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When you think of raspberries, what comes to mind? 
You may think of features like red, fuzzy, and sweet. 
In this classic cognitive psychology feature listing task, 
color is just one of many features in people’s concep-
tual representations of objects (Mervis & Rosch, 1981). 
Historically, color was considered a not-so-important 
feature of object representations (Biederman & Ju, 
1988) that must sometimes be ignored to find deeper 
relations among concepts (Gopnik & Sobel, 2000). 
Cases in which color dominates in object representa-
tions (e.g., inferences about foods; Macario, 1991) have 
been treated as domain-specific exceptions (Rogers & 
McClelland, 2004). Researchers have even challenged 
that color is part of conceptual representations of 
objects, and evidence to the contrary was limited to 
objects with strong color associations (Tanaka & 
Presnell, 1999; Therriault et al., 2009). From this per-
spective, there is potential to underestimate the role of 
color in human cognition.

However, color can be considered through a differ-
ent lens—not as one of many attributes of object rep-
resentations in the human mind but rather as a visual 
feature that represents, or “stands for,” concepts. From 
this perspective, the meaning that people ascribe to 
colors—color semantics—plays an important role in the 
way humans evaluate and interpret the world around 
them (Hasantash et al., 2019; Lin et al., 2013; Schloss, 
2018; Schloss et al., 2018, 2023; Schloss & Palmer, 2017). 
Such effects are not limited to concepts with strong 
color associations (Mukherjee et al., 2022).

This article primarily focuses on the role of color 
semantics in visual communication. Visual communica-
tion is fundamental to how humans share information. 
People use information visualizations (e.g., maps, 
charts, diagrams, and signage) to help others navigate 
new environments, track perilous weather patterns, 
learn about scientific discoveries, monitor political 
trends, and indicate where to discard different types of 
recyclables, to name a few examples.1 In visual com-
munication, designers create visualizations by repre-
senting concepts using visual features (e.g., colors, 
shapes, sizes, textures), and observers interpret visual-
izations by discerning the meaning of those visual fea-
tures (Franconeri et al., 2021; Goldstone et al., 2015). 
For example, in Figure 1a, colors represent fruits in a 
bar chart (left) or variations in magnitude in a colormap 
data visualization (right). Readers may be tempted to 
think that interpreting color meaning in Figure 1a is 
trivial—observers can simply follow the legends. 
However, observers have expectations about color 
meaning independent of legends, and they have more 
difficulty interpreting visualizations that violate those 
expectations (Lin et al., 2013; Schloss et al., 2019).

Readers may also be tempted to assume that color 
meanings are simply color-concept associations—the 
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degree to which individual colors are associated with 
individual concepts. But color-concept associations and 
color meaning are not the same thing, and they can 
even conflict. Consider the study illustrated in Figure 
1b (Schloss et  al., 2018). One group of participants 
judged associations between colors and recycling-
related concepts (e.g., paper and trash). Another group 
judged color meaning by interpreting which colored 
bin was for discarding a target object. Here, the target 
was trash, but on other trials, the target was paper. 

Trash was more strongly associated with white than 
with purple (left), yet participants reported purple 
meant trash (right). Thus, color meaning conflicted with 
color-concept associations. An explanation for this dis-
crepancy will be discussed later.

This article describes a novel approach to understand-
ing color semantics called the color inference framework 
(Schloss, 2018). The framework shows how color seman-
tics is flexible and context dependent, which makes 
color an effective medium for communication.
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Fig. 1.  (a) Examples of information visualizations that are easier/harder to interpret depending on the encoded mapping between colors 
and concepts specified in the legend. Left: Bar charts were easier to interpret when bar colors resembled the objects the bars represented 
(adapted from Lin et al., 2013). Right: Colormap data visualizations were easier to interpret when darker colors mapped to greater magnitude 
(dark-is-more bias; adapted from Schloss et al., 2019). (b) Example of the dissociation between color-concept associations and color meaning 
from Schloss et al. (2018). Left: Task in which participants rated the association strength between each of 37 colors and the concepts trash and 
paper and the corresponding mean ratings for each color (sorted from low to high). Right: Task in which participants judged which colored 
bin represented the target concept named above and results showing the proportion of times each color was chosen for each target (error 
bars represent standard errors of the means). Note that trash was more associated with white than with purple (left), yet observers inferred 
purple meant trash (right); see text for an explanation of why.
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Color Inference Framework

The color inference framework characterizes the way 
people infer meanings from colors and use those infer-
ences to make judgments about the world (Schloss, 
2018; Fig. 2). The framework begins with color- 
concept associations, the degree to which each possible 
color is associated with each possible concept. These 
associations are stored in a color-concept association 
network, which connects all colors to all concepts. On 
this network representation, different color inference 
operations are computed to produce different kinds of 
judgments. Figure 2 shows two such inference pro-
cesses: Pooling inference produces preferences for col-
ors, and assignment inference produces interpretations 
of color meaning in information visualizations. Although 
formulated using color as a paradigm example, the 
color inference framework has potential to extend to 
other perceptual features, insofar as they are systemati-
cally associated with concepts. The following sections 
provide detailed descriptions and supporting evidence 
for the components of the framework.

Color-concept associations

Although color semantics is not solely determined by 
associations between individual colors and concepts, 
such associations are a key ingredient.

Historically, work on color-concept associations in 
cognitive psychology focused on associations between 
concrete objects and their characteristic colors (e.g., 
fire trucks with red; Tanaka & Presnell, 1999). But, for 
any concept, one can quantify the degree to which it 

is associated with each possible color humans perceive 
via either human judgments (e.g., Mukherjee et  al., 
2022; Murthy et al., 2022; Schloss et al., 2018) or com-
putational estimations (e.g., Lin et  al., 2013; Rathore 
et al., 2020). Rather than considering only some con-
cepts as having discrete associations with a small set 
of colors, all concepts can be viewed as evoking a 
distribution of associations across all of color space.

Figure 2 shows examples of color-concept association 
distributions sampled over a perceptual color space, 
called color-concept associations spaces (Rathore et al., 
2020), for the concepts watermelon (W), raspberry (R), 
and avocado (A). Each point represents a color, and 
each color receives a weight proportional to association 
strength (longer bars indicate greater weight). 
Watermelon puts strong weights on reds and greens, 
raspberry puts strong weights on reds and purples, avo-
cado puts strong weights on greens, and none of these 
fruits put strong weights on blues, yellows, or grays. 
Estimating the full distribution, rather than the top asso-
ciated colors for a given concept, is important both for 
understanding the nature of color-concept associations 
and for designing effective color palettes for information 
visualizations. Although beyond the scope of the present 
article, Schloss et al. (2018) reports evidence that some-
times designing effective palettes requires using weakly 
associated colors to avoid confusability.

The color inference framework proposes that color-
concept association distributions arise and continually 
update through experience (Schloss, 2018). Schoenlein 
and Schloss (2022) tested this hypothesis by teaching 
participants about novel concepts: Filk and Slub alien 
species. Participants saw examples of colored aliens from 
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each species, which had different color distributions: 
One species was warm biased (mostly orange, red, and 
yellow), and the other was cool biased (mostly cyan, 
green, and blue). After, participants rated color-concept 
associations for each species with each color they saw 
during exposure plus new, unseen colors varying in 
saturation/lightness. Overall, participants formed new 
associations from exposure, and association strength 
increased with color-concept exposure frequency. This 
frequency effect generalized to similar colors not seen 
during learning, which helps explain how continuous 
color-concept association distributions can be “filled in” 
after exposure to a small sample of colors. Moreover, 
evidence suggests that color-concept associations spread 
to other colors within the same color category (e.g., an 
association between a concept and a particular shade of 
blue spreads to other colors categorized as blue; Rathore 
et al., 2020). Questions remain concerning how color-
concept associations are formed for abstract concepts, 
but some have proposed that abstract associations 
extend from experiences with related concrete objects 
(Schloss, 2018; Soriano & Valenzuela, 2009).

Color-concept association network

Within the color inference framework, color-concept 
associations are thought of as stored in a color-concept 
association network (Fig. 2) connecting all colors to all 
concepts. The connecting-edge weights are proportional 
to association strength between each color and concept.

This idea stems from classic semantic networks (e.g., 
Collins & Loftus, 1975), with key differences. In classic 
semantic networks, nodes representing concepts of col-
ors (e.g., the concept red) are connected only to con-
cepts for things appearing that color (e.g., fire trucks, 
roses) and disconnected from things not appearing as 
that color (e.g., bananas). In color-concept association 
networks, each perceivable color is connected to every 
possible concept. For example, rather than just one 
node for the concept of red, nodes exist for every color 
percept that appears reddish (light reds, dark reds, 
muted reds, purplish reds, orangish reds, and every red 
in between.2 These nodes are connected to not only 
strongly associated concepts (e.g., fire trucks, roses) 
but also all other concepts (e.g., bananas). Accounting 
for connections between all concepts and colors, 
regardless of association strength, is key for under-
standing the color inference processes discussed later.

The distance between any two concepts in the net-
work depends on similarity of their color-concept asso-
ciations, which can deviate from semantic similarity 
among concepts. For example, watermelon would be 
near Christmas (similar color associations, dissimilar 
concepts) but far from bananas (dissimilar color 

associations, similar concepts). The color inference 
framework focuses on color meaning arising from rela-
tive distances between colors and concepts, but whether 
semantic similarity among concepts also plays a role is 
an open question.

Contextual cues

A given judgment does not engage the entire color-
concept association network at once. Instead, contextual 
cues provide input specifying which colors and concepts 
are relevant to a task. Perceptual input (observation of 
colors) activates particular color nodes, and conceptual 
input (thinking about concepts) activates particular con-
cept nodes within the network. As discussed next, the 
resulting inferences depend on which colors and con-
cepts are jointly perceived and considered.

Color inference processes and 
corresponding judgments

Different computations on the color-concept associa-
tion network support different kinds of inference pro-
cesses, which produce different kinds of judgments. 
Variations in network structure due to cultural, indi-
vidual, or temporal variation (Schloss & Palmer, 2017; 
Tham et  al., 2020) will produce different judgments 
across individuals, but such judgments should still be 
predictable if the network structure and inference pro-
cesses are well specified. Two kinds of inference pro-
cesses have been well studied.

Pooling inference for evaluating color preferences.  
Pooling inference is an operation on the color-concept 
association network that produces judgments of color 
preference (Fig. 2). When a person judges their prefer-
ence for a color, concepts strongly associated with that 
color are activated. Each concept has a valence (positive/
negative signs in Fig. 2) representing the individual’s 
preference for the concept (or referent thereof). The 
valences of those concepts are pooled to produce a sum-
mary valence, which determines how much the individ-
ual likes that color.

This notion stems from the ecological valence theory 
(EVT), which states that people like colors to the extent 
that they like all objects strongly associated with those 
colors (Palmer & Schloss, 2010). Supporting the EVT, 
80% of the variance in average color preferences of 
participants in the United States was explained by the 
combined valence of all objects associated with those 
colors, weighted by association strength. Color prefer-
ences are considered part of a feedback loop such that 
seeking experiences with liked colors reinforces prefer-
ences for those colors, insofar as those experiences are 
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positive (Palmer & Schloss, 2010). Earlier work focused 
on concrete objects, but later work extended the theory 
to include any kind of concept (see Schloss & Palmer, 
2017). Although the EVT explains color preferences 
across a variety of cultures, it falls short in others (e.g., 
participants in Saudi Arabia), and further research is 
needed to understand why (Al-Rasheed et al., 2022).

Within the color inference framework, changes in 
color preferences can arise from variations in weights 
on relevant concepts in the color-concept association 
network during the pooling function. Indeed, priming 
observers to think about positive concepts associated 
with a particular color (e.g., strawberries associated 
with red) increases preference for that color (Strauss 
et al., 2013), and natural variations in concept activation 
over environmental seasons also produce systematic 
changes in color preference (Schloss & Heck, 2017). 
These and related results are summarized in a theory 
and review article on individual and temporal differ-
ences in color preferences (Schloss & Palmer, 2017), so 
they will not be further discussed here.

Assignment inference for interpreting colors in 
information visualizations.  Assignment inference is 
an operation on the color-concept association network 
that produces interpretations of color meaning in infor-
mation visualizations. This operation is computed over 
the subset of the color-concept association network rel-
evant to the encoding system of the visualization (i.e., the 
specific concepts represented in the visualization and the 
visual features used to represent them; Fig. 2). For exam-
ple, in the recycling task from Figure 1b, the encoding 
system includes the concepts of trash and paper and the 
colors purple and white. This subset of the network is 
shown as a bipartite graph in Figure 3, a representation 

using edges to connect the two concept nodes to the two 
color nodes of the encoding system. The numbers next 
to the edges (and edge thickness) represent the “good-
ness” of each color-concept pairing, called merit. For 
visualizations involving only two discrete concepts and 
colors, merit can be considered as association strength 
(depicted toward the left of Fig. 3). For visualizations with 
> 2 colors and concepts (Schloss et al., 2018) or involving 
relational rather than discrete concepts (Schoenlein et al., 
2023), merit can be more complex.3

When participants are asked which color represents 
a target concept (e.g., trash), the concepts and colors 
in the context of the encoding system are activated 
within the network. Assignment inference evaluates 
possible assignments between colors and concepts and 
returns the overall “best” assignment (greatest total 
merit).4 Comparing total merit in Figure 3, trash–purple 
and paper–white (1.1) has greater merit than trash–
white and paper–purple (0.5), so observers interpreted 
that purple meant trash even though trash was more 
strongly associated with white (Schloss et  al., 2018). 
Thus, assignment inference accounts for the dissocia-
tion between color-concept associations and color 
meaning shown in Figure 1b.

This recycling example emphasizes that understand-
ing color meaning requires accounting for all colors 
and concepts in the context of the encoding system, 
not merely each color-concept association alone. This 
finding implies that changes to the encoding system 
will change inferences about color meaning. Indeed, 
ongoing work suggests that if paper is removed from 
the encoding system (i.e., participants only complete 
trials with trash as the target), then participants no 
longer have a reason to choose purple and instead infer 
that white means trash.
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The outcome of assignment inference corresponds 
to interpretation of color meaning if there is no conflict-
ing information from legends, labels, or captions. 
However, under conflicts (e.g., Fig. 1a), observers must 
resolve the mismatch between their expectations from 
assignment inference and the external information to 
produce an accurate interpretation, which makes inter-
preting visualizations more difficult.

Assuming no conflict, what determines people’s abil-
ity to use assignment inference to interpret color mean-
ing? To address this question, consider the bar charts 
in Figure 4a, which represent data about watermelon 
and mango. For each chart, which color represents 
watermelon? How easy was it to decide? One might 
think ease of assignment depends simply on how 
strongly you associate each color with the target con-
cept, watermelon, or how easy it is to see the difference 
between the colors (perceptual discriminability). But 
ease of assignment depends on something else.

For Figure 4a (right), most readers probably inferred 
red meant watermelon and the task felt easy, but for 
Figure 4a (left), responses were probably split between 
colors and the task felt hard (assuming typical color 
vision). This example demonstrates semantic discrim-
inability, the ability to discern the difference in meaning 
between colors within an encoding system (Schloss 
et al., 2021). Semantic discriminability can be quantified 
using a metric evaluating the total merit of the most 
likely assignment compared with the alternative 
assignment(s) (see Schloss et  al., 2021, for a formal 

definition for two colors and concepts and Mukherjee 
et al., 2022, for a definition for larger encoding systems). 
Figure 4b shows that for red and brown, the water-
melon–red and mango–brown assignment has much 
greater merit than the alternative, so semantic discrim-
inability is high. For green and purple, both assignments 
have similar merit, so semantic discriminability is low. 
Semantic discriminability is a property of observers’ 
expectations of color meaning, distinct from the “true” 
mapping specified by the designer of an encoding sys-
tem (e.g., watermelon = red and mango = brown or 
watermelon = brown and mango = red). Assuming that 
the encoding system matches observers’ expectations 
(e.g., watermelon = red and mango = brown), the ability 
to use assignment inference to correctly interpret color 
meaning in visualizations should increase with increased 
semantic discriminability.

Schloss et al. (2021) tested this hypothesis by having 
participants interpret bar charts (Fig. 4a) with bars rep-
resenting data about two fruits (mango and watermelon 
or cantaloupe and strawberry). Participants reported 
which color (left/right) represented the fruit named 
above the chart. For each fruit pair, participants judged 
all pairs of eight colors, which varied in semantic dis-
criminability. Responses were scored as correct if they 
matched the optimal assignment (i.e., the assignment 
with greatest merit), which should align with observer 
expectations (Schloss et al., 2018). Figure 4c shows that 
mean accuracy increased with increased semantic dis-
criminability for both mango/watermelon (r = .88) and 
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cantaloupe/strawberry (r = .84). A statistical model 
showed that semantic discriminability predicted inter-
pretability, independent of effects of association 
strength between the target concept and correct color 
or perceptual discriminability. Figures 4b and 4c show 
an example where accuracy was greater for colors with 
lower perceptual discriminability because semantic dis-
criminability was higher.

Semantic discriminability also predicts interpretabil-
ity for visualizations representing a larger number of 
concepts and concepts that are more abstract (Mukherjee 
et al., 2022). Previously, the prevailing view was that 
abstract concepts lacking strong, specific color-concept 
associations (e.g., sleeping, comfort, driving, safety) 
were noncolorable—they could not be encoded mean-
ingfully using color (Lin et  al., 2013). However, 
Mukherjee et al. (2022) found that such concepts could 
be meaningfully represented using colors to the extent 
that those colors were semantically discriminable, given 
the other colors and concepts in the context of the 
encoding system. Participants saw bar charts with four 
colored bars and four concepts listed above and 
reported which color they thought represented each 

concept (Fig. 5a). Across trials, each concept appeared 
in four concept sets, with colors designed to be as 
semantically discriminable as possible (Schloss et al., 
2018). Figure 5b shows that within the concept sleep-
ing, accuracy for choosing the optimal color depended 
on semantic discriminability between that color and 
other colors in the encoding system defined by the four 
colors and concepts. Figure 5c shows the full data set, 
where accuracy significantly increased with semantic 
discriminability. Note that responses were well above 
chance, even for concepts that Lin et al. (2013) consid-
ered noncolorable (i.e., activities and properties). Thus, 
color is a more powerful cue for visual communication 
than previously thought.

Having established that people can use assignment 
inference to interpret color meaning insofar as the colors 
are semantically discriminable, the next question is, what 
determines the ability to find semantically discriminable 
colors for a set of concepts? Semantic discriminability 
theory posits that the capacity to find semantically dis-
criminable colors for a set of concepts depends on how 
different the color-concept association distributions are 
for those concepts (Mukherjee et al., 2022).
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To illustrate this theory, Figure 6 shows color- 
concept association distributions for pairs of concepts 
along with the most semantically discriminable color 
pair among all colors assessed for each concept pair. 
For concept sets with very different color-concept asso-
ciation distributions (e.g., peach and celery, and banana 
and comfort), it is possible to find colors with high 
semantic discriminability. Note, comfort has a relatively 
uniform distribution on its own (no strong, specific asso-
ciated colors), but when paired with banana, which has 
a peaky distribution (strong, specific associated colors), 
it is possible to produce highly semantically discrim-
inable colors. When concepts in a set have less peaky 
distributions that are still different from one another 
(e.g., sleeping and driving), it is possible to find colors 
that are moderately high in semantic discriminability. 
However, when association distributions are highly simi-
lar, (e.g., grape and eggplant), it is not possible to find 
colors in those distributions that are highly semantically 
discriminable, even if those concepts have strong, spe-
cific associations on their own. Overall, the ability to 
produce semantically discriminable colors for concept 
sets increased with increased distribution difference for 
sets of two concepts (r = .93) and four concepts (r = .74; 
Mukherjee et  al., 2022). Initially tested using color, 
semantic discriminability theory is a general account of 
when perceptual features can or cannot meaningfully 
represent concepts. It can be tested using other 

perceptual features (e.g., shape, tactile texture) or pos-
sibly even other semantic features (e.g., words).

The Color Inference Framework  
in Application

The color inference framework can be applied to pre-
dict color preferences and design colors for information 
visualizations that facilitate visual communication. Once 
color-concept associations have been quantified, mod-
els of pooling inference can predict color preferences 
(Schloss & Palmer, 2017), and models of assignment 
inference can select color-concept pairings that opti-
mize interpretability (Mukherjee et  al., 2022; Schloss 
et al., 2018). These approaches will become more scal-
able as methods improve for automatically estimating 
color-concept associations without extensive human 
judgments (Lin et  al., 2013; Rathore et  al., 2020). 
Although color-concept associations are dynamic, 
updating with experience (Schoenlein et al., 2023), evi-
dence suggests they are sufficiently stable at the group 
level to predict group-level color preferences (Palmer 
& Schloss, 2010) and color meaning in information 
visualizations (Mukherjee et  al., 2022; Schloss et  al., 
2018, 2021; Schoenlein et al., 2023), which is key for 
designing visualizations for public audiences. The 
results of these studies can extend to incorporating 
color semantics into recommender tools for effective 

Most Semantically
Discriminable
Color Pair  

Comfort

Banana

ComfortBanana

Y B

(.97)

0

1

As
so

c.

0

1

As
so

c.

Peach 

Celery

(1.00)

Sleeping

Driving

DrivingSleeping

Pu R

(.88)

Eggplant

Grape 

GrapeEggplant

Bk Dp

(.60)

Large Distribution
Difference 

Small Distribution
Difference 

Large Distribution
Difference

Medium Distribution
Difference 

High Semantic
Discriminability 

Lower Semantic
Discriminability

High Semantic
Discriminability 

Moderately High Semantic
Discriminability 

Peach

Lp G

Celery

Fig. 6.  Top: Pairs of concept sets that have varying degrees of distribution difference. Within each concept pair, arrows point to the 
“best” color pair—the color pair with the greatest semantic discriminability among all color pairs in the distributions. Bottom: Semantic 
discriminability of the best color pair and corresponding bipartite graphs showing the relative merit of each assignment. The optimal 
assignments are peach–light pink (Lp) with celery–green (G), banana–yellow (Y) with comfort–blue (B), sleeping–purple (Pu) with 
driving–red (R), and eggplant–black (Bk) with grape–dark pink (Dp). These examples and data are from Mukherjee et al. (2022).



66	 Schloss

visualization design (Gramazio et al., 2017; Smart et al., 
2020) and have already contributed to understanding 
color in marketing (Spence & Van Doorn, 2022).

Conclusions

The color inference framework explains why color 
semantics is flexible and context dependent, which 
makes color an effective medium for communication. 
Color semantics cannot be understood only in terms of 
associations between individual colors and concepts; it 
is important to account for all other colors and concepts 
in the context of an encoding system. Any concept set 
has potential to be represented meaningfully using colors 
if those colors are semantically discriminable. Although 
formulated using color, the color inference framework 
and accompanying theories have potential to serve as 
general accounts of semantics, extending to other visual 
features (e.g., shape, visual texture), perceptual features 
in other modalities (e.g., audition, touch), and possibly 
verbal semantic features (e.g., words). This work 
addresses fundamental questions of how the human mind 
extracts information from sensory input to acquire knowl-
edge about the world and can be translated to make 
communication more effective and efficient.
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(See References). Introduces assignment inference as the 
process by which people infer meaning from colors and 
shows that associations and meaning are not the same 
thing.

Schloss, K. B., & Palmer, S. E. (2017). (See References). 
Provides an overview of the ecological valence theory 
of color preferences and explains how individual and 
temporal differences in color preferences can be under-
stood within a single framework.
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Notes

1. As described in Schloss et al. (2023) and references therein, 
the term “information visualizations” (“visualizations” for short) 
used here refers to external graphical representations and cor-
responding verbal labels created to support visual communi-
cation. “Graphical” refers to nonverbal markings (e.g., visual 
features like color, shape, size, and texture) that a designer uses 
to communicate their intended message. A “designer” is any-
one who creates a visualization. This definition of visualizations 
includes data visualizations (e.g., charts) as well as any system 
for encoding information (encoding system) in which designers 
use nonverbal visual features to communicate their intended 
message. In this sense, an encoding system for recycling bins 
in which different colors represent different kinds of trash/recy-
clables is considered a visualization.
2. If colors in the color-concept association network are 
extrapolated/interpolated over every perceivable color, it can 
be thought of as a smooth distribution over colors. Ongoing 
work suggests this distribution of colors is well situated in a 
six-dimensional space. The axes contort dimensions of color 
appearance (hue, chroma, and lightness) but are well character-
ized by color-space metrics.
3. For colormap data visualizations where variations in data mag-
nitude are represented by gradations of color, merit is informed 
by “direct” color-concept associations between individual colors 
and concepts represented in the map (e.g., data representing 
more sunshine are associated with lighter yellowish colors) and 
“relational” associations (e.g., data representing larger magni-
tude are associated with darker colors; dark-is-more bias). See 
Schoenlein et al. (2023) for a method to estimate combined merit 
from two sources, with potential to scale to include additional 
sources of merit that are known and those yet to be discovered.
4. The notion of assignment inference stems from assignment 
problems, which are mathematical models that assign items 
in one domain to another domain to optimize some feature 
(e.g., assigning trucks to delivery routes to minimize mileage;  
Burkard et al., 2012). However, a key distinction is that assignment 
problems return the best assignment, regardless of the difference 
in merit between the possible assignments, whereas people’s abil-
ity to perform assignment inference depends on how much one 
assignment is better than the alternative(s) (Schloss et al., 2018).
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