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Abstract. The increasing complexity of the telecommunication systems
has made modeling more challenging. A commonly used modeling tool
are Markov chains, but the existence of several different components
(e.g., user types) often renders its analysis computationally intractable.
When these components operate at sufficiently separated time-scales, the
quasi-stationary approximation has proven to be accurate and highly
efficient. However, while the computational efficiency of this method is
maintained no matter what the separation of time-scales is, its precision
deteriorates rapidly as the separation narrows. In this paper, we present
a new approximate method that extends the outreach of the quasi-
stationary approximation by trading-off computational effort in exchange
of increased accuracy. The proposed method is iterative in nature and
its accuracy can be improved by performing more iterations.

1 Introduction

A large variety of telecommunication systems are inevitably large and complex,
mainly due to the interactions among their components as different user types
or traffic categories. Rapid progress in technology has also made modeling more
challenging. A commonly used modeling tool for performance and dependability
analysis of such systems are continuous-time Markov chains (CTMC). One of
the main advantages of using Markovian models is that it is general enough to
capture the dominant factors of system uncertainty and, in the meantime, it is
mathematically tractable [15].

Incorporating all the important factors into the models often results in
a large state space of the underlying Markov chain, rendering the analysis
problem computationally intractable. Therefore, it is very necessary to develop
computationally efficient approximations techniques to compute the performance
parameters of the system under study.

In general, it is not possible to divide a large system into its smallest
irreducible subsystems completely separable from one another and treat each
subsystem independently, we have to deal with situations in which the systems
are only nearly decomposable, in the sense that, there are weak links among
the irreducible subsystems, which dictate the occasional regime changes of the
system. An effective way to treat such near decomposability is the time-scale
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separation. That is, we set up the systems as if there were two time-scales, fast
vs. slow [15].

When the events of the components of a system occur at sufficiently separated
time-scales, the simplest approximation, producing easily computable and
accurate results, is the so called quasi-stationary (or, quasi-static) approximation
(QSA) [2, 3, 5, 7, 14].

In [4] the authors introduce a new approximation method, also based in
time-scale decomposition, called Generalized Quasi-Stationary Approximation
(GQSA), that provides a way to trade off computational complexity and
accuracy. They apply it to an integrated services system that serve short-lived
non-real-time and long-lived real-time traffic. This new approximation aims to
improve the accuracy at the price of higher computational cost. In [13] it was
shown that, while the new GQSA improves the accuracy in some instances, it
does not occur in all of them; and more importantly, it is difficult to predict in
which cases accuracy can be enhanced by GQSA.

Taking into account that QSA provide accurate results only when the
separation of time-scales is considerable (quasi-stationary regime), the purpose
of this paper is to provide an accurate and high efficient approximation method
for the performance analysis of telecommunications systems, to improve the
accuracy of QSA when the system moves away from the quasi-stationary regime,
i.e., enlarge the region of validity of QSA when the separation of time-scales is
not enough.

We analyzed two types of telecommunication systems: a cognitive radio
system (CRS) with two user types [8], and an integrated services system (ISS)
with two traffic categories [11]. These systems present qualitative important
differences at the model level, as is described in Sect. 2.

The approximation that we propose is based on the phase-type (PH)
distribution which can be characterized as the time to absorption in a finite
Markov chain. The two-dimensional Markov process of each system (CRS and
ISS) can be represented with a number of transient states and an absorbing state
as is detailed in Sect. 3.

We approach the problem with an iterative method. Taking QSA as an initial
approximation to the solution vector, we proceed to modify this approximation
in such a way that, as the number of iterations increases, the result becomes
closer and closer to the exact solution. This is an important advantage with
respect to the GQSA approach, because we can use the previous result as the
new initial approximation. If indeed there is little change, we should expect to
compute the new result in relatively few iterations. Also, an iterative process
may be halted once a prespecified tolerance criterion has been satisfied, and this
may be relatively lax [12].

The remainder of the paper is organized as follows. Section 2 describes the
Markov models, and it details the characteristics of the systems to analyze.
Section 3 presents the proposed approximation method based on time-scale
separation and PH distribution. Section 4 details the numeric evaluation of the
systems and the results of the performance metrics computed with the proposed
approximation method at different time-scales to validate its accuracy. Finally,
the conclusions are presented in Section 5.



2 Description of Models

In this section, we detail the characteristics of the systems in which we applied
the proposed approximation method to evaluate its performance. We describe
the two-dimensional CTMC models associated with them.

2.1 Cognitive Radio System

As in [8], we model the PU and SU traffic at the session (connection) level and
ignore interactions at the packet level (scheduling, buffer management, etc.).
We assume an ideal MAC layer for SUs, which allows a perfect sharing of the
allocated channels among the active SUs (all active SUs get the same bandwidth
portion), introduce zero delay and whose control mechanisms consume zero
resources. In addition, we also assume that an active SU can sense the arrival
of a PU in the same channel instantaneously and reliably. In this sense, the
performance parameters obtained can be considered as an upper bound.

The Cognitive Radio System has C1 primary channels (PCs) that can be
shared by PUs and SUs, and C2 secondary channels (SCs) only for SUs. Let
C = C1 + C2 be the total number of channels in the system. Note that the SCs
can be obtained from e.g. unlicensed bands, as proposed in [1]. This assumption
is applicable to the coexistence deployment scenario for CRNs [10]. Alternatively,
as it might be of commercial interest for the primary and secondary networks to
cooperate, the secondary channels may be obtained based on an agreement with
the primary network [10]. A SU in the PCs might be forced to vacate its channel
if a PU claims it to initiate a new session. As SUs support spectrum handover,
a vacated SU can continue with its ongoing communication if a free channel is
available. Otherwise, it is forced to terminate.

For the sake of mathematical tractability, Poisson arrivals and exponentially
distributed service times are assumed. The arrival rate for PU (SU) sessions is
λ1 (λ2), their service rate is µ1 (µ2), and requests consume 1 (1) channel when
accepted. We denote by (i, j) the system state, when there are i ongoing PU
sessions and j SU sessions. The set of feasible states is S := {(i, j) : 0 ≤ i ≤
C1, 0 ≤ i + j ≤ C} and the cardinality of S is |S| = (C1

2 + C2 + 1) · (C1 + 1).
The state-transition diagram of the system is depicted in Fig. 1. Given the set
of feasible states and their transitions in a CTMC, we can construct the global
balance equations and the normalization equation. From these, we calculate the
steady-state probabilities denoted as π(i, j).

The system’s performance parameters are determined as follows:

P1 =

C2∑

k=0

π(C1, k) , P2 =

C∑

k=C2

π(C − k, k), (1)

Pft =
λ1(P2 − π(C1, C2))

λ2(1− P2)
, (2)

Th2 =

C∑

j=1

Z∑

i=0

jµ2 · π(i, j), (3)
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Fig. 1. State-transition diagram, Cognitive Radio System.

where P1 is the PUs blocking probability, which clearly coincides with the one
obtained in an Erlang-B loss model with C1 servers; P2 is the SUs blocking
probability, i.e. the fraction of SU sessions rejected upon arrival as they find the
system full; Pft is the forced termination probability of the SUs, i.e. the rate
of SU sessions forced to terminate divided by the rate of accepted SU sessions;
Th2 is the SUs throughput, i.e the rate of SU sessions successfully completed
and Z = min(C1, C − j).

2.2 Integrated Services System

We use the same model defined in [4] for an Integrated Services System that
serve real-time (RT) and non-real-time (NRT) traffic. We consider a link whose
limited resources (C Mbps in total) are shared amongst RT and NRT requests.
The RT traffic is given strict priority over the NRT traffic. We initially assume
that all RT calls are of the same class each requiring one channel of rate c b/s
during its entire service duration to meet its required QoS. We denote by Nrt the
maximum number of channels for RT calls. When an RT call arrives, it occupies
1 channel if available; otherwise, it is blocked. We set Nrt, such that Nrt · c is
sufficiently smaller than C to avoid starvation of the NRT traffic. Let nrt(t) be
the number of RT calls in the system at time t, t ≥ 0, so {nrt(t), t ≥ 0} is the RT
process. NRT flows are served evenly by the leftover capacity from the RT traffic
according to the processor sharing (PS) discipline. Let nnrt(t) be the number of
NRT flows in the system at time t, t ≥ 0. Then, {(nrt(t), nnrt(t)), t ≥ 0} is the
joint RT and NRT process. The capacity available for all the NRT traffic at time
t is given by Cnrt(t) = C −nrt(t) · c. The bit-rate of each admitted NRT flow at
time t is cnrt(t) = Cnrt(t)/nnrt(t), which is updated with RT or NRT admitted
arrivals or departures. To satisfy the QoS of admitted NRT flows, the maximum
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Fig. 2. State-transition diagram, Integrated Services System.

number of concurrent NRT flows is limited to Nnrt. Accordingly, an NRT flow
arriving at time t is blocked if nnrt(t) = Nnrt. We assume Poisson arrivals for
RT and NRT requests with rates λrt and λnrt respectively. The service time of
each admitted RT request is exponentially distributed, its service rate is µrt. On
the other hand, as data sessions generate NRT traffic, their sojourn time will
depend on the available resources. The size of the flows generated by the data
sessions are exponentially distributed with mean L (bits).

We denote by (i, j) the system state, when there are i ongoing RT calls and
j NRT flows. Let S be the set of feasible states as S := {(i, j) : 0 ≤ i ≤ Nrt, 0 ≤
i+j ≤ Nrt+Nnrt} and the cardinality of S is |S| = (Nrt+1)(Nnrt+1). The state-
transition diagram of the system is depicted in Fig. 2. Given the set of feasible
states and their transitions in a CTMC, we can construct the global balance
equations and the normalization equation. From these, we calculate the steady-
state probabilities denoted as π(i, j). We must consider that the service rate of

NRT flows varies according to the nrt RT calls in the system as µ
(i)
nrt =

C−i·c
L

.
The system’s performance parameters can be developed as follows:

Pnrt =

Nrt∑

k=0

π(k,Nnrt), (4)

E [Xnrt] =

Nnrt∑

j=1

Nrt∑

i=0

j · π(i, j), (5)

E [Dnrt] =
E [Xnrt]

λnrt(1− Pbnrt)
, (6)

where Pnrt is the blocking probability of NRT flows, E [Xnrt] is the mean number
of NRT flows in the system and E [Dnrt] is the NRT flow average transfer delay.



3 Approximation Method

3.1 PH Distributions

Consider a CTMC on a finite state space S = {0, 1, 2, . . . ,m}. A PH distribution
is the distribution of the time until absorption in a finite Markov chain of
dimension m + 1, where 1 state is absorbing and the remaining m states are
transients. A PH distribution is uniquely given by an m dimensional row vector
α and an m × m matrix T . The vector α can be interpreted as the initial
probability vector among the m transient states (with

∑m
i=0 αi = 1), while the

matrix T can be interpreted as the infinitesimal generator matrix among the
transient states in the continuous case. The random variable that is defined as
the time to absorption, is said to have a (continuous) PH distribution [9].

The infinitesimal generator for the CTMC can be written in block-matrix

form as Q =

[
t T

0 0

]
. Here, 0 is a 1 × m vector of zeros. The vector t =

(t10, t20, . . . , tm0)
′ (the prime denoting transpose) where, for i = 1, 2 . . .m, ti0 ≥

0, with at least one of the ti0s positive, is the absorption rate from state i. The
m×m matrix T = [tij ] is such that, for i = 1, 2 . . .m, with i 6= j,

tij ≥ 0 and tii = −
∑

m
j=0,j 6=itij , (7)

that is, t = −Te where e is a column vector of ones of appropriate dimension.
We call the the pair (α;T ) a representation for the PH distribution. The matrix
T is referred to as a PH generator.

To ensure absorption in a finite time with probability one, we require that
every non-absorbing state is transient. This statement is equivalent to T being
invertible, therefore −(T−1)ij is the expected total time spent in phase j during
the time until absorption, given that the initial phase is i [6, Theorem 2.4.3].

For extensive bibliographies and comprehensive theoretical treatment of PH
distributions, see [9, Chap.2]. Also [6, Chap.2], is a very readable introduction
to the topic.

3.2 Absorbing Markov Chains Method (AbMC)

In the quasi-stationary approximation it is assumed that, when the process enters
a level, it takes an infinitely long time to leave this level. Thus, the probability
that the process is in a phase j of the level i, given that the process is in the
level i, is simply given by the stationary distribution of the level i considered as
an isolated CTMC.

In our method, we assume that although the sojourn time in a level will
be typically large (consistently with the large separation between time-scales)
it is finite. We treat each level as an absorbing Markov chain in which the
transitions out the level are transitions to an absorbing state. We now obtain
the probability that the process is in a phase j of the level i, given that the
process is in the level i, as the fraction of time that the process spends in the
phase j before absorption. Note that if we knew the initial probabilities of the
phases (i.e., upon entering the level) then the conditional probabilities obtained



by this method would be the exact ones. However, unless the original CTMC has
some special structure (for instance, if each level can only be entered by exactly
one of its phases), these initial probabilities cannot be obtained without having
the stationary distribution of the whole CTMC.

We propose here to use the QSA to estimate the initial probabilities for
the phases in each level. Then, we can obtain an estimation of the conditional
probabilities for the phases as described above, i.e., as the fraction of time spent
in each of them before absorption. Now, from the estimation of the conditional
probabilities for the phases in each level, and the probability distribution for
the levels, a new approximation for the stationary distribution of the CTMC is
obtained. This way, we have obtained a refinement of the initial approximation
of the stationary distribution given by the QSA. Moreover, the same process can
be repeated iteratively to further improve the approximation.

Based on the basic properties of PH distributions introduced in Sect. 3.1,
the iterative procedure described above can be implemented using the following
equations:

π̃
(k+1)
i =

[
α

(k)
i (−T−1

i )e
]−1

α
(k)
i (−T−1

i ) (8)

v
(k)
i = πi−1π̃

(k)
i−1ui−1 + πi+1π̃

(k)
i+1di+1 (9)

α
(k)
i =

1

v
(k)
i e

v
(k)
i (10)

– Being k the iteration number, π̃
(k)
i is the distribution of probabilities

obtained by the PH distribution. The initial value is given by

π̃
(0)
i = π̂(j|i), (11)

where π̂(j|i) is the distribution of probabilities of:
• finding j ongoing sessions in an M/M/(C − i)/(C − i) system with only

SUs in CRS.
• finding j NRT flows in an M/M/1/N−PS system with only NRT traffic

in ISS.
– π is the distribution of probabilities of the elements with strict priority in

the system (PUs in CRS, RT traffic in ISS). It is computed using simple
recursions since their corresponding CTMC are one-dimensional birth-and-
death processes.

– v
(k)
i is a vector that represent the input rates to each state of the level i.

The initial value for the iterations is given by:

v
(0)
i = πi−1π̃

(0)
i−1ui−1 + πi+1π̃

(0)
i+1di+1, (12)

where ui−1 is a vector with the transition rates from level i − 1 to level i
and di+1 is a vector with the transition rates from level i+ 1 to level i.

– α
(k)
i is the initial probability vector among the j transient states of the level

i.

α
(0)
i =

1

v
(0)
i e

v
(0)
i . (13)



Finally, the state probability distribution of the systems can be approximated

as π(i, j) ≈ π̃(i, j) = πi · π̃
(k)
i (j). With this distribution of probabilities, we

compute the approximate values of the performance parameters, using (1 –
3) for CRS, and (4 – 6) for ISS. Note that, if we were able to know the
initial probability vector of the PH distribution (α), just an iteration would
be enough to obtain the exact distribution of probabilities π(i, j).

4 Numerical Evaluation and results

As a baseline for our study, we implemented the exact solution of the CTMC
associated with each system, to calculate the exact values of their performance
parameters. For the sake of comparison, we have used system sizes that allowed
the exact solution to be computed within a reasonable time. In addition, we
implemented both approximation methods: QSA and GQSA to validate and
compare the performance of AbMC.We focus on evaluating the relative error (er)
of each performance parameter. For instance, the relative error of the blocking

probability for SUs in a CRS is computed as er(P2) =
|PE

2
−PAb

2
|

PE

2

, where PE
2 is

the exact value of SUs blocking probability and PAb
2 is the approximate value of

SUs blocking probability computed by AbMC method.
We evaluate the performance of the systems with different sizes (number of

channels available for each type of user or flow) and different load conditions.
In CRS, we analyze the blocking probability, forced termination probability
and throughput of the SUs. We consider the following values for the number
of primary channels: C1 = {70, 80, 90, 100, 120, 140}, and for each of them,
the following values for the number of secondary channels are considered:
C2 = {10, 20, 40}.

In ISS, we determine the blocking probability and average transfer delay of
the NRT traffic. Keeping c and L constant, we consider the following values for
the total link capacity of the system: C = {1.92, 7.68} Mbps, that are a similar
to the ones used in [4].

To establish the load conditions, we set the service rates to 1, and then we
adjust the arrival rates to obtain two load conditions: low (L) and high (H),
which correspond to blocking probabilities of 1 · 10−3 and 5 · 10−2, respectively
for each user type or traffic category, given as result four load configurations:
LL,LH,HL and HH.

To assess the goodness of AbMC, we evaluate the evolution of the relative
error as the separation between the time-scales varies. To accomplish this
analysis, with the arrival rates adjusted to the specified load condition (LL,
LH, HL or HH), we use an accelerating factor f , 10−5 ≤ f ≤ 105, to accelerate
or decelerate the arrival and departure events of the PUs, in the case of CRS or
of the RT traffic, in the case of ISS, while keeping the offered traffic constant.
For instance in a CRS, for each value of f , the PU arrival and service rates
are obtained as λ1(f) = f · λ1 and µ1(f) = f · µ1. Note that the offered traffic
λ1

µ1

= λ1(f)
µ1(f)

is independent of f .

We varied the accelerating factor f to analyze the behavior of the
approximation methods as a function of the separation of time-scales. To obtain
the results with the iterative methods, we measured the time to compute GQSA



with the respective Radius R and iterated AbMC until that time, e.g., for
AbMC1 we iterated the method until the time measured to compute GQSAR=1.
In the same way for the other representations. The results are shown in Figs. 3
and 4; from them we can make the following observations:

– As expected, when the accelerating factor f decreases (f → 0), the
approximate values of all performance parameters evaluated tend to the
QSA and the QSA results are very accurate.

– Note that increasing the radius in GQSA not always ensures a gradual
reduction of the relative error [13]. As can be seen in Fig 3, GQSAR=1

has a better accuracy in comparison with GQSAR=2 and GQSAR=3 for
f > 10−1. Clearly, the trade-off between the accuracy and computational
cost will discourage the use of a radius larger than R = 1 in GQSA.

– AbMC have a predictable behavior: increasing the number of iterations to
find the solution, ensures an improvement of the accuracy. Although they
are not represented here due to space limitations, we have observed the same
behavior in all performance parameters, for all load conditions and system
sizes.
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5 Conclusions

We provide a new approximate method called Absorbing Markov Chains
(AbMC) for the performance analysis of telecommunication systems. We have
validated AbMC in comparison with the quasi-stationary approximation and
its recently proposed generalization. We have explored the evolution of the
accuracy at different time-scales in two telecommunication systems: a cognitive
radio system and an integrated services system which, at the model level,
present qualitative important differences. The numerical results demonstrate
that AbMC extends the outreach of the quasi-stationary approximation by
trading-off computational effort in exchange of increased accuracy. AbMC has
an iterative approach and as a part of future work, we will study the trade-off
between accuracy and computational cost.
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