TAREA N° 3: SISTEMAS DE COORDENADAS Y VECTORES

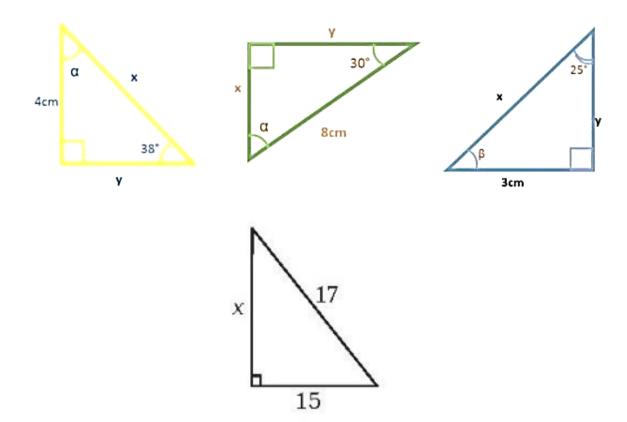
- 1. Represente las siguientes coordenadas rectangulares en cilíndricas.
 - a) (x, y, z) = (7, 9, 18)
 - b) (x, y, z) = (-20,31,25)
 - c) (x, y, z) = (-10, -12.8)
- 2. Represente las siguientes coordenadas cilíndricas en rectangulares.
 - a) $(r, \theta, z) = (25, 63^{\circ}, 30)$
 - b) $(r, \theta, z) = (9, \frac{3\pi}{5}, 28)$
 - c) $(r, \theta, z) = (16, 70^{\circ}, 23)$
- 3. Represente las siguientes coordenadas rectangulares en esféricas.
 - a) (x, y, z) = (21,20,24)
 - b) (x, y, z) = (13,20,16)
 - c) (x, y, z) = (7,9,12)
- 4. Represente las siguientes coordenadas esféricas en rectangulares.
 - a) $(\rho, \theta, \varphi) = (16, 25^{\circ}, 36^{\circ})$
 - b) $(\rho, \theta, \varphi) = (25, \frac{3\pi}{5}, \frac{\pi}{5})$
 - c) $(\rho, \theta, \varphi) = (64, 70^{\circ}, 63^{\circ})$
- 5. A partir de los siguientes vectores determine sus coordenadas rectangulares, polares, geográficas y su gráfica.
 - a) $\vec{v} = (8,9)m/s$
 - b) $\vec{F} = (49N, 164^{\circ})$
 - c) $\vec{a} = (63m/s^2, S25^{\circ}E)$
 - d) $\vec{\omega} = (-15, -9) rad/s$
- 6. La magnitud de un vector \vec{R} es 35m, y forma un ángulo de 163° con el sentido positivo del eje x. Determinar:
 - Las componentes en x e y del vector
 - Las coordenadas rectangulares del vector
 - Los ángulos directores
 - El vector en función de los vectores base
 - El vector unitario
 - El vector en su módulo y unitario.

7. Dado el vector $\vec{K} = (14\vec{\imath} - 32\vec{\imath})$, determinar:

- Las componentes rectangulares del vector
- Las coordenadas del punto extremo del vector
- EI módulo del vector
- La dirección
- Los ángulos directores
- El vector unitario

8. El módulo de un vector \vec{M} es 70 m y su vector unitario $\vec{U}_M = 0.15\vec{\iota} - p\vec{\jmath}$ Determinar:

- El valor de p
- Los ángulos directores
- El vector en función de sus vectores base
- Las componentes rectangulares del vector
- Las coordenadas del punto extremo del vector
- La dirección
- El vector unitario en función de sus ángulos directores


9. El módulo de un vector \vec{A} es 72 m/s y tiene como ángulos directores $\alpha=174^\circ$ y $\beta=43^\circ$. Determinar:

- El vector unitario
- El vector en función de los vectores base
- Las componentes rectangulares del vector
- Las coordenadas del punto extremo del vector
- La dirección

10. Las coordenadas de los puntos inicial y final del vector \vec{F} son (-15, -12)m y (4, 6)m respectivamente. Determinar:

- Las componentes rectangulares del vector
- El módulo
- La dirección y rumbo
- Los ángulos directores
- El vector en función de los vectores base
- El vector unitario
- El vector en su modulo y unitario
- El vector unitario en función de sus ángulos directores

Calcule la medida de los todos los lados y ángulos faltantes en cada triángulo.

