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Exact Differential Equations

In Section 5.6, you studied applications of differential equations to growth and decay
problems. In Section 5.7, you learned more about the basic ideas of differential equa-
tions and studied the solution technique known as separation of variables. In this
chapter, you will learn more about solving differential equations and using them in
real-life applications. This section introduces you to a method for solving the first-
order differential equation

M(x, y)dx + N(x,y)dy = 0

for the special case in which this equation represents the exact differential of a
functionz = f(x, y).

Definition of an Exact Differential Equation

The equatiorM(x, y)dx + N(x,y)dy = 0 is aexact differential equation if
there exists a functiohof two variables< andy having continuous partial deriv-
atives such that

f.(xy) = M(xy) and  f(xy) = Nxy).
The general solution of the equatiorf (%, y) = C.

From Section 12.3, you know thatfihas continuous second partials, then

oM _ 9% _ 9% _ ON
ay  ayox  oxay  ox’

This suggests the following test for exactness.

THEOREM 15.1 Test for Exactness

Let M andN have continuous partial derivatives on an openRiskhe differen-
tial equationM(x, y)dx + N(x, y)dy = O is exact if and only if

oM _ N
y  ox

Exactness is a fragile condition in the sense that seemingly minor alterations in
an exact equation can destroy its exactness. This is demonstrated in the following
example.
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NOTE Every diferential equation of

the form

M(x)dx + N(y)dy = 0

is exact. In other words, a separable-vari
ables equation is actually a special type

of an exact equation.

Differential Equations

Figure 15.1

EXAMPLE 1 Testing for Exactness

a. The diferential equatiorixy? + x)dx + yx?dy = 0 is exact because

M _ 92 _ ON _ 0 o

oy~ ay [xy2 + x] =2xy and - x [yx?] = 2xy.
But the equatiofly? + 1)dx + xy dy = 0is not exact, even though it is obtained
by dividing both sides of the first equation Xy

b. The diferential equatiorosy dx + (y? — xsiny)dy = 0 is exact because
oM Jd oN _ J

M _ 9 g N_ 9., g
ay ~ay [cosy] siny and X aX[y xsiny] siny.

But the equatiorcosy dx + (y? + xsiny)dy = 0 is not exact, even though it

differs from the first equation only by a single sign. E——

Note that the test for exactnessMifk, y) dx + N(x, y)dy = 0 is the same as the
test for determining wheth&i(x, y) = M(x, y)i + N(x, y)j is the gradient of a poten
tial function (Theorem 14.1)This means that a general soluti®, y) = C to an
exact diferential equation can be found by the method used to find a potential
function for a conservative vector field.

EXAMPLE 2  Solving an Exact Differential Equation

Solve the diferential equatiori2xy — 3x?) dx + (x? — 2y)dy = O.

Solution The given diferential equation is exact because

M 9 a2 oy = N0
oy~ ay [2xy — 3x?] = 2 - x [x2 — 2y].

The general solutiorf(x, y) = C, is given by
fx9) = [ oy

= J(ny — 3x?)dx = x?y — x2 + g(y).

In Section 14.1, you determinagy) by integratingN(x, y) with respect toy and
reconciling the two expressions fb(x, y). An alternative method is to partially
differentiate this version df(x, y) with respect toy and compare the result with
N(x, y). In other words,

N(x, y)

9 —
f,(xy) = @[xzy - x+gly)]=x2+ g’({) =x2 — iy-

gly) = -2

Thus,g(y) = —2y, and it follows thag(y) = —y? + C,. Therefore,
fxy) =xy —x¥-y>+C

and the general solutionx8y — x3 — y? = C. Figure 15.1 shows the solution curves
that correspond t€ = 1, 10, 100, and 1000. —



TECHNOLOGY You can use a
graphing utility to graph a particular
solution that satisfies the initial condi
tion of a diferential equation. In
Example 3, the diérential equation
and initial conditions are satisfied
whenxy? + x cosx = 0, which
implies that the particular solution
can be written ag = O or

y = =/ —cosx. On a graphing
calculator screen, the solution would
be represented by Figure 15.2 together
with they-axis.
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EXAMPLE 3 Solving an Exact Differential Equation

Find the particular solution of
(cosx — xsinx + y3)dx + 2xydy = 0

that satisfies the initial condition= 1 whenx = .

Solution The diferential equation is exact because

M N
ay X
I N —

9
ay
BecauseN(x, y) is simpler tharM(x, y), it is better to begin by integrating(x, y).

[cosx — xsinx + y?] = 2y = %[ny].

f(x,y) = f N(x, y) dy = f 2xy dy = xy? + g(x)

M(x, y)

[xY) = 2o [xy2 + g] = y2 + a9 - cosx - xsinx+ y2

g'(x) = cosx — xsinx

Thus,g’(x) = cosx — xsinx and

glx) = f(cosx — xsinx)dx
= xcosx + C;
which implies thaf (x, y) = xy? + xcosx + C,, and the general solution is
Xy? + xcosx = C. General solution
Applying the given initial condition produces
m(1)2 + wrcoswT =C
which implies thaCC = 0. Hence, the particular solution is
xy? + xcosx = Q. Particular solution

The graph of the particular solution is shown in Figure 15.3. Notice that the graph
consists of two parts: the ovals are givenyby- cosx = 0, and they-axis is given
by x = 0. —

In Example 3, note that f = f(x,y) = xy? + x cosx, the total diferential ofz
is given by
dz = f,(x, y) dx + f,(x, y)dy
= (cosx — xsinx + y? dx + 2xy dy
= M(x, y) dx + N(x, y) dy.

In other wordsM dx + Ndy = 0 is called anexactdifferential equation because
M dx + N dy is exactly the dfrential off (x, y).
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Differential Equations

Integrating Factors

If the differential equatioM(x, y) dx + N(x, y) dy = 0 is not exact, it may be possi
ble to make it exact by multiplying by an appropriate faatgry), which is called an
integrating factor for the diferential equation.

EXAMPLE 4 Multiplying by an Integrating Factor

a. If the differential equation
2ydx + xdy =0 Not an exact equation
is multiplied by the integrating factoKx, y) = X, the resulting equation
2xy dx + x?dy = 0 Exact equation

is exact—the left side is the total faifential ofx?y.
b. If the equation

ydx — xdy =0 Not an exact equation

is multiplied by the integrating factoKx, y) = 1/y?, the resulting equation

%dx - %dy =0 Exact equation
is exact—the left side is the total fdifential ofx/y. ——

Finding an integrating factor can befitifilt. However there are two classes of
differential equations whose integrating factors can be found routinely—namely
those that possess integrating factors that are functions of eiéth@ne ory alone.

The following theorem, which we present without proof, outlines a procedure for
finding these two special categories of integrating factors.

THEOREM 15.2 Integrating Factors
Consider the dférential equatioM(x, y) dx + N(x, y)dy = 0.
1. If

N(XL,y)[MY(X’ y) — N(x y)] = h(x)

is a function of alone, there"® 9 js an integrating factor

ity (N 9) = My ] = k)

is a function ofy alone, there®¥ & is an integrating factor

STUDY TIP  If eitherh(x) or k(y) is constantTheorem 15.2 still applieds an aid to
remembering these formulas, note that the subtracted partial derivative identifies both the
denominator and the variable for the integrating factor
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Force field:

Fix y) = i - =X

X2 = y2 X2 == yZJ
Family of tangent curvesto F:
y2=x—1+ Ce*

Figure 15.4
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EXAMPLE 5 Finding an Integrating Factor

Solve the diferential equatioriy? — x)dx + 2ydy = 0.

Solution The given equation is not exact becaddgx, y) = 2y and N(x, y) = 0.
However because

M) y) = Ndxy) 2y -0
N(x, y) 2y

it follows thateM®dx = gl & = ex js an integrating factorMultiplying the given
differential equation bg* produces the exact tifential equation

(y?e* — xe¥) dx + 2ye*dy = 0

=1 = h(x)

whose solution is obtained as follows.

fmw=fwmww=fw@w=W@+mm

M(x, y)
f(xy) = y%&* + g'(x) = y%* — xe
4 /

g'(x) = —xe

Thereforeg’(x) = —xe*andg(x) = —xe* + €< + C,, which implies that
f(x,y) = y?&* — xe* + e< + C,.
The general solution ige* — xe* + e = C,ory? — x + 1 = Ce™%

In the next example, we show how &eliéntial equation can help in sketching a
force field given byF(x,y) = M(x, y)i + N(X, y)j.

EXAMPLE 6 An Application to Force Fields

Sketch the force field given by
2y . y*P—Xx

x2+y2I - \/x2+y21

Fixy) =

by finding and sketching the family of curves tangerft.to

Solution At the point(x, y) in the plane, the vect®t(x, y) has a slope of

dy -y =x/Vx*+y* —(y?=x)
dx 2y/ /%2 + y2 2y

which, in diferential form, is

2ydy = —(y? — x)dx
(y? — x)dx + 2ydy = 0.

From Example 5, we know that the general solution of thieréifitial equation is
y>—x+ 1= Ce X ory?=x— 1+ Ce * Figure 15.4 shows several representa
tive curves from this familyNote that the force vector @&t y) is tangent to the curve
passing througk, y). ——
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insExercisessi=L0metemmine:whethahexdifierential:equation itisfing \uiion.

B (2x—3y)dx+ (2y —3x)dy =0
2. ye*dx + exdy =0

B 2cos(2x — y)dx — cos(2x — y)dy = 0

6. 2y2e¥°dx + 2xye¥’dy = 0

|

x=Ty
8. e *+¥)(xdx + ydy) = 0

|

B ¢ cosxy[ydx + (x + tanxy)dy] =

Plv In Exercises 1 and 12, (a) sketch an apmximate solution of
the differential equation satisfying the initial condition by hand
on the direction field, (b) find the particular solution that satis
fies the initial condition, and (c) use a graphing utility to graph
the particular solution. Compare the graph with the hand-
drawn graph of part (a).

Differential Equation Initial Condition

11. (2xtany + 5)dx + (x2sec?y)dy = 0 yz) = @/4

= (xdx + ydy) =0 y(4) =3
Xty
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Figure for 11 Figure for 12

In Exercises 13-16, find the pdicular solution that satisfies the
initial condition.

Differential Equation Initial Condition

%_ y(2) =4
14. X2+ S (xdx+ ydy) =0 y(0) = 4
15. €¥(sin 3y dx + cos3ydy) = 0 y0) =7
16. (x> + y?)dx + 2xydy =0 y@) =1

XERCISES FOR SECTION 15.1 Lab 20

e
LAB SERIES
]

IMEXERCISESIZ=26, find the integrating factothat is a function
of x or y alone and use it to find the general solution of the

differential equation.

17. ydx — (x + 6y?9)dy = 0

18. (2x® + y)dx — xdy =0

19. (5x2 — y)dx + xdy = 0

20. (5x% — y?)dx + 2ydy = 0
BL. (x +y)dx + tanxdy = O
22. (2x?y — 1)dx + x3dy = 0
23. y2dx + (xy — 1)dy = 0

24, (x> + 2x + y)dx + 2dy =0
25. 2ydx + (x — sinV/y)dy = 0

B6. (—2y® + 1)dx + (3xy? + x3)dy = 0

IMPEXEICISES2=30, use the integrating factoto find the

general solution of the diferential equation.

BH. (4x?y + 2y?)dx + (3x® + 4xy)dy = O
u(x, y) = xy?

28. (3y? + 5x?y)dx + (3xy + %) dy = 0
u(x,y) = x2y

BS. (—y° + x2y)dx + (2xy* —
u(x,y) = x2y3

30. =y3dx + (xy2 = x3)dy = 0
u(x,y) = x2y?

31. Show that each of the following is an integrating factor for the
differential equation

2x3)dy =0

ydx — xdy = 0.
1 1 1
@z v (c) Y (d)

32. Show that the diérential equation

x2+y

(axy? + by)dx + (bx?y + ax)dy = 0
is exact only ifa = b. If a # b, show thatx™y" is an integrat
ing factor where

_ 2b+a

a+b’

2a+b
a+b’

In Exercises 33-36, use a graphing utility to graph the family of
tangent curves to the given face field.

y . X .
33. F(x,y) = -
*y) = —== vyl
X . y .
34. F(x,y) = -
xy) iy Sty

. x\.
35. F(x,y) = 4x%yi — <2xy2 + F)]

36. F(x,y) = (1 + x?)i — 2xyj
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In Exercises 37 and 38, find an equation fahe curve with the rdP’ 42. Programming Write a program for a graphing utility or
specified slope passing tlough the given point. computer that will perform the calculations of EtdeMethod
for a specified dferential equation, intervaldx, and initial

Slope Point condition. The output should be a graph of the discrete points
— approximating the solution.
37. dy _y=—x 2,1)
dx 3y —x

'dP' Euler's Method In Exercises 4346, (a) use the ppgram of
Exercise 42 to appoximate the solution of the diferential equa
tion over the indicated interval with the specified value ofAx

o and the initial condition, (b) solve the diferential equation

39. Cost If y = C(x) represents the cost of produciagnits in a analytically, and (c) use a graphing utility to graph the paticu-

dy _ -2y
38. & =2 Ty 0,2

manufacturing process, tledasticity of costis defined as lar solution and compae the result with the graph of pat (a).
E(x) = marginal cost _ C'(x) _ Kﬂ_ Differential Initial
averagecost  C(x)/x  ydx Equation Interval AX Condition
Find the cost function if the elasticity function is 43.y = x 3y [1, 2] 0.01 y(1) =1
E(x) = % 44,y = E(y2 +1) [-1,1] 0.1 y(—1) = -1
whereC(100) = 500 andx = 100. 45y’ = xz_Txyyz [2, 4] 0.05 y(2) =1

40. Euler’'s Method Consider the dferential equation BX + y2
y’ = F(x, y) with the initial conditiony(x,) = y,. At any point 46.y' = Y3y — 20 [0, 5] 0.2 y(0) =1
(X, Yio) in the domain oF, F(x,, ) yields the slope of the soclu
tion at that point. Eulés Method gives a discrete set of es"dP
mates of they values of a solution of the é#frential equation 47
using the iterative formula

. Euler’'s Method Repeat Exercise 45 foAx =1 and
discuss how the accuracy of the result changes.

Ver1 = Vi + FOx, W) Ax fF 48. Euler's Method Repeat Exercise 46 foAx = 0.5 and
kra ok X Y discuss how the accuracy of the result changes.

whereAx = X, ; — X
(a) Write a short paragraph describing the general idea of how True or False? In Exercises 49-52, determine whethethe
Eulers Method works. statement is true orfalse. If it is false, explain why orgive an

(b) How will decreasing the magnitude A&k affect the accu example that shows it is false.

racy of Eulets Method? 49. The differential equatior2xydx + (y? — x?) dy = 0 is exact.
41. Euler’s Method Use Eulers Method (see Exercise 40) to  50. If Mdx + Ndy = O is exact, thenxMdx + xNdy = O is also
approximatey(1) for the values ofAx given in the table if exact.

y’ = x + /yandy(0) = 2. (Note that the number of iterations 51 |f Mdx + Ndy = 0 is exact, ther{ f(x) + M]dx + [g(y) +
increases adx decreases.) Sketch a graph of the approximate N]dy = Ois also exact.

solution on the direction field in the figure. 52. The diferential equatiori(x) dx + g(y)dy = 0 is exact.

AX 0.50 0.25 0.10

Estimate ofy(1)

The value ofy(1), accurate to three decimal places, is 4.213.
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