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Stochastic Processes

• It is often possible to represent the behaviour of a system by a
collection of “states”.

• The system being modelled is assumed to occupy one and
only one state at any moment in time.

• The evolution of the system is represented by transitions from
state to state.
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Stochastic Processes

An example of this could be the behaviour of the weather:

Cloudy

RainySunny
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Formal definition of a Stochastic Process

A stochastic process is defined as a family of random variables
{X (t), t ∈ T}.
• T represents the index set.

I T can be discrete: T = {0, 1, 2, 3, ...}: Discrete time
stochastic process.

I T can be continuous: T = R≥0: Continuous time stochastic
process.

• The values assumed by the random variables X (t) are called
states. The set of all possible values of X (t) is called the
state space: Ω.

I Ω can be discrete: {Rainy,Sunny,Cloudy}
I Ω can also be continuous.
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Chains

When Omega is discrete, the stochastic process is called a chain.
For the rest of the course we will be concerned with:

Homogeneous Markov Chains.

• Discrete

• Continuous

Applications:

• Biology

• Economics

• (Queueing Theory)

• (Board games)
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Discrete Markov Chains
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Definition of a Discrete Markov Chain

For a discrete Markov chain we observe the state of a system at a
discrete, but infinite set of times. We may take:

T = N = {0, 1, 2, . . . }

The state of the system is then denoted as X0,X1,X2, . . . . A
discrete time Markov chain is then a stochastic process that
satisfies the following relationship:

P(Xn+1 = xn+1|Xn = xn, . . . ,X0 = x0) = P(Xn+1 = xn+1|Xn = xn)

For ease of notation we write the probability of going from state i
to state j at time period n as:

pij(n) = P(Xn+1 = j |Xn = i)
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Transition Probability Matrix

P(n) =



p00(n) p01(n) p02(n) . . . p0j(n) . . .
p20(n) p11(n) p12(n) . . . p1j(n) . . .
p20(n) p21(n) p22(n) . . . p2j(n) . . .
...

...
...

...
...

...
pi0(n) pi1(n) pi2(n) . . . pij(n) . . .
...

...
...

...
...

...


P(n) is a stochastic matrix:

• P(n) is a square matrix.

•
∑

j pij(n) = 1 for all i ∈ Ω

• pij(n) ≥ 0 for all i , j ∈ Ω
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Homogeneous Markov Chains

In a Homogeneous Markov Chain the transition probabilities do not
depend on the amount of time that has passed:

P(k) = P(0) for all k

This is what we consider in this course.
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Weather Example
This stochastic matrix: .2 .5 .3

.1 .1 .8

.1 .2 .7


corresponds to:

Cloudy

RainySunny

.2

.5

.3

.8

.1

.1

.7.2

.1
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State Vector

We can describe the state of a Markov Chain by a vector: π(n).

π
(n)
j denotes the probability of being in State j at time n:

•
∑

j∈Ω π
(n)
j = 1 for all n

• π(n)
j ≥ 0 for all j , n.
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Weather example

Assume π(0) = (1, 0, 0), what is π(1)?

Cloudy

RainySunny

.2

.5

.3

.8

.1

.1

.7.2

.1

π(1) = (.2, .5, .3)
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Powers of Transition Probability Matrix

In general:
π(n+1) = π(n)P

Thus:
π(n) = π(0)Pn
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Weather Example

π(0) = (1, 0, 0)

2 4 6 8 10
n

0.2

0.4

0.6

0.8

1

Probability

Sunny
Cloudy
Rainy
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Weather Example

π(0) = (0, 1, 0)

2 4 6 8 10
n

0.2

0.4

0.6

0.8

1

Probability

Sunny
Cloudy
Rainy
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Weather Example

π(0) = (0, 0, 1)

2 4 6 8 10
n

0.2

0.4

0.6

0.8

1

Probability

Sunny
Cloudy
Rainy
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Weather Example

π(0) = (1/3, 1/3, 1/3)

2 4 6 8 10
n

0.2

0.4

0.6

0.8

1

Probability

Sunny
Cloudy
Rainy
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Weather Example

π(0) = (.25, .25, .5)

2 4 6 8 10
n

0.2

0.4

0.6

0.8

1

Probability

Sunny
Cloudy
Rainy
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Limiting and Steady State Distribution

• If the limit:
lim
n→∞

Pn

exists, then the probability distribution π = limn→∞ π
(0)Pn is

called the limiting distribution. (Note that this can depend on
π(0)).

• If a limiting distribution exists and it is independent of π(0) it
is called a steady state distribution. Such a distribution
satisfies:

π = πP
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Weather Example

π = πP ⇒


π1 = .2π1 + .1π2 + .1π3

π2 = .5π1 + .1π2 + .2π3

π3 = .3π1 + .8π2 + .7π3

Solving this gives: 
π1 = 11

67c

π2 = 21
67c

π3 = c

For some c. Recalling that π1 + π2 + π3 = 1 gives:
π1 = 1

9 ≈ .11

π2 = 7
33 ≈ .21

π3 = 67
99 ≈ .68
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Continuous Markov Chains
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Transition Rates

In a discrete time Markov chain:

• T = {1, 2, 3, . . . }
• Interactions between states given by transition probabilities

In a continuous time Markov chain:

• T = R≥0

• Interactions between states given by rates at which transitions
happen.
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Transition Rate Matrix

Q(t) =



q00(t) q01(t) q02(t) . . . q0j(t) . . .
q10(t) q11(t) q12(t) . . . q1j(t) . . .
q20(t) q21(t) q22(t) . . . q2j(t) . . .
...

...
...

...
...

...
qi0(t) qi1(t) qi2(t) . . . qij(t) . . .
...

...
...

...
...

...


Q(t) is a transition rate matrix:

• Q(n) is a square matrix.

• qii (t) = −
∑

j 6=i qij(t) for all i ∈ Ω

• qij(n) ≥ 0 for all i 6= j ∈ Ω
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Homogeneous Markov Chains

In a Homogeneous Markov Chain the transition rates do not
depend on the amount of time that has passed:

Q(t) = Q(0) for all t

This is what we consider in this course.
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Example

The following continuous Markov chain:

1

32

1

4

2

1

1

3

4

1

Has transition rate matrix:

Q =


−3 1 0 2
1 −5 4 0
1 3 −4 0
0 0 1 −1
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Transient and Steady State Distribution

• We have the following expression for the transient distribution:

dπ(t)

dt
= π(t)Q

thus:

π(t) = π(0)eQt = π(0)

(
I +

∞∑
k=1

Qktk

k!

)
• The steady state distribution (if it exists) may be obtained by

solving the following equation:

πQ = 0
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Example

π(0) = (1, 0, 0, 0)

2 4 6 8 10
t

0.2

0.4

0.6

0.8

1

Probability

1
2
3
4
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Example

π(0) = (0, 1, 0, 0)

2 4 6 8 10
t

0.2

0.4

0.6

0.8

1

Probability

1
2
3
4
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Example

π(0) = (0, 0, 1, 0)

2 4 6 8 10
t

0.2

0.4

0.6

0.8

1

Probability

1
2
3
4
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Example

π(0) = (0, 0, 0, 1)

2 4 6 8 10
t

0.2

0.4

0.6

0.8

1

Probability

1
2
3
4
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Weather Example

πQ = 0⇒


−3π1 + 1π2 + 1π3 + 0π4 = 0

1π1 − 5π2 + 3π3 + 0π4 = 0

0π1 + 4π2 − 4π3 + 1π4 = 0

2π1 + 0π2 + 0π3 − π4 = 0

Solving this gives: 
π1 = c

π2 = 5
4c

π3 = 7
4c

π4 = 2c

For some c. Recalling that π1 + π2 + π3 + π4 = 1 gives:
π1 = 1

6 ≈ .17

π2 = 5
24 ≈ .21

π3 = 7
24 ≈ .29

π4 = 1
3 ≈ .33
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Equivalence of Continuous and Discrete Markov Chains
There is an equivalence between Continuous and Discrete Markov
Chains:

• If πP = π then:
π(P − I) = 0

(P − I) has all the properties of a transition rate matrix
(check this)

• If πQ = 0 then:
π(Q∆t + I) = π

If we take ∆t to be sufficiently small (so that the probability
of 2 transitions occurring in 1 time period is negligible) then
(Q∆t + I) is a stochastic matrix corresponding to the
discretized Markov chain. 1 possibility is to take:

∆t ≤ 1

maxi |qii |
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