

MATLAB Examples

Numerical Differentiation

Hans-Petter Halvorsen

Numerical Differentiation

A numerical approach to the derivative of a function y = f(x) is:

$$\frac{dy}{dx} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

Note! We will use MATLAB in order to find the <u>numeric</u> solution – not the analytic solution

Numerical Differentiation

MATLAB Functions for Numerical Differentiation: *diff() polyder()*

MATLAB is a numerical language and do not perform symbolic mathematics

... well, that is not entirely true because there is "Symbolic Toolbox" available for MATLAB.

Numerical Differentiation

Given the following equation:

$$y = x^3 + 2x^2 - x + 3$$

- Find $\frac{dy}{dx}$ analytically (use "pen and paper").
- Define a vector x from -5 to +5 and use the *diff()* function to approximate the derivative y with respect to x $\left(\frac{\Delta y}{\Delta x}\right)$.
- Compare the data in a 2D array and/or plot both the exact value of $\frac{dy}{dx}$ and the approximation in the same plot.
- Increase number of data point to see if there are any difference.

Given the following equation: $y = x^3 + 2x^2 - x + 3$

Then we can get the analytically solution:

$$\frac{dy}{dx} = 3x^2 + 4x - 1$$

Symbolic Math Toolbox

We start by finding the derivate of f(x) using the Symbolic Math Toolbox:

clear clc syms f(x) SYMS X $f(x) = x^3 + 2x^2 - x + 3$ dfdt = diff(f, x, 1)

This gives:

 $dfdt(x) = 3*x^2 + 4*x - 1$

http://se.mathworks.com/help/symbolic/getting-started-with-symbolic-math-toolbox.html

x = -5:1:5;		
<pre>% Define the function y(x) y = x.^3 + 2*x.^2 - x + 3;</pre>	Numerical Solution	Exact Solution
<pre>% Plot the function y(x) plot(x,y) title('v')</pre>	dydx ⊨	
	42	54 31
% Find nummerical solution to dy/dx dy/dx num = diff(y) /diff(y).	8	14
$ayax_max = arr(y) \cdot / arr(x) ,$	0 -2	3 -2
$dydx_exact = 3*x.^2 + 4.*x -1;$	2	-1
dydx = [[dydx num, NaN]', dydx exact']	28	19
° Diet nummerical we applytical colution to dw/dw	50 78	38 63
figure(2)	NaN	94
<pre>plot(x,[dydx_num, NaN], x, dydx_exact) title('dy/dx')</pre>		
<pre>legend('numerical solution', 'analytical solution')</pre>		

$$\frac{dy}{dx} = 3x^2 + 4x - 1$$

э

$$x = -5:0.01:5;$$

Differentiation on Polynomials

Given the following equation:

$$y = x^3 + 2x^2 - x + 3$$

Which is also a polynomial. A polynomial can be written on the following general form: $y(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$

• We will use Differentiation on the **Polynomial** to find $\frac{dy}{dx}$

From previous we know that the Analytically solution is:

$$\frac{dy}{dx} = 3x^2 + 4x - 1$$

We see we get the correct answer

Differentiation on Polynomials

Find the derivative for the product: $(3x^2 + 6x + 9)(x^2 + 2x)$

We will use the *polyder(a,b)* function.

Another approach is to use define is to first use the *conv(a,b)* function to find the total polynomial, and then use *polyder(p)* function.

Try both methods, to see if you get the same answer.

As expected, the result are the same for the 2 methods used above. For more details, see next page. We have that

and

$$p_1 = 3x^2 + 6x + 9$$

 $p_2 = x^2 + 2x$

The total polynomial becomes then:

$$p = p_1 \cdot p_2 = 3x^4 + 12x^3 + 21x^2 + 18x$$

As expected, the results are the same for the 2 methods used above:

$$\frac{dp}{dx} = \frac{d(3x^4 + 12x^3 + 21x^2 + 18x)}{dx} = 12x^3 + 36x^2 + 42x + 18$$

Hans-Petter Halvorsen, M.Sc.

University College of Southeast Norway www.usn.no

E-mail: <u>hans.p.halvorsen@hit.no</u> Blog: <u>http://home.hit.no/~hansha/</u>

