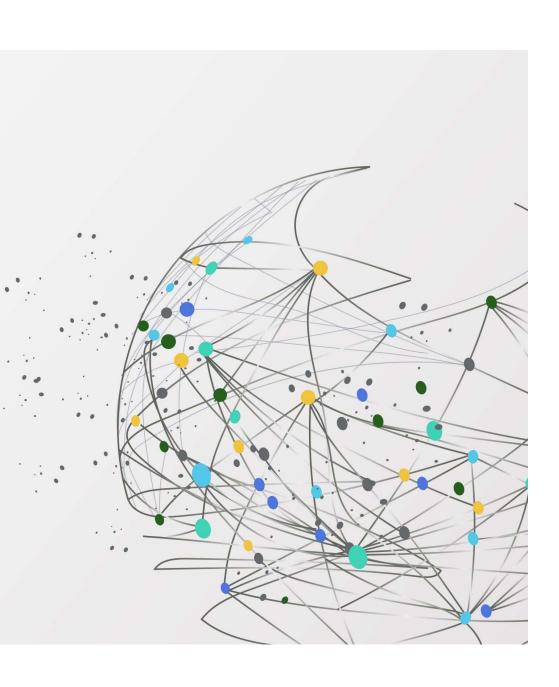


ANÁLISIS MATRICIAL DE ESTRUCTURAS

Ing. Marcelo David Guerra Valladares, MSc.

Magíster en Ingeniería Civil — Mención Estructuras Sismorresistentes

Especialista Estructural



UNIDAD 3

INTRODUCCIÓN AL ANÁLSIS SÍSMICO

Condensación Estática de la matriz de rigidez

Definición

La condensación estática es un método que se utiliza para expresar uno o varios GDL en función de otros.

Se reduce o condensa el número de ecuaciones de resolver.

El modelo matemático a utilizar es el mismo al utilizado para realizar la partición de matrices.

En este caso se escogen grados de libertad primarios (GDL-- > t) y grados de libertad secundarios (GDL -- > o).

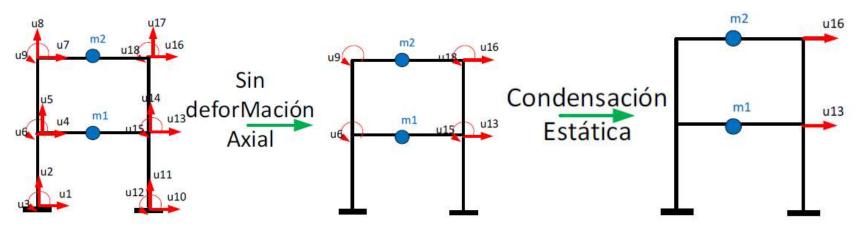
Los GDL t son los que se mantienen y los GDL o los que desaparecen.

Definición

Los GDL secundarios se colocan en función de los GDL primarios.

El método se utiliza en dinámica estructural y en análisis matricial de estructuras.

En Dinámica Estructural:



GDL Estáticos

GDL Dinámicos



Definición

En Análisis Matricial:

- 1. Modificar la matriz de rigidez para que tenga articulaciones.
- 2. Obtener la rigidez en el sentido de un GDL específico.
- Disminuir dimensiones del problema.

La condensación estática se la realiza utilizando la matriz de rigidez ya particionada Kpp.

La relación Fp=Kpp*Up se condensa con los GDL primarios y secundarios:

$$\begin{bmatrix} [Ft] \\ [Fo] \end{bmatrix} = \begin{bmatrix} [Ktt] & [Kto] \\ [Kot] & [Koo] \end{bmatrix} \cdot \begin{bmatrix} [Ut] \\ [Uo] \end{bmatrix}$$

$$[Fp] = \begin{bmatrix} [Ft] \\ [Fo] \end{bmatrix} \qquad [Kpp] = \begin{bmatrix} [Ktt] & [Kto] \\ [Kot] & [Koo] \end{bmatrix}$$

1)
$$[Ft] = [Ktt] \cdot [Ut] + [Kto] \cdot [Uo]$$

$$[Fo] = [Kot] \cdot [Ut] + [Koo] \cdot [Uo]$$

Despejando de la ecuación 2:

3)
$$[Uo] = [Koo]^{-1} \cdot ([Fo] - [Kot] \cdot [Ut])$$

Reemplazando la ecuación 3 en 1

$$[Ft] = [Ktt] \cdot [Ut] + [Kto] \cdot ([Koo]^{-1} \cdot ([Fo] - [Kot] \cdot [Ut]))$$

$$[Ft] = [Ktt] \cdot [Ut] + [Kto] \cdot [Koo]^{-1} \cdot [Fo] - [Kto] \cdot [Koo]^{-1} \cdot [Kot] \cdot [Ut]$$

$$[Ft] - [Kto] \cdot [Koo]^{-1} \cdot [Fo] = ([Ktt] - [Kot] \cdot [Koo]^{-1} \cdot [Kto]) \cdot [Ut]$$

La relación Fuerza Deformación condensada es

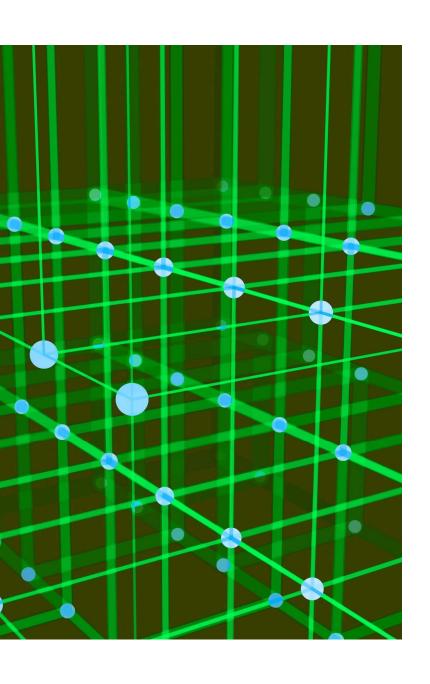
$$[Fcond] = [Ft] - [Kto] \cdot [Koo]^{-1} \cdot [Fo]$$
$$[Kcond] = ([Ktt] - [Kto] \cdot [Koo]^{-1} \cdot [Kot])$$
$$[Fcond] = [Kcond] \cdot [Ut]$$

Una vez calculado Ut, se puede calcular los desplazamientos de los GDL Uo

$$[Uo] = [Koo]^{-1} \cdot ([Fo] - [Kot] \cdot [Ut])$$

Incluyendo Fuerzas aplicadas en los elementos

$$[Fcond] = [Ft] - [Femp_t] - [Kto] \cdot [Koo]^{-1} \cdot [Fo] + [Kto] \cdot [Koo]^{-1} \cdot [Femp_o]$$
$$[Kcond] = ([Ktt] - [Kto] \cdot [Koo]^{-1} \cdot [Kot])$$
$$[Fcond] = [Kcond] \cdot [Ut]$$



Matriz de Rigidez Aplicando Deformaciones Unitarias

Matriz de Rigidez Aplicando Deformaciones Unitarias

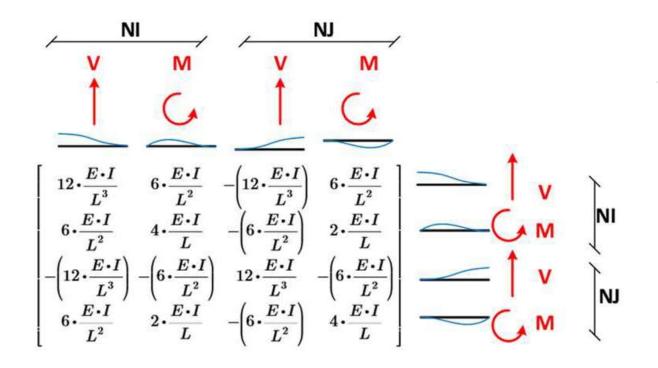
Se considera la matriz de rigidez de elementos sometidos a flexión y corte.

Con este método, se puede obtener la matriz de rigidez de pórticos reticulares en el plano sin considerar la deformación axial.

Matriz de Rigidez Aplicando Deformaciones Unitarias

Asumiendo las siguientes reglas, se puede utilizar la matriz de rigidez de elementos sometidos a corte y momento para obtener la matriz de rigidez de cualquier estructura:

- Los elementos son horizontales o verticales
- No se incluyen deformaciones axiales
- 3. Los nodos inicial y final van siempre de izq a der y de arriba-abajo



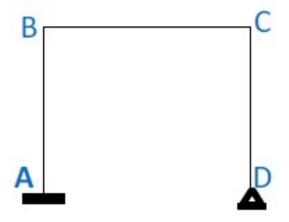
Matriz de Rigidez Aplicando Deformaciones Unitarias

Se puede aplicar deformaciones unitarias a cada GDL en una estructura y obtener las fuerzas necesarias para obtener dichas deformaciones.

Las fuerzas obtenidas son los coeficientes de la matriz de rigidez de la estructura.

Ejercicio de Aplicación

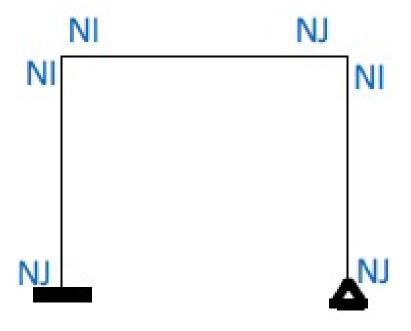
Aplicando deformaciones unitarias y utilizando la matriz de rigidez de corte y flexión, encontrar la matriz de rigidez de la siguiente estructura:



Ejercicio de Aplicación

Se debe aplicar deformaciones unitarias a cada grado de libertad

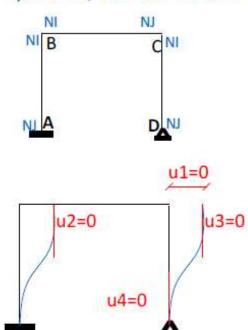
Ejercicio de Aplicación

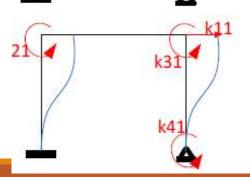


NI: Nudo inicial

NJ: Nudo final

1) u1=1, u2=u3=u4=0





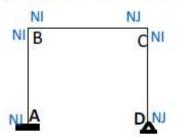
$$k11 = \left(12 \cdot \frac{E \cdot I}{L^3}\right)_{AB} + \left(12 \cdot \frac{E \cdot I}{L^3}\right)_{CD}$$

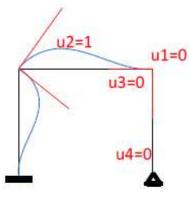
$$k21 = \left(6 \cdot \frac{E \cdot I}{L^2}\right)_{AB}$$

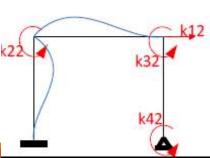
$$k31 = \left(6 \cdot \frac{E \cdot I}{L^2}\right)_{CD}$$

$$k41 = \left(6 \cdot \frac{E \cdot I}{L^2}\right)_{CD}$$

1) u2=1, u1=u3=u4=0







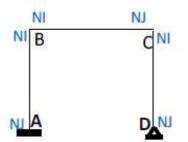
$$k12 = \left(6 \cdot \frac{E \cdot I}{L^2}\right)_{AB}$$

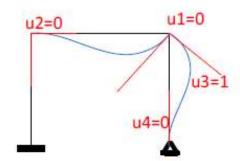
$$k22 = \left(4 \cdot \frac{E \cdot I}{L}\right)_{AB} + \left(4 \cdot \frac{E \cdot I}{L}\right)_{BC}$$

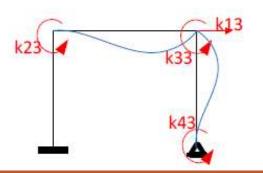
$$k32 = \left(2 \cdot \frac{E \cdot I}{L}\right)_{BC}$$

$$k42 = 0$$

1) u3=1, u1=u2=u4=0







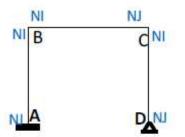
$$k13 = \left(6 \cdot \frac{E \cdot I}{L^2}\right)_{CD}$$

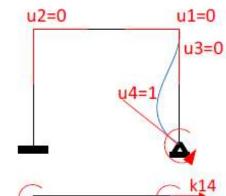
$$k23 = \left(2 \cdot \frac{E \cdot I}{L}\right)_{BC}$$

$$k33 = \left(4 \cdot \frac{E \cdot I}{L}\right)_{BC} + \left(4 \cdot \frac{E \cdot I}{L}\right)_{CD}$$

$$k43 = \left(2 \cdot \frac{E \cdot I}{L}\right)_{CD}$$

1) u4=1, u1=u2=u3=0



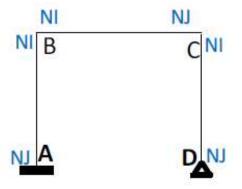


$$k14 = \left(6 \cdot \frac{E \cdot I}{L^2}\right)_{CD}$$

$$k24 = 0$$

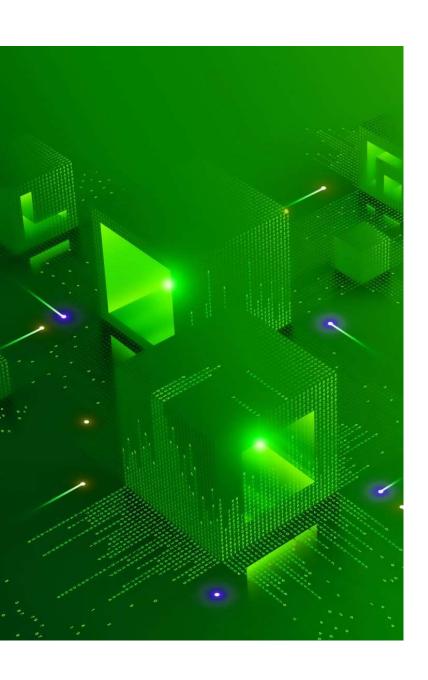
$$k34 = \left(2 \cdot \frac{E \cdot I}{L}\right)_{CD}$$

$$k44 = \left(4 \cdot \frac{E \cdot I}{L}\right)_{CD}$$



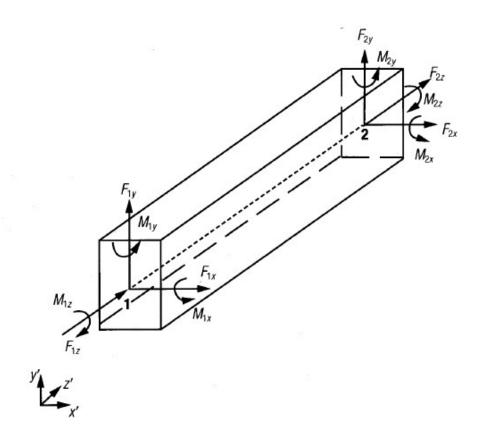
$$K = \begin{bmatrix} \left(12 \cdot \frac{E \cdot I}{L^{3}}\right)_{AB} + \left(12 \cdot \frac{E \cdot I}{L^{3}}\right)_{CD} & \left(6 \cdot \frac{E \cdot I}{L^{2}}\right)_{AB} & \left(6 \cdot \frac{E \cdot I}{L^{2}}\right)_{CD} & \left(6 \cdot \frac{E \cdot I}{L^{2}}\right)_{CD} \\ & \left(6 \cdot \frac{E \cdot I}{L^{2}}\right)_{AB} & \left(4 \cdot \frac{E \cdot I}{L}\right)_{AB} + \left(4 \cdot \frac{E \cdot I}{L}\right)_{BC} & \left(2 \cdot \frac{E \cdot I}{L}\right)_{BC} & 0 \\ & \left(6 \cdot \frac{E \cdot I}{L^{2}}\right)_{CD} & \left(2 \cdot \frac{E \cdot I}{L}\right)_{BC} & \left(4 \cdot \frac{E \cdot I}{L}\right)_{BC} + \left(4 \cdot \frac{E \cdot I}{L}\right)_{CD} & \left(2 \cdot \frac{E \cdot I}{L}\right)_{CD} \\ & \left(6 \cdot \frac{E \cdot I}{L^{2}}\right)_{CD} & 0 & 2 \cdot \left(\frac{E \cdot I}{L}\right)_{CD} & 4 \cdot \left(\frac{E \cdot I}{L}\right)_{CD} \end{bmatrix}$$

Matriz de rigidez para el análisis sísmico espacial de pórticos de edificación



Matriz de Rigidez de un elemento tridimensional

La matriz de rigidez de la estructura o global se puede obtener mediante el ensamblaje de las matrices de cada elemento, esto es equivalente a formar las ecuaciones de equilibrio en cada grado de indeterminación. Los términos de la matriz de rigidez de un elemento k_{ij} representan la fuerza F_i asociada a un desplazamiento unitario en u_j cuando todos los demás desplazamientos son iguales a cero.



Matriz de Rigidez de un elemento tridimensional

Fuerza Axial

$$EA\frac{du}{dz} = -q \to EA\frac{du}{dz} = -F1_z$$

$$1) F1_z z = -EAu + C1$$

Cuando
$$z = 0 \rightarrow u = u1_z$$

Cuando $z = L \rightarrow u = 0$
 $F1_z = -F2_z$

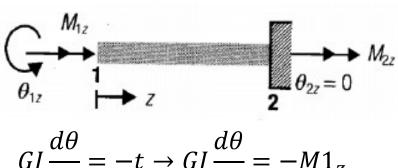
$$2)C1 = F1_zL$$

Cuando
$$z=0$$
; Reemplazar 2) en 1)
$$0 = -EAu1_z + F1_zL$$

$$\rightarrow F1_z = \frac{EA}{L}u1_z$$

$$\rightarrow k_{11} = -k_{21} = \frac{EA}{L}$$

Torsión



$$GJ\frac{d\theta}{dz} = -t \to GJ\frac{d\theta}{dz} = -M1_z$$

$$1)M1_z z = -GJ\theta + C1$$

Cuando
$$z = 0 \rightarrow \theta = \theta 1_z$$

Cuando
$$z = L \rightarrow \theta = 0$$

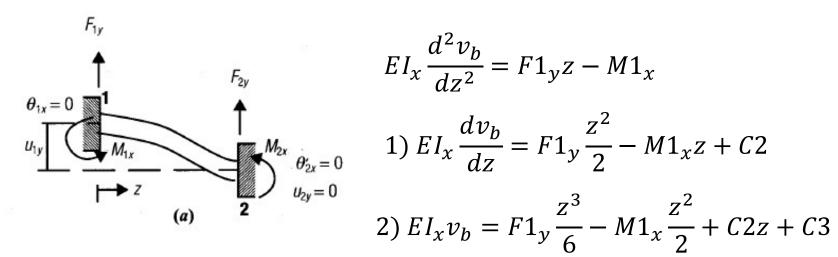
$$M1_z = -M2_z$$

$$2)C1 = M1_zL$$

Cuando
$$z=0$$
; Reemplazar 2) en 1)
$$0=-GJ\theta 1_z+M1_zL$$

$$\to M1_z=\frac{GJ}{L}\theta 1_z$$

$$\to k_{11}=-k_{21}=\frac{GJ}{L}$$



$$EI_x \frac{d^2v_b}{dz^2} = F1_y z - M1_x$$

1)
$$EI_x \frac{dv_b}{dz} = F1_y \frac{z^2}{2} - M1_x z + C2$$

2)
$$EI_x v_b = F1_y \frac{z^3}{6} - M1_x \frac{z^2}{2} + C2z + C3$$

$$v = v_s + v_b$$

$$\frac{dv_s}{dz} = \frac{V}{GAc} = \frac{-F1_y}{GAc} \to EI_x v_s = \frac{-EI_x F1_y}{GAc} z + C1$$

$$EI_{x}v = F1_{y}\frac{z^{3}}{6} - M1_{x}\frac{z^{2}}{2} + C2z - \frac{EI_{x}F1_{y}}{GAc}z + C1 + C3$$

3)
$$EI_x v = F1_y \frac{z^3}{6} - M1_x \frac{z^2}{2} + \left(C2 - \frac{EI_x F1_y}{GAc}\right)z + C4$$

4)
$$EI_x \frac{dv}{dz} = F1_y \frac{z^2}{2} - M1_x z + C2 - \frac{EI_x F1_y}{GAc}$$

$$\frac{dv}{dz} = \frac{dv_s}{dz} = \frac{-F1_y}{GAc} \text{ (en } z = 0) \text{ Reemplazar en 4)} \rightarrow C2 = 0$$

Reemplazar C2 = 0, z = L y
$$\frac{dv_b}{dz}$$
 = 0 en 1) $\rightarrow M1_x L = F1_y \frac{L^2}{2} \rightarrow M1_x = \frac{F1_y L}{2}$

$$ReemplazarM1_x, v = 0 \ y \ z = L \ en \ 3) \rightarrow 0 = F1_y \frac{L^3}{6} - \frac{F1_y L^3}{4} - \left(\frac{EI_x F1_y L}{GAc}\right) + C4$$

$$C4 = F1_{y} \frac{L^{3}}{12} + \left(\frac{12EI_{x}F1_{y}L^{3}}{12GAcL^{2}}\right) = F1_{y} \frac{L^{3}}{12}(1+\Phi) \qquad \Phi = \frac{12EI_{x}}{GAcL^{2}}$$

$$F2_y = -F1_y$$

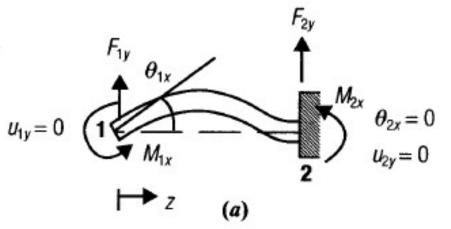
$$M2_x = -M1_x + F1_y L$$

Reemplazar C4,
$$v = u1_y \ y \ z = 0 \ en \ 3) \rightarrow EI_x u1_y = F1_y \frac{L^3}{12} (1 + \Phi)$$

$$\to k11 = \frac{F1_y}{u1_y} = \frac{12EI_x}{L^3(1+\Phi)} \qquad \to k31 = -\frac{F2_y}{u1_y} = -\frac{12EI_x}{L^3(1+\Phi)}$$

$$\rightarrow k21 = \frac{M1_x}{u1_y} = \frac{F1_yL}{2u1_y} = \frac{6EI_x}{L^2(1+\Phi)}$$

$$\rightarrow k41 = \frac{-M1_y + F1_y L}{u1_y} = \frac{-\frac{F1_y L}{2} + F1_y L}{u1_y} = \frac{6EI_x}{L^2(1+\Phi)}$$



1)
$$EI_x v = F1_y \frac{z^3}{6} - M1_x \frac{z^2}{2} + \left(C2 - \frac{EI_x F1_y}{GAc}\right)z + C4$$

Reemplazar v = 0 y z = 0 en $1) \rightarrow C4 = 0$

Reemplazar v = 0, z = L, y C4 en 1

$$0 = F1_{y} \frac{L^{3}}{6} - M1_{x} \frac{L^{2}}{2} + \left(C2L - \frac{EI_{x}F1_{y}L}{GAc}\right)$$

$$C2 = -F1_{y} \frac{L^{2}}{6} + M1_{x} \frac{L}{2} + \frac{EI_{x}F1_{y}}{GAc} \qquad \Phi = \frac{12EI_{x}}{GAcL^{2}}$$

$$C2 = -F1_{y} \frac{L^{2}}{6} + M1_{x} \frac{L}{2} + F1_{y} \frac{L^{2}}{12} \Phi$$

2)
$$EI_x \frac{dv}{dz} = F1_y \frac{z^2}{2} - M1_x z + C2 - \frac{EI_x F1_y}{GAc}$$

$$\frac{dv}{dz} = \frac{dv_s}{dz} = \frac{-F1_y}{GAc} \text{ (en } z = L) \text{ Reemplazar y C2 en 2)}$$

$$-EI_{x}\frac{F1_{y}}{GAc} = F1_{y}\frac{L^{2}}{2} - M1_{x}L + \left(-F1_{y}\frac{L^{2}}{6} + M1_{x}\frac{L}{2} + F1_{y}\frac{L^{2}}{12}\Phi\right) - \frac{EI_{x}F1_{y}}{GAc}$$

$$0 = F1_{y} \frac{L^{2}}{2} - M1_{x}L - F1_{y} \frac{L^{2}}{6} + M1_{x} \frac{L}{2} + F1_{y} \frac{L^{2}}{12} \Phi$$

$$0 = F1_y \frac{L^2}{3} - M1_x \frac{L}{2} + F1_y \frac{L^2}{12} \Phi$$

$$0 = F1_y \frac{4L^2}{12} - M1_x \frac{L}{2} + F1_y \frac{L^2}{12} \Phi$$

$$0 = F1_y \frac{L^2}{12} (4 + \Phi) - M1_x \frac{L}{2} \to F1_y = \frac{6M1_x}{L(4 + \Phi)}$$

$$M1_x = \frac{F1_y L(4+\Phi)}{6}$$

$$F2_{y} = -F1_{y} \qquad M2_{x} = -M1_{x} + F1_{y}L \qquad \theta1_{x} = \frac{M1_{x}L(1+\Phi)}{EI_{x}(4+\Phi)}$$

$$\rightarrow k22 = \frac{M1_{x}}{\theta1_{x}} = \frac{EI_{x}(4+\Phi)}{L(1+\Phi)} \qquad \rightarrow k12 = \frac{F1_{y}}{\theta1_{x}} = \frac{\frac{6M1_{x}}{L(4+\Phi)}}{\frac{M1_{x}L(1+\Phi)}{EI_{x}(4+\Phi)}} = \frac{6EI_{x}}{L^{2}(1+\Phi)}$$

$$\rightarrow k32 = \frac{F2_{y}}{\theta1_{x}} = -\frac{F1_{y}}{\theta1_{x}} = -\frac{6EI_{x}}{L^{2}(1+\Phi)}$$

$$\rightarrow k42 = \frac{M2_{x}}{\theta1_{x}} = \frac{-M1_{x} + \frac{6M1_{x}}{L(4+\Phi)}L}{\frac{M1_{x}L(1+\Phi)}{EI_{x}(4+\Phi)}} = \frac{EI_{x}(2-\Phi)}{L(1+\Phi)}$$