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Abstract

This research aims to establish a practical stress detection framework by integrating physio-

logical indicators and deep learning techniques. Utilizing a virtual reality (VR) interview para-

digm mirroring real-world scenarios, our focus is on classifying stress states through

accessible single-channel electroencephalogram (EEG) and galvanic skin response (GSR)

data. Thirty participants underwent stress-inducing VR interviews, with biosignals recorded

for deep learning models. Five convolutional neural network (CNN) architectures and one

Vision Transformer model, including a multiple-column structure combining EEG and GSR

features, showed heightened predictive capabilities and an enhanced area under the

receiver operating characteristic curve (AUROC) in stress prediction compared to single-

column models. Our experimental protocol effectively elicited stress responses, observed

through fluctuations in stress visual analogue scale (VAS), EEG, and GSR metrics. In the

single-column architecture, ResNet-152 excelled with a GSR AUROC of 0.944 (±0.027),

while the Vision Transformer performed well in EEG, achieving peak AUROC values of

0.886 (±0.069) respectively. Notably, the multiple-column structure, based on ResNet-50,

achieved the highest AUROC value of 0.954 (±0.018) in stress classification. Through VR-

based simulated interviews, our study induced social stress responses, leading to significant

modifications in GSR and EEG measurements. Deep learning models precisely classified

stress levels, with the multiple-column strategy demonstrating superiority. Additionally, dis-

creetly placing single-channel EEG measurements behind the ear enhances the conve-

nience and accuracy of stress detection in everyday situations.

1. Introduction

The investigation into stress holds a central position within the fields of psychology and health-

care, owing to its profound impact on the overall well-being, encompassing both physical and

mental aspects, of individuals. According to Lazarus and Folkman [1], stress is defined as "a
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specific relationship between an individual and their environment, characterized by the indi-

vidual’s appraisal of the situation as exceeding their resources and threatening their well-

being." Stress can originate from a variety of sources, including work-related pressures, inter-

personal relationships, financial difficulties, and health-related challenges. Prolonged exposure

to stress can lead to adverse health outcomes, such as anxiety, depression, cardiovascular disor-

ders, and compromised immune system function [2].

The examination of physiological signals plays a critical role in stress research, offering

insights into the complex physiological responses to stressors. Objective metrics, such as heart

rate, blood pressure, skin conductance, and cortisol levels, provide valuable validation for self-

reported stress assessments and illuminate the underlying biological mechanisms of stress [3].

These physiological signals also enable real-time monitoring of stress levels, offering valuable

insights for stress management interventions. For example, biofeedback techniques leverage

physiological cues to empower individuals to regulate their stress responses, ultimately

improving stress management outcomes [4]. Furthermore, these signals hold the potential to

provide insights into the fundamental biological mechanisms of stress, offering real-time mon-

itoring and identifying individuals at higher risk of stress-related disorders.

Commonly used physiological signals in stress detection methodologies include heart rate

(HR) (HR) [5], heart rate variability (HRV) [6–8], galvanic skin response (GSR) [9], voice [10],

respiration rate (RR) [11], and electroencephalogram (EEG) [12–14]. In recent years, deep

learning methods have been employed to analyze physiological signals in the context of stress

research. Notable examples include the use of a convolutional neural network (CNN) to distin-

guish between stress and non-stress states using electrocardiogram (ECG) signals, achieving

an impressive accuracy of 92% with 2-second ECG signals [15]. Another study utilized long

short-term memory (LSTM) algorithms to categorize stress and non-stress conditions based

on HRV, achieving an accuracy exceeding 90% [16]. Additionally, deep learning techniques

have been applied to analyze stress levels through EEG signals, achieving an accuracy of over

85% using a 1D-CNN model trained on 1-second EEG signal data [17]. These findings under-

score the potential of deep learning in comprehensively interpreting physiological signals in

stress research.

While the aforementioned studies highlight the promise of deep learning in analyzing phys-

iological signals in stress research, it is essential to acknowledge inherent limitations in this

approach. One such limitation relates to data collection challenges, especially for physiological

signals like multi-channel EEG, which often require specialized equipment such as EEG caps

or forehead attachments. Furthermore, it is important to recognize the prevalence of fre-

quently used stress-inducing tasks, such as the Stroop task or arithmetic exercises, in existing

literature [18, 19]. However, these tasks may not fully replicate the stressors encountered in

daily life, and their controlled nature could introduce artificial elements, potentially overlook-

ing the diverse range of stresses individuals face in their everyday routines. This consideration

gains particular significance when viewed in the context of real-world applications.

In light of the aforementioned factors, the present study utilized a VR-based mock inter-

view environment to offer a more ecologically valid approach to inducing stress, effectively

simulating real-life scenarios that individuals might encounter. This stands in contrast to prior

research that relied on standardized laboratory-based stress induction techniques, which

might not authentically replicate real-world stressors. Additionally, the study embraced an eas-

ily applicable methodology for acquiring 1-channel EEG and GSR signals. The implementa-

tion of the 1-channel EEG and GSR signal acquisition methodology, as employed in this study,

effectively addresses these concerns. Lastly, the study harnessed deep learning algorithms for

stress classification, demonstrating promise in accurately discerning stress levels from physio-

logical signals.
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2. Methods

2.1 Experiment design

This study conducted its participant recruitment from February 1, 2022, to September 1, 2022,

and obtained written consent from participants for their involvement in the experiment. This

consent included agreement for the research team to have direct access to their personal and

acquired data. We enrolled 30 healthy young adults aged 20, comprising 16 males and females,

with a mean age of 23.63 ± 3.03, all devoid of neurological or cardiovascular disorders. Partici-

pants were instructed to abstain from nicotine, alcohol, and caffeine consumption for a day

prior to the study. Ethical approval for the research protocol was obtained from Hanyang Uni-

versity’s Institutional Bioethics Committee (IRB: HYUIRB-202201-016).

As illustrated in Fig 1(A), participants were equipped with a behind-the-ear (BTE) EEG

device as described in reference [20]. The placement of electrodes was determined following

established protocols from prior foundational studies [21]. This experimental configuration

employed the BTE EEG apparatus to record EEG signals from participants while they were in

seated position.

Additionally, instrumentation from Biopac System Inc., USA, was employed to monitor

participants’ Galvanic Skin Response (GSR). Participants rated their stress levels on a scale

from 0 to 10, with decimal places to the first digit, ranging from "No stress" to "Severe stress"

[22]. Biosignal measurements were recorded continuously from the initiation of the experi-

mental paradigm.

2.2 Biosignal processing

To validate the induction of stress within this experimental paradigm, classical signal process-

ing techniques were applied to the recorded biosignals, and the results were compared with

established biosignal indicators associated with stress. The analysis was conducted using

Fig 1. Electrode placements: The electrode locations were determined based on prior foundational investigations, designating the superior auricular region for the

channel, a transitional position for the ground, and the mastoid area as the reference point (a) Application of the measurement device (b) BTE EEG measurement device.

https://doi.org/10.1371/journal.pone.0305864.g001
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MATLAB (The MathWorks Inc., 2022), in conjunction with its EEGLAB and LEDALAB tool-

boxes [23, 24]. The EEG data underwent bandpass filtering in the range of 1Hz to 50Hz, and

power within the alpha (8-12Hz) and beta (15-30Hz) frequency bands was computed. Further-

more, the GSR data were downsampled to 10Hz, followed by a decomposition process into

tonic components, representing gradual changes, and phasic components, reflecting rapid var-

iations, using Continuous Decomposition analysis. Subsequently, the magnitude of each com-

ponent was quantified.

2.3 Dataset and preprocessing

Experiments involved a total of 30 participants; however, due to noise concerns, data from 29

participants were subjected to analysis. The GSR frequently exhibits two distinct components:

the tonic and phasic responses. The tonic component represents the slower-changing aspect,

whereas the phasic component captures rapid fluctuations. These components typically

emerge within the frequency range of 1 to 15Hz. In contrast, exploration of EEG signals often

reveals a broader frequency spectrum, spanning from 1 to 30Hz. Appropriate filtering was

applied to address this. For subsequent AI analysis using both CNN and transformer-based

models, data were segmented into 30-second intervals with a 50% overlap and transformed

into grayscale spectrogram format with dimensions of 64x64 pixels. Following these steps, a

dataset comprising 551 samples of the Normal condition and 1529 samples of the Stress condi-

tion was compiled. Furthermore, a cost-sensitive learning approach [25] was employed to

address class imbalance, assigning greater weight to the minority class without altering the

total number of data instances.

2.4 CNN and transformer model architectures

In this study, five distinct CNN models one Vision Transformer model were employed as

foundational structures [26]. The models used ResNet-50 [27], ResNet-152, EfficientNet-b0

[28], DenseNet-161 [29], and Inception-v3 [30], alongside the non-CNN Vision Transformer.

Both single-column and multiple-column configurations, detailed in the following sections,

were adopted for binary classification of stress states using EEG and GSR data. The single-col-

umn approach involved training the model using either EEG or GSR data. Each model was ini-

tialized using a pre-trained ImageNet model due to significantly lower performance when

training from scratch (data not shown). As depicted in Fig 2, the model comprised a model-

specific backbone(either CNN or transformer-based), a fully connected layer, a dropout layer,

and a ReLU activation function. For optimization, the Adam optimizer was employed with an

initial learning rate of 0.001, and the training epoch was set to 30. Additionally, a batch size of

32 was utilized. In addition, to leverage information from both EEG and GSR modalities con-

currently and jointly extract features, a multiple-column configuration was devised. GSR and

EEG features were extracted from each model backbone and subsequently concatenated. For

normalization, mean subtraction was applied to each pixel value in the spectrogram image to

balance the contribution of each modality, preventing any one from disproportionately influ-

encing the model’s performance. A fully connected layer, accompanied by a dropout layer and

a ReLU activation function, followed this concatenation [31, 32]. To enhance training effi-

ciency, weights exhibiting optimal performance in the single-column models were employed

for initialization. The multiple-column model utilized the Adam optimizer with an initial

learning rate of 0.0001, a training epoch of 30, and a batch size of 32. In contrast to the

approach used with the single-column model, this specific learning rate was selected because

the model had already been partially trained, necessitating careful fine-tuning during updates

to optimize performance effectively. Furthermore, when comparing the multiple-column
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model initialized with the same learning rate of 0.01 as the single model or initialized with

ImageNet weights, it generally showed slightly better performance (data not shown). Regard-

ing the training duration, training the single-column model across 5 folds and 30 epochs took

approximately 1 hour. In contrast, the multi-column model required about 1.5 hours to com-

plete the same number of epochs.

2.5 Evaluation of the model and experimental settings

To optimize model parameters, a five-fold cross-validation approach was employed. To pre-

vent data from the same subject from mixing in the training and testing sets, we partitioned

the dataset into five subsets on a subject-wise basis. Each subject’s data was exclusively assigned

to one of these subsets, with four subsets allocated for model training and the remaining one

reserved for validation. This method ensures no overlap between training and testing data,

thereby mitigating potential overestimation of model performance. Regarding model evalua-

tion, the area under the receiver operating characteristic curve (AUROC) was computed as the

performance metric for each model. All models were trained using PyTorch, with training

conducted on a Quadro RTX 8000 GPU. The experiments were conducted on a 64-bit com-

puter processor housing an Intel1 Xeon1 Gold 6226R CPU @ 2.90GHz with 16 cores.

Fig 2. Overview of Model architectures (a) Single-column architecture: a method for training the model using either EEG or GSR data (b) Multiple-column architecture:

the presented model comprises two single-column models, each equipped with dedicated model backbones(either CNN or transformer-based) for their respective

modalities. GSR and EEG features are extracted independently from each model backbone and then concatenated.

https://doi.org/10.1371/journal.pone.0305864.g002
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3. Result

3.1 Biosignal characteristics on each session of experiments

Stress levels were assessed using the visual analogue scale (VAS) score, as depicted in Fig 3.

The granularity of the labeling was achieved using a 10-cm visual analogue scale where partici-

pants marked their level of stress. These marks were then measured with a ruler to millimeter

precision, so, for example, a mark at 4.2 cm on the scale would score a 4.2. Measurements were

taken a total of four times, before and after each session, as shown in Fig 4. During the resting

period, the VAS score increased from 1.4 ± 1.3 to 5.4 ± 1.6 and 5.8 ± 2.1 in session 1 and ses-

sion 2, respectively. To gauge the impact of stress on EEG, we computed the alpha (8 – 13Hz)/

beta (13 – 30Hz) ratio in the frequency domain. During the resting period, the ratio measured

1.1 ± 0.8; however, it decreased to 0.52 ± 0.3 and 0.6 ± 0.3 in session 1 and session 2, respec-

tively. Similarly, GSR measurements demonstrated elevated stress levels transitioning from the

rest period (5.3 ± 4.1) to session 1 (11.3 ± 4.0) and session 2 (11.0 ± 4.1). These findings collec-

tively indicate the effective induction of stress responses in participants through the experi-

mental stress protocol, substantiated by discernible alterations in both EEG and GSR

measurements.

3.2 Image-wise classification

The proposed models were trained and validated using 551 images for Normal and 1529

images for Stress, with performance assessment conducted through five-fold cross-validation

Fig 3. Experiment result: An analysis of the segment-specific scores and the averaged values of respective physiological signals for rest, Session 1, Session 2, and

recovery, as indicated in Fig 4. (paired t-test, *p< 0.05, **p< 0.005).

https://doi.org/10.1371/journal.pone.0305864.g003

Fig 4. Experimental sequence: The experimental sequence, as depicted in Fig 1, began with a 30-minute period of rest and relaxation, followed by two 15-minute

sessions of VR interviews intended to induce stress. The final interview session was followed by a 20-minute recovery interval. During the rest and recovery phases,

participants utilized VR equipment (MintPot Co., Ltd.) to view serene natural landscapes. The VR interviews were conducted using the “God of interview” program

(MintPot Co., Ltd), simulating a virtual mock interview experience. Stress levels were assessed using a stress visual analogue scale (VAS) questionnaire administered both

before and after each session.

https://doi.org/10.1371/journal.pone.0305864.g004
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as shown in Table 1. The experimental outcomes revealed that within the category of single-

column models, ResNet-152 achieved the highest AUROC value for GSR, while Vision Trans-

former demonstrated the highest AUROC value for EEG. Specifically, ResNet-152 exhibited

an AUROC value of 0.944 for Stress and Normal classification using GSR, while the Vision

Transformer yielded an AUROC value of 0.886 for EEG. For the multiple-column structure,

which combined EEG and GSR features and used ResNet-50 as the foundation, the highest

AUROC value of 0.954 for Stress and Normal classification was attained. This suggests that the

model effectively extracts complementary features from each modality, potentially capturing

their interconnected nature.

3.3 Visualizing stress detection results

We employed the ResNet50 model to visualize stress detection outcomes across the entire

duration of an experiment for a given subject. As Fig 5 depicts, the subject gradually transitions

to a state of calmness during the relaxation phase, resulting in a decline in stress probability

over time. Subsequently, in the rest state, stress probability consistently maintains a low level.

In contrast, during the VR job interview stress session, the stress probability displays an ascent,

followed by a gradual decrease during the subsequent recovery phase. This distinct pattern

exemplifies accurately classified observations, underscoring the model’s adeptness in capturing

discernible stress fluctuations across distinct stages.

In Fig 6, results from another test involving a different subject are visualized. As shown in

Fig 6(A), it can be observed that GSR signals in the resting and stress periods do not appear as

clearly distinguishable compared to the previous example in Fig 5(A). Certain individuals may

exhibit physiological signals, such as GSR or EEG, that don’t exhibit a distinct difference

between resting and stressful situations. Such individuals might encounter challenges in

Table 1. The average evaluation metrics of each model for stress detection with 5-fold cross validation.

Models Model

size (MB)

Input data AUC Accuracy Recall Precision F1 score

Inception-v3 83 GSR

(Single column)

0.932 (±0.033) 0.873 (±0.030) 0.913 (±0.064) 0.921 (±0.060) 0.913 (±0.021)

EEG

(Single column)

0.878 (±0.038) 0.778 (±0.041) 0.794 (±0.102) 0.899 (±0.047) 0.837 (±0.037)

GSR, EEG

(Multiple column)

0.943 (±0.013) 0.886 (±0.051) 0.921 (±0.099) 0.923 (±0.029) 0.918 (±0.047)

ResNet-50 90 GSR 0.929 (±0.029) 0.860 (±0.043) 0.892 (±0.077) 0.919 (±0.042) 0.902 (±0.034)

EEG 0.847 (±0.037) 0.701 (±0.099) 0.686 (±0.218) 0.895 (±0.057) 0.748 (±0.139)

GSR, EEG 0.954 (±0.018) 0.865 (±0.072) 0.887 (±0.143) 0.928 (±0.030) 0.898 (±0.070)

ResNet-152 222 GSR 0.944 (±0.027) 0.865 (±0.063) 0.860 (±0.078) 0.949 (±0.023) 0.901 (±0.049)

EEG 0.868 (±0.029) 0.760 (±0.070) 0.764 (±0.161) 0.902 (±0.046) 0.814 (±0.072)

GSR, EEG 0.946 (±0.059) 0.889 (±0.059) 0.908 (±0.115) 0.938 (±0.023) 0.918 (±0.058)

DenseNet-161 102 GSR 0.924 (±0.057) 0.849 (±0.102) 0.841 (±0.136) 0.939 (±0.031) 0.883 (±0.093)

EEG 0.861 (±0.033) 0.805 (±0.030) 0.830 (±0.045) 0.896 (±0.015) 0.861 (±0.023)

GSR, EEG 0.907 (±0.030) 0.784 (±0.058) 0.815 (±0.132) 0.891 (±0.065) 0.842 (±0.062)

EfficientNet–b0 16 GSR 0.931 (±0.025) 0.896 (±0.030) 0.950 (±0.045) 0.913 (±0.037) 0.930 (±0.021)

EEG 0.863 (±0.051) 0.813 (±0.041) 0.857 (±0.077) 0.887 (±0.043) 0.868 (±0.038)

GSR, EEG 0.948 (±0.014) 0.867 (±0.093) 0.874 (±0.167) 0.941 (±0.028) 0.894 (±0.094)

Vision Transformer 328 GSR 0.940 (±0.014) 0.866 (±0.014) 0.937 (±0.054) 0.892 (±0.054) 0.911 (±0.015)

EEG 0.886 (±0.069) 0.758 (±0.109) 0.782 (±0.229) 0.895 (±0.087) 0.803 (±0.144)

GSR, EEG 0.945 (±0.033) 0.882 (±0.054) 0.912 (±0.066) 0.927 (±0.020) 0.918 (±0.038)

https://doi.org/10.1371/journal.pone.0305864.t001
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remaining calm even during a resting period within these experiments. Application of the con-

catenation method, as depicted in Fig 6(B), makes stress state detection difficult.

3.4 Image classification models for stress detection with smoothing method

We proceeded to assess the performance of stress detection with the incorporation of the

smoothing technique across varying time windows—1, 3, and 5 minutes as shown in Table 2.

The reported accuracies were derived by calculating a moving average of stress probability

within the designated time window. Among the models scrutinized, ResNet-50 and Inception-

v3 consistently showcased the highest average AUROC accuracy across all time windows,

yielding AUROC values of 0.973 (±0.021), 0.990 (±0.020), and 0.993 (±0.017), respectively.

Notably, EfficientNet-b0 also demonstrated remarkable performance, recording average

AUROC values of 0.954 (±0.017), 0.970 (±0.028), and 0.981 (±0.024). In contrast, DenseNet-

161 exhibited relatively lower average AUROC values across all time windows, registering

results of 0.918 (±0.034), 0.935 (±0.033), and 0.939 (±0.044). In summary, Inception-v3,

ResNet-50, and EfficientNet-b0 emerged as the top-performing models in terms of AUROC

accuracy. These findings underscore the critical role of selecting an appropriate model for

Fig 5. AI predicted outcome analysis: Each graph’s x-axis signifies time, with green and orange markings above or below the x-axis corresponding to actual normal and

stress data used for training the deep learning model (a) This denotes the GSR raw data, where the blue segment indicates the phasic component, and the gray signifies the

tonic component, as determined using LEDALAB tool. (b) Analyzing the stress probability throughout the entire experimental process was conducted using a model

trained with the multiple-column architecture (c) The outcomes after applying a smoothing technique, which is a post-processing method that calculates the average

probability of the 5-minute window to mitigate abrupt misclassifications. In each graph, the color of the bars indicates whether the probability exceeds 0.5 (depicted in red)

or falls below 0.5 (shown in blue).

https://doi.org/10.1371/journal.pone.0305864.g005
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stress classification, accounting for both prediction accuracy and the desired prediction time

window.

3.5 Grad-CAM analysis of the stress classification results

The Grad-CAM (Gradient-weighted Class Activation Mapping) technique [34] is commonly

employed in deep learning models to visualize regions of importance during the classification

process. In our study, we aimed to discern which frequency bands of biosignals play a crucial

role in classifying normal and stress states. After applying the Grad-CAM analysis, as

Fig 6. AI variable outcome analysis: A comprehensive outcome. Fig 6(a)-6(c) correspond to Fig 5, sharing identical content.

https://doi.org/10.1371/journal.pone.0305864.g006

Table 2. Stress detection results after applying the smoothing technique with various time windows.

Models 1 min 3 min 5 min

Inception-v3 0.961 (±0.022) 0.969 (±0.021) 0.992 (±0.009)

ResNet-50 0.973 (±0.021) 0.990 (±0.020) 0.993 (±0.017)

ResNet-152 0.959 (±0.029) 0.970 (±0.040) 0.975 (±0.017)

DenseNet-161 0.918 (±0.034) 0.935 (±0.033) 0.939 (±0.044)

EfficientNet–b0 0.954 (±0.017) 0.970 (±0.028) 0.981 (±0.024)

Vision Transformer 0.940 (±0.049) 0.960 (±0.045) 0.967 (±0.045)

https://doi.org/10.1371/journal.pone.0305864.t002
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illustrated in Fig 7, we computed the mean highlighted frequency for each class within each

signal modality. For GSR, the Grad-CAM analysis highlighted approximately 8.86 ± 0.93Hz

and 9.19 ± 1.41Hz for normal and stress states, respectively. Additionally, an analogous analy-

sis was conducted for the EEG signal modality, revealing a mean highlighted frequency of

15.86 ± 3.28Hz for the normal state and 16.50 ± 2.96Hz for the stress state.

4. Discussion

Informed by the widely recognized trier social stress test [33], a paradigm known for its ability

to induce stress through traditional face-to-face interviews, we adapted a VR-based interview

approach with similarities to the former. Subsequently, by administering stress VAS question-

naires before and after the interview sessions, we received reports indicating the induction of

stress. Moreover, we were able to confirm significant alterations in physiological signals,

which are indicative of stress-related responses. Thus, this investigation establishes that socially

induced stress, provoked through VR-based simulated interviews, results in distinguishable

modifications in physiological signals.

Extensive prior research has consistently reported the influence of stress on both the tonic

and phasic components of GSR [34]. GSR encapsulates not only gradual shifts (tonic compo-

nent) represented by mean values but also incorporates information about rapid or phasic sig-

nal variations. In our study, we observed a statistically significant increase in the tonic GSR

component in response to social stress. Previous studies have explored the stress-EEG nexus;

however, many focused on forehead measurements or employed multi-channel EEG cap sys-

tems [35–37], limiting the acquisition of real-life data. Nevertheless, we detected a noteworthy

rise in the alpha/beta band ratio of EEG when measured behind the ear. These analytical out-

comes underscore the viability of using physiological signals such as GSR and EEG to assess

stress induced by interviews, akin to other stress-inducing factors. Although the alpha/beta

ratio isn’t a frequently utilized EEG analysis feature, its physiological significance calls for addi-

tional exploration [38].

We compared the stress classification performance of diverse deep learning models,

including CNNs and a Vision Transformer, using GSR and EEG signals. For the single-col-

umn models, utilizing 30-second physiological signal data, we achieved AUROC results

Fig 7. Grad-CAM visualizations of GSR and EEG spectrograms associated with stress responses. The x-axis in the images represents time intervals of 30 seconds, while

the y-axis signifies frequency ranges: 1-15Hz for GSR and 1-30Hz for EEG.

https://doi.org/10.1371/journal.pone.0305864.g007
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exceeding 93% for GSR and surpassing 85% for EEG. The multiple-column models exhib-

ited superior performance compared to their single-column counterparts. Consequently,

our models highlight the potential for detecting stress states using these physiological sig-

nals, with the multiple-column configurations demonstrating enhanced performance com-

pared to single-column models that utilize only one modality. The augmented AUROC

obtained from concurrent GSR (measured via the autonomic nervous system) and EEG

(measured via the central nervous system) might imply that stress impacts both the auto-

nomic and central nervous systems, aligning with established knowledge [39]. Additionally,

while our model’s present state involves training on the complete dataset of 29 subjects,

future iterations could entail personalized adjustments, potentially enhancing model capac-

ity, particularly for subjects resembling the example depicted in Fig 6.

Furthermore, we introduced a smoothing technique to facilitate the tracking of stress level

changes, mitigating abrupt misclassification. This approach enhances error reduction while

rendering the comprehensive stress level fluctuations more comprehensible. Although a-5min-

ute window might seem excessive for 10-15minute sessions, our testing across 1, 3, and 5-min-

ute intervals demonstrated that the 5-minute window effectively captures sustained stress

patterns and minimizes misclassification. We recommend further studies with longer sessions

to refine this method. Longer-term data validation is warranted, the prospective amalgamation

of behind-the-ear EEG and GSR with wearable devices holds promise for aiding stress moni-

toring [40]. In addition, although this study exclusively utilized spectrograms for training our

models, future investigations could also explore employing the continuous wavelet transform

(CWT) to potentially enhance our ability to analyze and classify complex signal patterns.

The method of analyzing biosignals in the frequency domain, as well as the time domain,

has been widely used in previous research. Our study was informed by the knowledge that

GSR signals change more rapidly under stress conditions and that, as seen in Fig 3, there are

variations in the alpha/beta ratio. We anticipated differences in the frequency domain as a

result. Based on these insights, we aimed to investigate whether our AI model would predomi-

nantly consider these differences in frequency power during its learning process. Despite

applying Grad-CAM analysis, the results, as observed, did not show significant differences in

the Hz regions monitored before and after stress. This observation suggests that prioritizing

overall information rather than focusing on individual frequency bands may be crucial for the

accurate classification of normal and stress states.

GSR measurements were taken on the index and middle fingers of the left hand, while EEG

was measured behind the ear. For practical applications of stress analysis through physiological

signals in daily life, wearable and socially acceptable measurement devices are essential. Our

unobtrusive data acquisition device, positioned behind the ear, offers discretion from frontal

view and aligns well with real-life scenarios. In the future, the concurrent development of

devices capable of measuring both GSR and EEG from the auricular region holds the potential

to amplify the efficacy of stress monitoring in real-world settings. In conclusion, this study

achieved precise stress analysis utilizing a multiple-column network, leveraging data from

behind-the-ear EEG measurements along with GSR measurements from the fingers. The

resulting model enables stress analysis at 30-second intervals, facilitating real-time detection of

individual stressors in everyday life without the need for complex biosignal measurement sys-

tems. This research holds the potential to enhance mental health monitoring and treatment.
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35. Kamińska D., Smółka K., and Zwoliński G., Detection of mental stress through EEG signal in virtual real-

ity environment. Electronics, 2021. 10(22): p. 2840.

36. Lee G. and Lee S.. Feasibility of a Mobile Electroencephalogram (EEG) Sensor-Based Stress Type

Classification for Construction Workers. in Construction Research Congress 2022. 2022.

37. Arpaia P., et al., A wearable EEG instrument for real-time frontal asymmetry monitoring in worker stress

analysis. IEEE Transactions on Instrumentation and Measurement, 2020. 69(10): p. 8335–8343.

38. Wen T.Y. and Aris S.M., Electroencephalogram (EEG) stress analysis on alpha/beta ratio and theta/

beta ratio. Indones. J. Electr. Eng. Comput. Sci, 2020. 17(1): p. 175–182.

39. Lambiase P., Garfinkel S., and Taggart P., Psychological stress, the central nervous system and

arrhythmias. QJM: An International Journal of Medicine, 2023: p. hcad144. https://doi.org/10.1093/

qjmed/hcad144 PMID: 37405867

40. Akbulut F.P., Ikitimur B., and Akan A., Wearable sensor-based evaluation of psychosocial stress in

patients with metabolic syndrome. Artificial Intelligence in Medicine, 2020. 104: p. 101824. https://doi.

org/10.1016/j.artmed.2020.101824 PMID: 32499003

PLOS ONE Stress Detection with a single channel EEG & GSR

PLOS ONE | https://doi.org/10.1371/journal.pone.0305864 July 3, 2024 13 / 13

https://doi.org/10.3389/fnhum.2017.00163
https://doi.org/10.3389/fnhum.2017.00163
http://www.ncbi.nlm.nih.gov/pubmed/28439233
https://doi.org/10.1016/j.jneumeth.2010.04.028
http://www.ncbi.nlm.nih.gov/pubmed/20451556
https://doi.org/10.1038/s41598-021-00622-x
http://www.ncbi.nlm.nih.gov/pubmed/34737335
https://doi.org/10.1097/AUD.0000000000001217
https://doi.org/10.1097/AUD.0000000000001217
http://www.ncbi.nlm.nih.gov/pubmed/35344974
https://doi.org/10.1159/000119004
http://www.ncbi.nlm.nih.gov/pubmed/8255414
https://doi.org/10.2478/prilozi-2020-0028
http://www.ncbi.nlm.nih.gov/pubmed/33011695
https://doi.org/10.1093/qjmed/hcad144
https://doi.org/10.1093/qjmed/hcad144
http://www.ncbi.nlm.nih.gov/pubmed/37405867
https://doi.org/10.1016/j.artmed.2020.101824
https://doi.org/10.1016/j.artmed.2020.101824
http://www.ncbi.nlm.nih.gov/pubmed/32499003
https://doi.org/10.1371/journal.pone.0305864


© 2024 Kim et al. This is an open access article distributed under the terms of
the Creative Commons Attribution License:

http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits
unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited. Notwithstanding the ProQuest Terms
and Conditions, you may use this content in accordance with the terms of the

License.


