de la forma:

a)
$$\sqrt{P(x)} + \sqrt{Q(x)} > 0$$
; La solución se obtiene así:

$$\sqrt{P(x)} + \sqrt{Q(x)} > 0 \implies P(x) > 0 \quad \Lambda \quad Q(x) > 0$$

b)
$$\sqrt{P(x)} + \sqrt{Q(x)} \ge 0$$
; La solución se obtiene así:

$$\sqrt{P(x)} + \sqrt{Q(x)} \ge 0 \implies P(x) \ge 0 \quad \Lambda \quad Q(x) \ge 0$$

- 1º Para las inecuaciones irracionales de las formas:
 - a) $\sqrt{P(x)} > Q(x)$. La solución se obtiene así:

$$\sqrt{P(x)} > Q(x) \Leftrightarrow (P(x) \ge 0 \land [Q(x) \le 0 \lor (P(x) \ge 0 \land P(x) > Q^2(x))])$$

$$\sqrt{P(x)} \le Q(x) \iff P(x) \ge 0 \ \Lambda \ [Q(x) \ge 0 \ \Lambda \ P(x) \le Q^2(x)]$$

- 3° Para las inecuaciones irracionales de la forma:
 - a) $\sqrt{P(x)} + \sqrt{Q(x)} > 0$; La solución se obtiene así:

$$\sqrt{P(x)} + \sqrt{Q(x)} > 0 \implies (P(x) \ge 0 \quad \Lambda \quad Q(x) > 0) \quad V \quad (P(x) > 0 \quad \Lambda \quad Q(x) \ge 0)$$

b) $\sqrt{P(x)} + \sqrt{Q(x)} \ge 0$; La solución se obtiene así:

$$\sqrt{P(x)} + \sqrt{Q(x)} \ge 0 \implies P(x) \ge 0 \quad \Lambda \quad Q(x) \ge 0$$

4º Para la inecuación irracional de la forma:

$$\sqrt{P(x)} + \sqrt{Q(x)} \ge K$$
, $K > 0$; La solución se obtiene así:
 $\sqrt{P(x)} + \sqrt{Q(x)} \ge K \implies [(P(x) \ge 0 \ \land \ Q(x) \ge 0) \ \land \ P(x) \ge (k - \sqrt{Q(x)})^2]$

5° Para las inecuaciones irracionales de la forma:

$$\sqrt{P(x)} + \sqrt{Q(x)} \le 0$$
; La solución se obtiene así:

OBSERVACION .-

Consideremos otros casos más generales.

1º Caso.- Si n es impar positivo mayor que uno.

a)
$$\frac{P(x)\sqrt[n]{Q(x)}}{R(x)} \ge 0 \iff \frac{P(x).Q(x)}{R(x)} \ge 0$$

b)
$$\frac{P(x)}{R(x)\sqrt[n]{Q(x)}} \le 0 \iff \frac{P(x)}{R(x)Q(x)} \le 0$$

c)
$$\sqrt[n]{P(x)} \le \sqrt[n]{Q(x)} \iff P(x) \le Q(x)$$

2° Caso.- Si n es par positivo

a)
$$\sqrt[n]{P(x)}Q(x) \ge 0 \iff P(x) \ge 0 \quad \Lambda \quad Q(x) \ge 0$$

b)
$$\sqrt[n]{P(x)}Q(x) \le 0 \iff P(x) \ge 0 \quad \Lambda \quad Q(x) \le 0$$

c)
$$\frac{P(x)}{\sqrt[n]{Q(x)}R(x)} \ge 0 \iff Q(x) > 0 \quad \Lambda \quad \frac{P(x)}{R(x)} \ge 0$$

d)
$$\frac{P(x)}{\sqrt[n]{Q(x)}R(x)} \le 0 \iff Q(x) > 0 \quad \Lambda \quad \frac{P(x)}{R(x)} \le 0$$

e)
$$\sqrt[n]{P(x)} \ge Q(x) \Leftrightarrow (P(x) \ge 0 \land [Q(x) < 0 \lor (Q(x) \ge 0 \land P(x) \ge Q^n(x))]$$

f)
$$\sqrt[n]{P(x)} \le Q(x) \iff P(x) \ge 0 \ \Lambda \ [Q(x) \ge 0) \ \Lambda \ P(x) \le Q^n(x)$$
]

OBSERVACIÓN.- Si n es un numero positivo impar, entonces:

1
$$\sqrt[n]{P(x)} \le \sqrt[n]{Q(x)} \iff P(x) \le Q(x)$$

$$\sqrt[n]{P(x)} \le \sqrt[n]{Q(x)} \iff P(x) \le Q(x)$$
 2 $\sqrt[n]{P(x)} < \sqrt[n]{Q(x)} \iff P(x) < Q(x)$

(3)
$$\sqrt[n]{P(x)} \ge \sqrt[n]{Q(x)} \iff P(x) \ge Q(x)$$

$$\sqrt[n]{P(x)} \ge \sqrt[n]{Q(x)} \iff P(x) \ge Q(x)$$
 4 $\sqrt[n]{P(x)} > \sqrt[n]{Q(x)} \iff P(x) > Q(x)$

OBSERVACIÓN.- Si n es un numero positivo par, entonces:

(2)
$$\sqrt[n]{P(x)} < \sqrt[n]{Q(x)} \Leftrightarrow 0 \le P(x) < Q(x)$$

Valor Absoluto

(2)
$$|a|=b \Leftrightarrow [b \ge 0 \land (a=b \lor a=-b)]$$

i)
$$|a| < b \Leftrightarrow -b < a < b$$
 ii) $|a| \le b \Leftrightarrow -b \le a \le b$

i)
$$|a| > b \Leftrightarrow a > b \vee a < -b$$

(6) i)
$$|a| = \sqrt{a^2}$$

ii)
$$|a|^2 = a^2$$