Pruebas de susceptibilidad. (Antibiograma)

Dra. Ana Carolina González Romero. Magister Sciantiae en Microbiología Clínica. Ph.D En Ciencias Médicas Fundamentales.

Definición y clasificación

1. Efecto antimicrobiano

Antibióticos

Sustancias químicas

microorganismos (bacterias, hongos)

inhiben el crecimiento bacteriano

produciendo su destrucción.

Bacteriostático

Bactericida

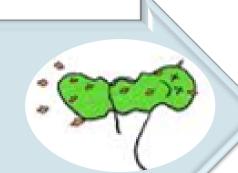
Definición y clasificación

Antibióticos

1. Efecto antimicrobiano

Bacteriostático

Bactericida


Bacteriostático

- Tetraciclina
- Macrólidos
- Lincosaminas
- Cloranfenicol

1000

Bactericidas

- •B-lactámicos
- Glucopéptidos
- Aminoglucósidos
- Rifampicinas
- Polipéptidos
- Trimetoprin

clasificación

Antibióticos

2. Espectro de actividad

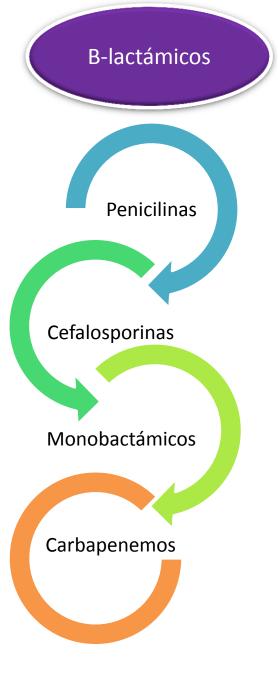
Amplio

Reducido

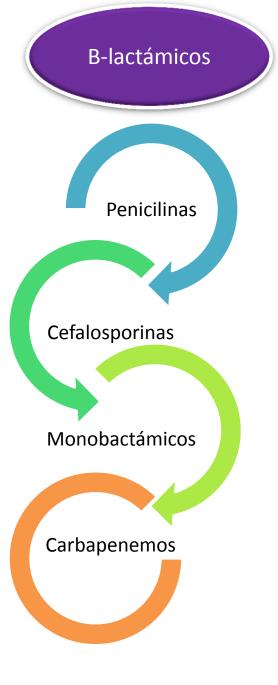
Amplio

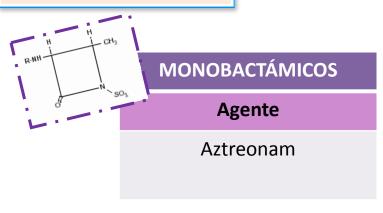
- Carbapenemos
- Aminoglucósidos
- Trimetoprim

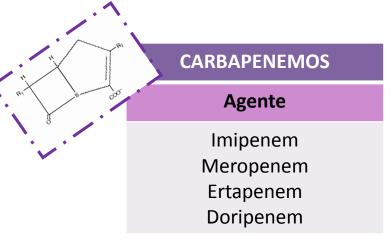
- Oxacilina
- Linezolid
- Glucopéptidos
- Macrólidos
- Lincosaminas

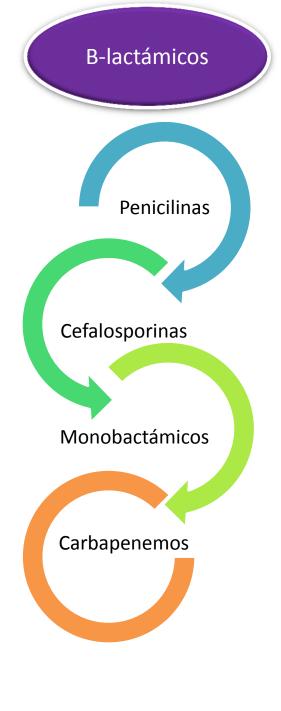


Reducido


- Polipéptido
- Piperacilina/tazobactam




II A Man				
PENICILINAS				
Grupo	Agente			
Penicilinas naturales	Penicilina G Penicilina V			
Aminopenicilinas	Ampicilinas Amoxicilina			
Penicilinas resistentes a β-lactamasas	Oxacilina Meticilina			
Carboxipenicilinas	Carbenicilina Ticarcilina			
Ureidopenicilinas	Piperacilina			


	que y			
CEFALOSPORINAS				
Grupo	Agente /			
Cefalosporinas de 1 ^{ra} generación (C1G)	Cefalotina Cefazolina Cafadroxilo Cefalexima			
Cefalosporinas de 2 ^{da} generación (C2G)	Cefuroxima Cefaclor Cefamandol Cefoxitin Cefotetan Cefotetan			
Cefalosporinas de 3 ^{ra} generación (C1G)	Cefotaxima Ceftriaxona Ceftazidima Ceftibutem Cefixima			
Cefalosporinas de 4 ^{ta} generación (C4G)	Cefepima Cefpirome			

Inhibidores de β-lactamasas			
Agente	Combinado		
Ácido clavulánico Sulbactam	Amoxicilina/Ácido clavulánico Ampicilina/Sulbactam		
Tazobactam	Piperacilina/Tazobactam		

GLUCOPÉPTIDOS

Vancomicina Teicoplamina

ANFENICOLES

Cloranfenicol Tianfenicol

QUINOLONAS Grupo Agente

Quinolonas de Ácido nalidixico 1^{ra} generación

POLIPÉPTIDOS O POLIMIXINAS

Colistin
Polimixina B
Bacitracina

MACRÓLIDOS

Eritromicina Azitromicina Claritromicina

Quinolonas de 2^{da} generación

Quinolonas de

3^{ra} generación

Quinolonas de

4^{ta} generación

Moxifloxacina Gemifloxacina

Ciprofloxacina

Ofloxacina

Norfloxacina

Lomefloxacina

Levofloxacina

AMINOGLUCÓSIDOS

Gentamicina Amikacina Tobramicina Netilmicina Estrptomicina

LINCOSAMINAS

Clindamicina

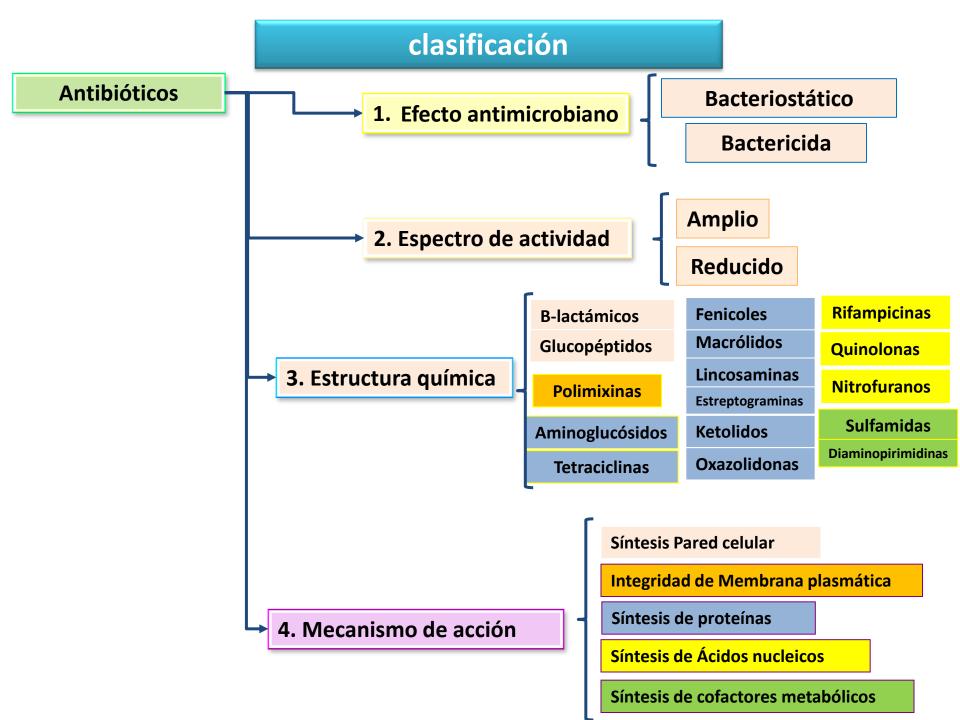
OXAZOLIDONAS

Linezolid

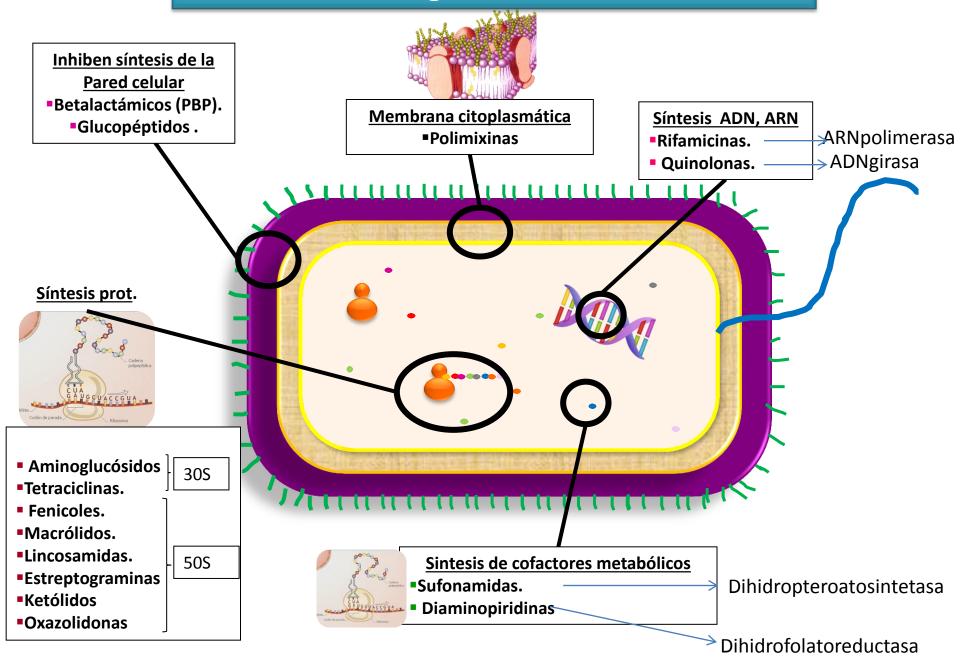
DIAMINOPIRIMIDINAS/ SULFONAMIDA

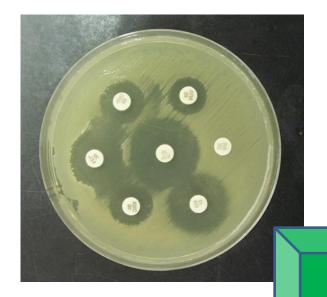
-Trimetoprim/sulfametoxazol

TETRACICLINAS

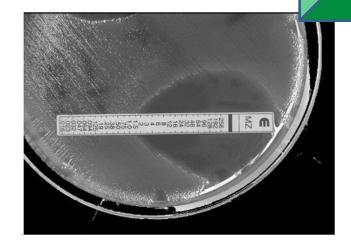

Tetraciclina
Doxiciclina
Glicilciclina (tigeciclina)

RIFAMPICINAS

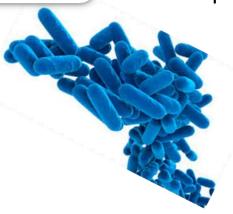

Rifampicina


NITROFURANOS

Nitrofurantoina



4. Clasificación según el mecanismo de acción



Definición

Métodos que evalúa la respuesta de una bacteria frente a concentraciones preestablecidas de antibióticos

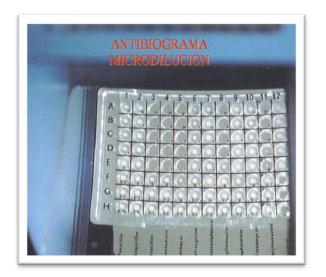
Metodologías

Cuantitativas:

1-Concentración inhibitoria mínima (CIM)


- *Método de dilución en caldo o agar.
- *Método Epsilométrico (Etest).

Cualitativas:


2-Difusión del disco en agar o Kirby Bauer.

PRUEBAS PARA DETERMINAR LA SENSIBILIDAD BACTERIANA A LOS ANTIBIÓTICOS

1. Difusion del disco en agar (Kirby-Bauer)

2. Antibiograma ATB Rapid

PRUEBAS PARA DETERMINAR LA SENSIBILIDAD BACTERIANA A LOS ANTIBIÓTICOS

3. Dilución en agar o caldo

4. Método Epsilométrico (E test)

Ensayos de sensibilidad

- Estandarizados
- Control de calidad .

Asegurar su reproducibilidad y confiabilidad.

M100

Performance Standards for Antimicrobial Susceptibility Testing

This document includes updated tables for the Clinical and Laboratory Standards Institute antimicrobial susceptibility testing standards M02-A12, M07-A10, and M11-A8.

An informational supplement for global application developed through the Clinical and Laboratory Standards institute consensus process.

Tablas 1A - 1B lista de antibióticos sugeridos para ensayar según microorganismos.

Tablas 2A-1 2J-2 Puntos de corte

Tablas 4A- 4B rangos para el control de calidad de los discos de antibióticos

Elección de los antibióticos

Microorganismo aislado Mecanismo y espectro de acción del antibiótico Biodisponibilidad del antibiótico en órganos y sistemas Origen de la infección (nosocomial o extrahospitalaria) Estados fisiológicos del paciente (edad, embarazo, etc) Estados patológicos subyacentes en el paciente Metodología utilizada para realizar la prueba de susceptibilidad

Antibióticos sugeridos de acuerdo al microorganismo aislado

Ampi

- Ampicilina
- •Amoxicilina/acido clavulanico
- Ampicilina/sulbactam
- •piperacilina/tazobactam
- Gentamicina
- Tobramicina
- Amikacina
- •C2G (Cefuroxima)
- •C3G (Cefotaxima)
- •C4G (Cefepime)
- Ciprofloxacina
- •Trimetoprin/sulfametoxazol
- Aztreonam
- Imipenem
- Meropenem

Enterobacterias (urocultivo)

Ampicilina

- Amoxicilina/acido clavulanico
- Ampicilina/sulbactam
- C1G (Cefalotina)
- C2G (Cefuroxima)
- C3G (Cefotaxima)
- Gentamicina
- Amikacina
- Nitrofurantoina
- Ciprofloxacina
- Trimetoprin/sulfametoxazol

1

BGNF

- C3G (Ceftazidima)
- C4G (Cefepime)
- Gentamicina
- Tobramicina
- Amikacina
- Ciprofloxacina
- Piperacilina/tazobactam
- Imipenen
- Meropenem
- Colistin
- Aztreonam (sólo Pseudomonas)
- <u>Para Acinetobacter sp.</u> anexar:
- Ampicilina/sulbactam
- C3G (Cefotaxime o ceftriazone)
- Trimetoprin/sulfametoxazol

Enterobacterias

Staphvlococcus sp

Antibióticos sugeridos de acuerdo al microorganismo aislado

- Cefoxitin (Oxacilina)
- Macrolidos (Eritromicina, claritromicina o azitromicina)
- Clindamicina
- Gentamicina
- Tetraciclina
- Trimetoprin/sulfametoxazol
- Ciprofloxacina
- Linezolid
- Vamcomicina (CIM)

(urocultivo

- Para Staphylococcus sp.:
- Cefoxitin (Oxacilina)
- Trimetoprim/sulfametoxazol
- Q2G (Ciprofloxacina o Norfloxacina)
- Nitrofurantoina
- Para *Enterococcus* sp:
- Ampicilina
- Tetraciclina
- Ciprofloxacina
- Nitrofurantoina

- Ampicilina
- Penicilina
- Vancomicina
- Linezolid
- Tetraciclina
- Getamicina y estreptomicina de alta carga (LCR)

Antibióticos sugeridos de acuerdo al microorganismo aislado

Streptococcus **B-hemolítico**

- Ampicilina o Penicilina
- Eritromicina
- Clindamicina
- C3G(cefotaxime, ceftriazone)
- C4G(cefepime)
- Levofloxacina

Streptococcus pneumoniae

- Oxacilina(penicilina)
- Ertromicina
- Clindamicina
- Levofloxacina o moxifloxacina
- Tetraciclina
- Trimetoprin/sulfametoxazol
- Vancomicina

Haemophylus sp.

• Para TRI

- Ampicilina
- Ampicilinasulbactam
- Q2G (Ciprofloxacina)
- Q3G (Levofloxacina)
- Q4G (Moxifloxacina)
- Macrolidos (Azitromicina o claritromicina
- Tetraciclina
- Trimetoprin/sulfametoxazol
- Para LCR:
- Ampicilina
- C3G (cefotaxime, ceftriazone ceftazidima)
- meropenem

Uso de los antibióticos tomando en cuenta el origen de la infección (Hospitalaria o extrahospitalaria)

Hospitalario

- Ceftazidima
- Cefepime
- Piperacilina/tazobactam
- Carbapenemos
- Aztreonam
- Colistin
- Vancomicina

Extrahospitalarios (comunidad)

- Quinolonas
- Cefadroxilo
- Cefaclor
 - Cefuroxime
 - Trimetoprin/sulfametoxazol
 - Ampicilina sulbactam
 - Eritromicina
 - Azitromicina
 - Gentamicina

Uso de antibióticos de acuerdo al estado fisiológico y patológicos subyacentes en el paciente

Embarazo	Insuficiencia Hepática	Insuficiencia Renal	Neonato
Quinolomas Cloranfenicol Colistina Nitrofurantoína Sulfonamidas Tetraciclinas Rifampicina Metronidazol Vancomicina Aminoglucósidos	Cloranfenicol Rifampicina Tetraciclinas	Claranfenicol Nitrofurantoína Tetraciclina Vancomicina Aminoglucósidos	Cloranfenicol Clindamicina Quinolonas Sulfonamidas Aztreonam Tetraciclinas Vancomicina

METODO DE DIFUSIÓN DEL DISCO

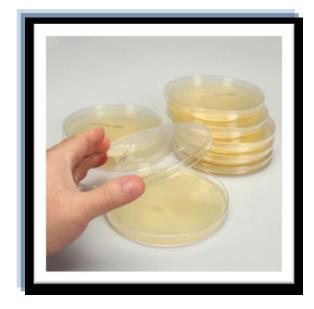
Recomendaciones para su ejecución:

Cepa Bacteriana

Debe provenir de un cultivo fresco, preferiblemente de un cultivo en agar, de manera de comprobar la pureza de la cepa

3 a 5 colonias de igual morfología y emulsione en 4 a 5 ml SSF

INÓCULO BACTERIANO


Ajusta a la turbidez del patrón 0.5 del estándar de McFarland

Control de calidad

- -Verificar la densidad correcta del estándar en forma mensual. (absorbancia a 625 nm = 0,08 a 0,10)
- -La turbidez del estándar debe ser uniforme post agitación con vórtex.
- -Almacene en la oscuridad.

MEDIO DE CULTIVO

Recomendaciones para su ejecución:

- **❖** Reproducibilidad aceptale
- **❖** Baja concentración de inhibidores

Agar MUELLER-HINTON para todas aquellas bacterias aerobias y facultativas de crecimiento rápido y no exigentes.

Para bacterias exigentes:

Género *Haemophilus:* utilizar *Haemophilus Test Medium* HTM *Streptococcus y Corynebacterium:* Utilizar agar Mueller-Hinton suplementado con 5% de sangre de carnero.

Para casos específicos:

Agregar 2% de cloruro de sodio al medio Mueller-Hinton para la detección de cepas de *Staphylococcus* resistentes a la meticilina u oxacilina.

NUNCA utilizar Agar chocolate, BHI, nutriente, TS, MK, MS

Factores que influyen en el agar

Efectos de la timidina o timina sobre el agar Mueller Hinton

Medios con exceso de timidina dan falsa resistencia a sulfonamidas y trimetoprim.

Influencia de las variación de cationes divalentes sobre el agar Mueller Hinton:

- ❖ La variación de Ca++ y Mg++ afecta los halos de inhibición para aminoglucósidos y tetraciclinas en Pseudomonas aeruginosa.
- El contenido excesivo de cationes produce halos de falsa resistencia

Factores que influyen en el agar

Efectos del pH sobre el agar Mueller Hinton

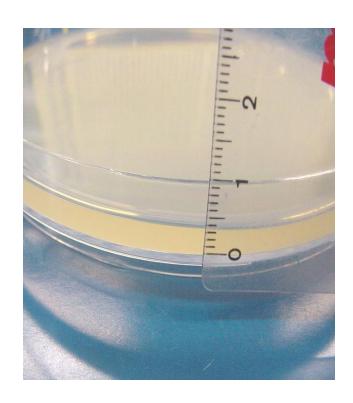
(el rango de pH va de 7,2 a 7,4)

pH ácido:

- Pierden potencia los aminoglucósidos y macrólidos.
- Aumenta la actividad de penicilinas.

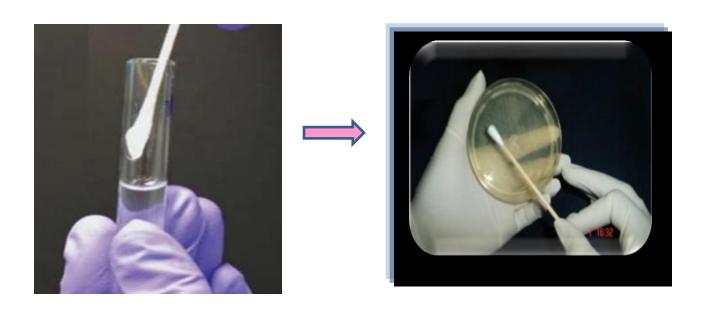
pH alcalino: los efectos son opuestos.

Humedad:


- ❖ Si existe un exceso de humedad en la superficie del agar las placas deben ser incubadas a 35°C durante 10 a 30 minutos antes de utilizarse.
- ❖ Las placas no deben mostrar gotas de agua en la superficie

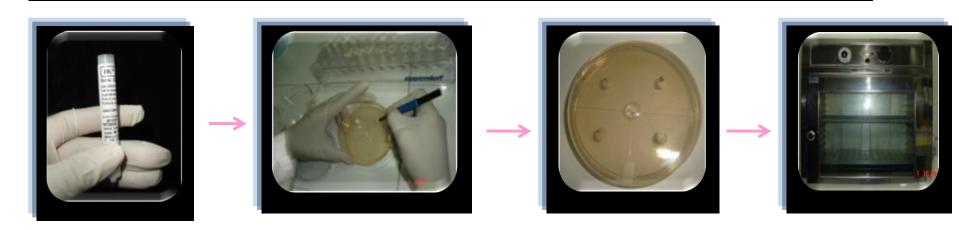
Factores que influyen en el agar

Influencia de la profundidad del agar Mueller Hinton:


- ❖ La profundidad recomendada de la capa de agar es de 4 mm.
- Una profundidad < 4 mm genera lecturas falsamente susceptibles.
- Una profundidad > 4 mm genera lecturas falsamente resistentes

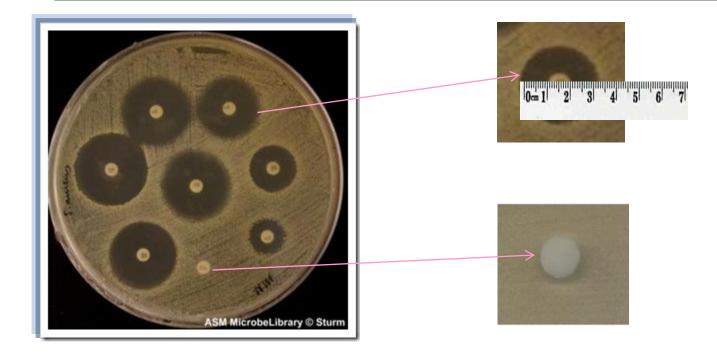
60 a 70 mL → 150 mm 25 a 30 mL → 90 mm 4 mm

INOCULACIÓN DEL MEDIO DE CULTIVO


- ·Asegurarse que las placas con medio de cultivo no estén húmedas.
- ·Inocular el medio con un hisopo estéril cubriendo toda la superficie.
- •Dejar secar por unos 5 minutos y colocar los discos de antibióticos.

DISCOS DE ANTIBIÓTICOS

Colocar sólo hasta 6 discos por placa y ubicarlos en forma equidistantes tratando de intercalar antibióticos con diferentes mecanismos de acción.



Control de calidad

Comprobar la efectividad de los mismos por lo menos una vez al mes, utilizando las cepas de referencia internacional

LECTURA DEL ANTIBIOGRAMA

- ❖ Hacer las lecturas después de 18 -24 horas de incubación y medir los halos de inhibición con una regla milimetrada.
- ❖ Hacer la interpretación de acuerdo a las normas y tablas de la CLSI actualizadas

Pasos para realizar un antibiograma



European Society of Clinical Microbiology and Infectious Diseases

Interpretación

7

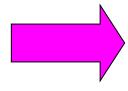
De acuerdo a las normas y tablas del CLSI: Sensible, intermedia, resistente, dosis dependiente (SDD)

PUNTOS DE CORTE

CLSI, 2018

Table 2C Staphylococcus spp. M02 and M07

Table 2C. (Continued)

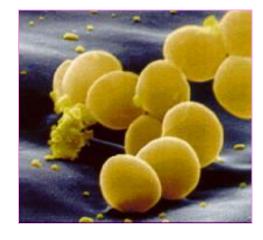

Test/Report Group	Antimicrobial Agent	Disk -	Zone Diameter Interpretive Criteria (nearest whole mm)				MIC Interpretive Criteria (µg/mL)				À
			S	1	1	R	S	1		R	Comments
FLUOROQUII	NOLONES (Continued)										
0	Sparfloxacin	5 μg	≥19	1	16–18	≤15	≤0.5	1		≥2	
Inv.	Fleroxacin	5 μg	≥19	1	16–18	≤15	≤2	4		≥8	
NITROFURA	NTOINS										
U	Nitrofurantoin	300 µg	≥17	i	15–16	≤14	≤32	6	4	≥128	
LINCOSAMID	ES					-					
A	Clindamycin	2 μg	≥21		15–20	≤14	≤0.5	1-	-2	≥4	(27) Inducible clindamycin resistance can be detected by disk diffusion using the D-zone test or by broth microdilution (see Table 36 Subchapter 3.10.1 in M02-A12, and Subchapter 3.14.1 in M07-A10). See comment (23).
FOLATE PAT	HWAY INHIBITORS	31		-07		50 50		10 m			
Α	Trimethoprim- sulfamethoxazole	1.25/23.75 µg	≥16		11–15	≤10	≤2/38	=		≥4/76	

FUENTES DE ERROR MÁS COMUNES EN LA REALIZACIÓN DE UN ANTIBIOGRAMA

- 1. Falta del control de calidad de los medios de cultivo a utilizar, patrón de McFarland y los discos de antibióticos.
- 2. Trabajar con cepas bacterianas que no están puras.
- 3. Inadecuada estandarización de la concentración del inóculo.
- 4. Utilización de un número excesivo de discos de antibióticos por placa.
- 5. Utilización de medios de cultivo no aptos para las pruebas de susceptibilidad.
- 6. Lectura prematura o extemporánea de las pruebas de susceptibilidad.
- 7. Medición incorrecta de los halos de inhibición por una iluminación deficiente o reglilla inadecuada.
- 8. Incubación y atmósfera inadecuadas.
- 9. Error en la trascripción de los resultados en la hoja de reporte

IMPORTANCIA DE LA LECTURA INTERPRETADA DEL ANTIBIOGRAMA

Deducir mecanismos de resistencia


Objetivos principales

- Detectar la resistencia
- Predecir el fracaso terapéutico

Interpretación Clínica y Microbiológica del Antibiograma en Cocos grampositivos

Género: Staphylococcus

Resistencia a β-lactámicos

- Producción de β-lactamasas
- 1 Penicilinasas

Staphylococcus

- Alteración del sitio de acción
- 1 Modificación de las PBP (gen *mecA*)

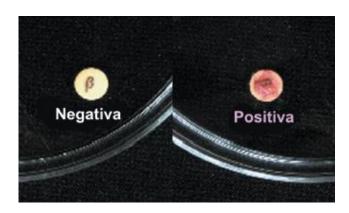
Staphylococcus
Streptococcus pneumoniae

Resistencia a Macrólidos Lincosaminas y Estreptograminas (MLS)

- Alteración del sitio de acción
- 1 Modificación a nivel ribosomal (gen *erm*)

Staphylococcus, Streptococcus pneumoniae γ Streptococcus β-hemolítico

Resistencia a β-lactámicos


1 β-lactamasa tipo penicilinasa

Confiere resistencia sólo a las penicilinas, excepto las penicilinas resistentes a Las β-lactamasas (oxacilina, meticilina, cloxacilina y dicloxacilina)

<u>Métodos fenotípicos</u>: Prueba del borde del halo de penicilina y/o Prueba con Nitrocefina

borde del halo de penicilina

Prueba con Nitrocefina

Prueba del borde del halo de

6

Staphylococcus
AMH
0.5 McF
35-37°C
16-18 hr

Table 2C. Staphylococcus spp. (Continued)

Table 2C. Sta	aphylococcus spp	. (Continued)							
						tive Catego			· ·
			Zone Diameter Breakpoints		MIC Breakpoints				
Test/Report Group	Antimicrobial	Disk Content	(nearest wh	iole mm)	S	(µg/mL)	R	Commer	
	Agent SE-LABILE PENICILLIN		3 1 1	, K	3		K	Commer	ils .
susceptible to		vith established cl			infections (inc	cluding both	penicillinase- ≥0.25	1-1	used to test the aphylococci to all
						Repo	ortar	resistente a	staphylococci produce detect β-lactamase which the penicillin diameters ≥ 29 mm le as penicillin
	Diár	del halo	l halo: ≤		todas productions			staphylococci that e production may actamase tests. fections requiring	
							as pe	ISDIALES II AII the Same page ispla/e for the blaZ β-lacta considered. See Tables 3E a	amase gene may be
PENICII I INAS	RE-STARI E PENICII I I	Ne				Ante		e reportar a todas las	staphylococci report report.
Diámetro del halo: ≥						penio evalu	cilinas	se debe oorde del halo	

Genero

Prueba del borde del halo de penicilina

Figura 1. Prueba positiva del borde del halo de penicilina (Penicillin zone-edge test)

Un borde difuso indica que no hay producción de betalactamasa

Reportar sensible a todas las penicilinas

Un borde definido indica producción de betalactamasa

Reportar resistente a todas las penicilinas excepto las penicilinas resistentes a Las β-lactamasas

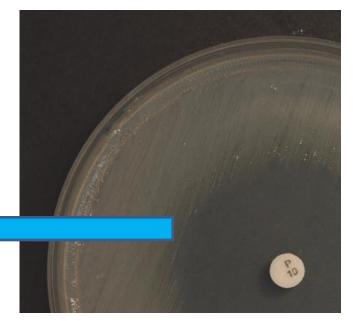
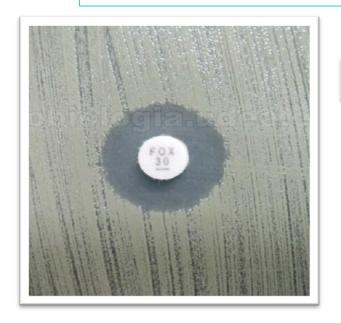


Figura 2. Prueba negativa del borde del halo de penicilina (Penicillin zone-edge test)


Resistencia a β-lactámicos Meticilina

1 Modificación de las PBP (gen mecA)

Confiere resistencia a todos los β-lactámicos incluyendo los combinados con inhibidores de betalactamasas

Género Staphylococcus

Método fenotípico: difusión del disco de cefoxitin 30ug (FOX)

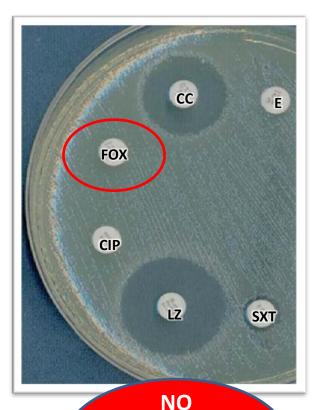
S. aureus and S. lugdunensis

 \leq 21 mm (R) = mecA positivo

 \geq 22 mm (S) = mecA negativo

SCN

 \leq 24 mm (R) = mecA positivo


 \geq 25 mm (S) = mecA negativo

Oxacilina

T° 35°C 18-24h

Resistencia a β-lactámicos

1 Modificación de las PBP (gen mecA)

REPORTAR CEFOXITIN (FOX) Identificación: Staphylococcus aureus meticilino resistente

<u>Antibióticos</u>	<u>Categoría</u>		
Oxacilina	R		
Eritromicina	R		
Clindamicina	S		
Trimetopim/sulfametoxazol	R		
Linezolid	S		
Ciprofloxacina	R		

Observación: Este microorganismo expresa el gen mecA, por consiguiente es resistente a todos los antibióticos β -lactámicos, incluyendo los combinados con inhibidores de betalactamasas

Resistencia a MLS

1

Modificación a nivel ribosomal (ARNr 23S) por la acción de metilasas codificadas por el gen erm (gen erm)

Confiere resistencia a Macrólidos, lincosaminas estreptograminas

Constitutiva: MLSc

Hay clara resistencia a eritromicina y clindamicina

Inducible: MLSi

La forma inducible puede presentar resistencia a la eritromicina y falsa sensibilidad a la clindamicina.

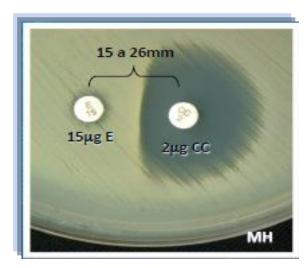
Inductor: Eritromicina

Métodos fenotípicos: aproximación del disco

Discos de antibióticos a utilizar:

Eritomicina y clindamicina

Distancia:


15-26 mm de centro a centro

Mecanismos de Resistencia (MLS)

Macrolidos, lincosamidas y estreptogramina

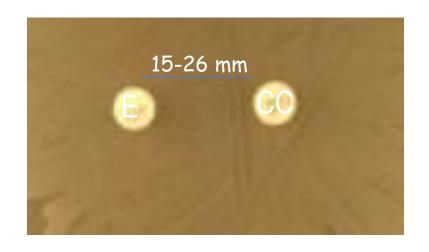
Alteración del sitio blanco (ribosoma)

- Metilasas: metilación 235 ARNr (erm) originando fenotipo iMLS, cMLS.

D-Test

La forma inducible puede presentar resistencia a la eritromicina y falsa sensibilidad a la clindamicina.

INTERPRETACION


NEGATIVO: halo de inhibicion de clindamicina circular.

✓ POSITIVO: efecto D CC=R

Fallo clínico con clindamicina y estreptograminas

RESISTENCIA A MACROLIDOS, LINCOSAMINAS Y ESTREPTOGRAMINAS (MLS)

Fenotipo MLSc

Resistencia absoluta a
Eritromicina y Clindamicina sin
achatamiento en el halo de
clindamicina adyacente a
eritromicina

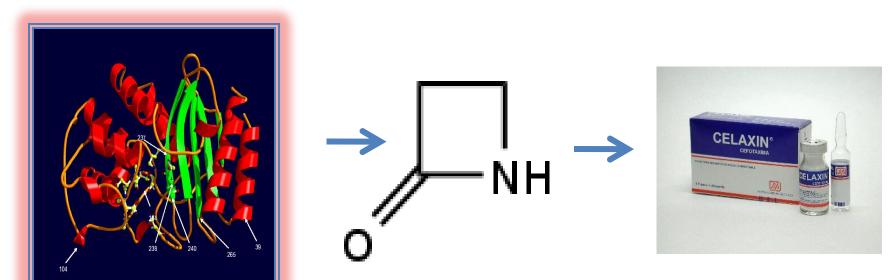
RESISTENCIA A MACROLIDOS, LINCOSAMINAS Y ESTREPTOGRAMINAS (MLS)

Fenotipos MLSi y MLSc

INTERPRETACION

✓ Ante la presencia de resistencias de este tipo reportar resistencia a todos los miembros de los macrólidos, lincosaminas y estreptograminas.

✓ Se puede incluir el siguiente comentario: se presume que el microorganismo es resistente a todos los miembros de los macrólidos, lincosaminas y estreptograminas, basado en la detección de resistencia inducible a clindamicina.



Mecanismo de Resistencia detectados en bacilos gramnegativos

PRODUCCION DE ENZIMAS

- 1) β-lactamasa de Espectro Extenso (BLEE)
- 2) Metalo-Betalactamasa (Carbapenemasa)
- 3) KpC (Carbapenemasa)

β-lactamasas

Codificadas en un gen cromosómico genes localizados en plásmidos

Antibiótico inactivo

Detección de Mecanismos de Resistencia en bacilos gramnegativos

B-LACTAMASA DE ESPECTRO EXTENDIDO (BLEE)

(Clase A) Presentan resistencia a cefalosporinas de 3ra y 4ta generación, penicilinas de espectro extendido y monobactámicos. No actúan sobre las cefamicinas ni carbapenemos. Son inhibidas por el ácido clavulánico.

Detección de Mecanismos de Resistencia en bacilos gramnegativos

1) DETERMINACION DE β-LACTAMASAS DE ESPECTRO EXTENDIDO (BLEE)

PRUEBA DE APROXIMACION DE LOS DISCOS:

Cefotaxima (CTX)

Cetazidima (CAZ)

Cetriaxone (CRO)

Aztreonam (ATM)

Amoxicilina/Acido clavulanico (AMC)

INTERPRETACIÓN

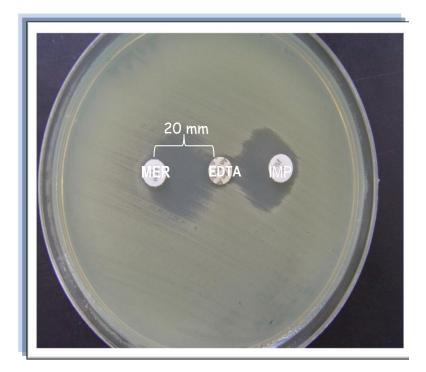
 Reportar resistencia a todos los β-lactámicos, excepto carbapenemos

Carbapenemasas: características generales

Las carbapenemasas representan la familia mas versátil de beta-lactamasas, estas enzimas tienen la habilidad de hidrolizar carbapenemes y en su gran mayoría hidrolizan casi todos los betalactámicos de uso clínico.

Grupos de carbapenemasas

Clase A: Familias SME, IMI, NMC, GES y KPC

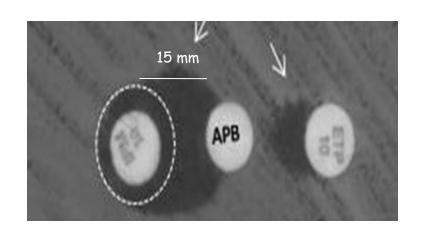

Metalobetalactamas: Familias IMP, VIM,

SPM, GIM y SIM

Clase D: Tipo OXA beta-lactamasas.

Detección de Mecanismos de Resistencia en bacilos gramnegativos

4) PRUEBA FENOTIPICA PARA LA DETERMINACION DE METALO β-LACTAMASA (grupoB)



PRUEBA DE APROXIMACION DE LOS DISCOS: Usar discos de Carbapenemos Usar EDTA

INTERPRETACION
Microorganismo resistente a
β-lactámicos excepto al
aztreonam. Presencia de
metalo-β-lactamasa.

Detección de Mecanismos de Resistencia en bacilos gramnegativos

5) PRUEBA FENOTIPICA PARA LA DETERMINACION DE CARBAPENEMASA TIPO KPC (grupo A)

35-37°C por 16-18h

PRUEBA DE APROXIMACION DE LOS DISCOS: Usar discos de Carbapenemos Usar disco ácido bornico

INTERPRETACION
Microorganismo resistente a
todos los β-lactámicos
Presencia de Carbapenemasa
tipo KPC.