Curve-Fitting

Regression

Some Applications of Curve Fitting

 To fit curves to a collection of discrete points in order to obtain intermediate estimates or to provide trend analysis

Some Applications of Curve Fitting

- Function approximation
 - e.g.: In the applications of numerical integration

$$f(x) \approx p_n(x) \Rightarrow \int_a^b f(x) \approx \int_a^b p_n(x)$$

where $p_n(x)$ is an *n*th order polynomial

- Hypothesis testing
 - Compare theoretical data model to empirical data collected through experiments to test if they agree with each other.

Two Approaches

- Regression Find the "best" curve to fit the points. The curve does not have to pass through the points. (Fig (a))
- Interpolation Fit a curve or series of curves that pass through every point. (Figs (b) & (c))

Curve Fitting

Regression

Linear Regression

Polynomial Regression

Multiple Linear Regression

Non-linear Regression

Interpolation

Newton's Divided-Difference Interpolation

Lagrange Interpolating Polynomials

Spline Interpolation

Linear Regression – Introduction

 Some data exhibit a linear relationship but have noises

 A curve that interpolates all points (that contain errors) would make a poor representation of the behavior of the data set.

 A straight line captures the linear relationship better.

Linear Regression

Objective: Want to fit the "best" line to the data points (that exhibit linear relation).

– How do we define "best"?

Linear Regression

Objective

Given a set of points

$$(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$$

Want to find a straight line

$$y = a_0 + a_1 x$$

that best fits the points.

The error or residual at each given point can be expressed as

$$e_i = y_i - a_0 - a_1 x_i$$

Residual (Error) Measurement

Criteria for a "Best" Fit

Minimize the sum of residuals

$$\sum_{i=1}^{n} e_i = \sum_{i=1}^{n} (y_i - a_0 - a_1 x_i)$$

- Inadequate
- e.g.: Any line passing through mid-points would satisfy the criteria.

 Minimize the sum of absolute values of residuals (L₁-norm)

$$\sum_{i=1}^{n} |e_i| = \sum_{i=1}^{n} |y_i - a_0 - a_1 x_i|$$

- Best" line may not be unique
- e.g.: Any line within the upper and lower points would satisfy the criteria.

Criteria for a "Best" Fit

 Minimax method: Minimize the largest residuals of all the point (L_∞-Norm)

$$\min \max_{0 \le i \le n} e_i = \min \max_{0 \le i \le n} |y_i - a_0 - a_1 x_i|$$

- Not easy to compute
- Bias toward outlier
- e.g.: Data set with an outlier. The line is affected strongly by the outlier.

Note: Minimax method is sometimes well suited for fitting a simple function to a complicated function. (Why?)

Least-Square Fit

$$\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - a_0 - a_1 x_i)^2$$

- Minimize the sum of squares of the residuals (L₂-Norm)
- Unique solution
- Easy to compute
- Closely related to statistics

How to find
$$a_0$$
 and a_1 that minimize
$$\sum_{i=1}^{n} (y_i - a_0 - a_1 x_i)^2$$

Least-Squares Fit of a Straight Line

Let
$$S_r(a_0, a_1) = \sum_{i=1}^n (y_i - a_0 - a_1 x_i)^2$$

To minimize $S_r(a_0, a_1)$, we can find a_0, a_1 that satisfy

$$\frac{\partial S_r}{\partial a_0} = 0$$

$$\Rightarrow -2\sum_{i=1}^n (y_i - a_0 - a_1 x_i) = 0$$

$$\Rightarrow \sum_{i=1}^n (y_i - a_0 - a_1 x_i) = 0$$

$$\frac{\partial S_r}{\partial a_0} = 0$$

$$\Rightarrow -2\sum_{i=1}^n (y_i - a_0 - a_1 x_i) = 0$$

$$\Rightarrow \sum_{i=1}^n (y_i - a_0 - a_1 x_i) = 0$$

$$\Rightarrow \sum_{i=1}^n (x_i y_i - a_0 - a_1 x_i) = 0$$

$$\Rightarrow \sum_{i=1}^n (x_i y_i - a_0 x_i - a_1 x_i^2) = 0$$

Least-Squares Fit of a Straight Line

$$\sum_{i=1}^{n} (y_i - a_0 - a_1 x_i) = 0$$

$$\sum_{i=1}^{n} (x_i y_i - a_0 x_i - a_1 x_i^2) = 0$$

$$\Rightarrow \sum_{i=1}^{n} y_i - \sum_{i=1}^{n} a_0 - \sum_{i=1}^{n} a_1 x_i = 0$$

$$\Rightarrow \sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} a_0 x_i - \sum_{i=1}^{n} a_1 x_i^2 = 0$$

$$\Rightarrow \sum_{i=1}^{n} x_i y_i - a_0 \sum_{i=1}^{n} x_i - a_1 \sum_{i=1}^{n} x_i^2 = 0$$

$$\Rightarrow \sum_{i=1}^{n} x_i y_i - a_0 \sum_{i=1}^{n} x_i - a_1 \sum_{i=1}^{n} x_i^2 = 0$$

$$\Rightarrow n a_0 + \left(\sum_{i=1}^{n} x_i\right) a_1 = \sum_{i=1}^{n} y_i$$

$$\Rightarrow \left(\sum_{i=1}^{n} x_i\right) a_0 + \left(\sum_{i=1}^{n} x_i^2\right) a_1 = \sum_{i=1}^{n} x_i y_i$$

These are called the *normal equations*.

How do you find a_0 and a_1 ?

Least-Squares Fit of a Straight Line

Solving the system of equations yields

$$a_{1} = \frac{n\sum x_{i}y_{i} - \sum x_{i}\sum y_{i}}{n\sum x_{i}^{2} - (\sum x_{i})^{2}} \qquad a_{0} = \frac{\sum y_{i} - a_{1}\sum x_{i}}{n} = \overline{y} - a_{1}\overline{x}$$

Statistics Review

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i \text{ (Mean)}$$

$$S_t = \sum_{i=1}^{n} (y_i - \overline{y})^2 \text{ (Sum of squares of the residuals)}$$

$$S_y = \sqrt{\frac{S_t}{n-1}} \text{ (Standard deviation)}$$

- Mean The "best point" that minimizes the sum of squares of residuals.
- Standard deviation Measure how the sample (data) spread about the mean.
 - The smaller the standard deviation the better the mean describes the sample.

Quantification of Error of Linear Regression

$$S_r = \sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_i - a_0 - a_1 x_i)^2$$

$$S_{y/x} = \sqrt{\frac{S_r}{n-2}}$$

 $S_{y/x}$ is called the *standard error of the estimate*.

Similar to "standard deviation", $S_{y/x}$ quantifies the spread of the data points around the regression line.

The notation "y/x" designates that the error is for predicted value of y corresponding to a particular value of x.

- (a) Spread of the data around the mean of the dependent variable.
- (b) Spread of the data around the best-fit line.

Linear regression with (a) small and (b) large residual errors.

"Goodness" of our fit

• Let S_t be the sum of the squares around the mean for the dependent variable, y

$$S_t = \sum_{i=1}^n (y_i - \overline{y})^2$$

- Let S_r be the sum of the squares of residuals around the regression line
- S_t S_r quantifies the improvement or error reduction due to describing data in terms of a straight line rather than as an average value.

"Goodness" of our fit

$$r^{2} = \frac{S_{t} - S_{r}}{S_{t}}$$
 r^{2} : coefficient of determination
 r : correlation coefficient

For a perfect fit

 S_r =0 and r=r²=1, signifying that the line explains 100 percent of the variability of the data.

- For $r=r^2=0$, $S_r=S_t$, the fit represents no improvement.
- e.g.: $r^2=0.868$ means 86.8% of the original uncertainty has been "explained" by the linear model.

Polynomial Regression

Objective

• Given *n* points

$$(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$$

Want to find a polynomial of degree m

$$y = a_0 + a_1 x + a_2 x^2 + ... + a_m x^m$$

that best fits the points.

The error or residual at each given point can be expressed as

$$e_i = y_i - a_0 - a_1 x - a_2 x^2 - \dots - a_m x^m$$

Least-Squares Fit of a Polynomial

The procedures for finding $a_0, a_1, ..., a_m$ that minimize the sum of squares of the residuals is the same as those used in the linear least-square regression.

$$S_r = \sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_i - a_o - a_1 x_i - a_2 x_i^2 - \dots - a_m x_i^m)^2$$

Setting
$$\frac{\partial S_r}{\partial a_j} = 0$$
 for $j = 0,1,...,m$ yields

$$\sum_{i=1}^{n} x_i^j (y_i - a_0 - a_1 x_i - a_2 x_i^2 - \dots - a_m x_i^m) = 0$$

$$\Rightarrow \sum_{i=1}^{n} x_i^j (a_0 + a_1 x_i + a_2 x_i^2 + \dots + a_m x_i^m) = x_i^j y_i$$

Least-Squares Fit of a Polynomial

$$\begin{bmatrix} n & \sum x_{i} & \sum x_{i}^{2} & \cdots & \sum x_{i}^{m} \\ \sum x_{i} & \sum x_{i}^{2} & \sum x_{i}^{3} & \cdots & \sum x_{i}^{m+1} \\ \sum x_{i}^{2} & \sum x_{i}^{3} & \sum x_{i}^{4} & \cdots & \sum x_{i}^{m+2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \sum x_{i}^{m} & \sum x_{i}^{m+1} & \sum x_{i}^{m+2} & \cdots & \sum x_{i}^{2m} \end{bmatrix} \begin{bmatrix} a_{o} \\ a_{1} \\ a_{2} \\ \vdots \\ a_{m} \end{bmatrix} = \begin{bmatrix} \sum y_{i} \\ \sum x_{i}y_{i} \\ \vdots \\ \sum x_{i}^{m}y_{i} \end{bmatrix}$$

To find $a_0, a_1, ..., a_n$ that minimize S_r , we can solve this system of linear equations.

The standard error of the estimate becomes

$$S_{y/x} = \sqrt{\frac{S_r}{n - (m+1)}}$$

Multiple Linear Regression

- In linear regression, y is a function of one variable.
- In multiple linear regression, y is a linear function of multiple variables.
- Want to find the best fitting linear equation

$$y = a_0 + a_1 x_1 + a_2 x_2 + \dots + a_m x_m$$

- Same procedure to find a_0 , a_1 , a_2 , ..., a_m that minimize the sum of squared residuals
- The standard error of estimate is

$$S_{y/x} = \sqrt{\frac{S_r}{n - (m+1)}}$$

General Linear Least Square

 All of simple linear, polynomial, and multiple linear regressions belong to the following general linear least squares model:

$$y = a_0 z_0 + a_1 z_1 + a_2 z_2 + ... + a_m z_m + e$$

where

 z_i are different functions of x's (can be any kind of functions)

• It is called "linear" because the dependent variable, y, is a linear function of a_i 's.

How Other Regressions Fit Into Linear Least Square Model

Polynomial:

$$y = a_0(1) + a_1(x) + a_2(x^2) + ... + a_m(x^m) + e$$

i.e., $z_0 = x^0 = 1, z_1 = x, z_2 = x^2, ..., z_m = x^m$

Multiple linear:

$$y = a_0(1) + a_1(x_1) + a_2(x_2) + ... + a_m(x_m) + e$$

i.e., $z_0 = 1, z_1 = x_1, z_2 = x_2, ..., z_m = x_m$

Others:

$$y = a_0(\sin x_1) + a_1(\ln x_1) + a_2(x_2 \cos x_3) + \frac{a_3}{x_1 x_2} + e$$

i.e., $z_0 = \sin x_1, z_1 = \ln x_1, z_2 = x_2 \cos x_3, z_3 = (x_1 x_2)^{-1}$

General Linear Least Square

Given n points, we have

$$y_{j} = a_{0}z_{0j} + a_{1}z_{1j} + a_{2}z_{2j} + ... + a_{m}z_{mj} + e_{i},$$
 $j = 1,...,n$

where z_{ij} represents the value of function z_i at the j^{th} point.

 We can express the above equations in matrix form as

$$\mathbf{y} = \mathbf{Z}\mathbf{a} + \mathbf{e} \quad or \quad \begin{bmatrix} y_1 \\ y_n \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} z_{01} & z_{11} & \cdots & z_{m1} \\ z_{02} & z_{12} & \cdots & z_{m2} \\ \vdots & \vdots & & \vdots \\ \vdots & \vdots & & \vdots \\ z_{0n} & z_{1n} & \cdots & z_{mn} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_m \end{bmatrix} + \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ \vdots \\ e_n \end{bmatrix}$$

General Linear Least Square

The sum of squares of the residuals can be calculated as

$$S_r = \sum_{i=1}^n \left(y_i - \sum_{j=0}^m a_j z_{ji} \right)^2$$

To minimize S_r , we can set the partial derivatives of S_r to zeroes and solve the resulting normal equations.

The normal equations can be expressed concisely as

$$\mathbf{Z}^T \mathbf{Z} \mathbf{a} = \mathbf{Z}^T \mathbf{y}$$

How should we solve this system?

Example

X	3	5	6
Y	4	1	4

- Find the straight line that best fit the data in least-square sense.
- A straight line can be expressed in the form $y = a_0 + a_1x$. That is, with $z_0 = 1$, $z_1 = x$.
- Thus we can construct Z as

$$\mathbf{Z} = \begin{bmatrix} 1 & 3 \\ 1 & 5 \\ 1 & 6 \end{bmatrix}$$

Example

Our objective is to solve
$$\mathbf{Z}^{\mathrm{T}}\mathbf{Z}\begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \mathbf{Z}^{\mathrm{T}}\mathbf{y}$$
, or

$$\begin{bmatrix} 1 & 1 & 1 \\ 3 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 1 & 5 \\ 1 & 6 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 5 & 6 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \\ 4 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 3 & 14 \\ 14 & 70 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} 9 \\ 41 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} 4 \\ -3/14 \end{bmatrix} \text{ or } \begin{bmatrix} 4 \\ -0.2143 \end{bmatrix}$$

The best line is y = 4 - 0.2143x

Solving $Z^TZa = Z^Ty$

Note: Z is an n by (m+1) matrix.

- Gaussian or LU decomposition
 - Less efficient
- Cholesky decomposition
 - Decompose Z^TZ into R^TR where R is an upper triangular matrix.
 - Solve $\mathbf{Z}^{\mathrm{T}}\mathbf{Z}\mathbf{a} = \mathbf{Z}^{\mathrm{T}}\mathbf{y}$ as $\mathbf{R}^{\mathrm{T}}\mathbf{R}\mathbf{a} = \mathbf{Z}^{\mathrm{T}}\mathbf{y}$
- QR decomposition
- Singular value decomposition

Solving $Z^TZa = Z^Ty$ (Cholesky decomposition) **

- Given a nxm matrix Z.
- Suppose we have computed $\mathbf{R}_{m \times m}$ from $\mathbf{Z}^T \mathbf{Z}$ using Cholesky decomposition
- If we add an additional column to Z, then the new R will be in the form

i.e., we only need to compute the (m+1)th column of **R**.

 Suitable for testing how much improvement in terms of least-square fit a polynomial of one degree higher can provide

Linearization of Nonlinear Relationships

 Some non-linear relationships can be transformed so that in the transformed space the data exhibit a linear relationship.

For examples,

Exponential equation
$$y = a_1 e^{b_1 x}$$
 $\Rightarrow \ln y = \ln a_1 + b_1 x$

Power equation $y = a_2 x^{b_2}$ $\Rightarrow \log y = \log a_2 + b_2 \log x$

Saturation $y = a_3 \frac{x}{b_3 + x}$ $\Rightarrow \frac{1}{y} = \frac{b_3}{a_3} \frac{1}{x} + \frac{1}{a_3}$

Example

X	1	2	3
Y	4	1	4

Find the saturation growth rate equation

$$y = a_1 \frac{x}{b_1 + x}$$

that best fit the data in least-square sense.

Solution: Step 1: Linearize the curve as

$$y = a_1 \frac{x}{b_1 + x} \Rightarrow \frac{1}{y} = \frac{b_1}{a_1} \frac{1}{x} + \frac{1}{a_1} \Rightarrow y' = c_1 x' + c_2$$

where $y' = \frac{1}{y}, x' = \frac{1}{x}, c_1 = \frac{b_1}{a_1}, c_2 = \frac{1}{a_1}$

Example

Step 2: Transform data from original space to "linearized space".

X	1	2	3
Y	4	1	4
X' = 1/X	1	1/2	1/3
Y' = 1/Y	1/4	1	1/4

Step 3: Perform linear least square fit for $y' = c_1x' + c_2$

From the data we have
$$\mathbf{Z} = \begin{bmatrix} 1 & 1 \\ 1/2 & 1 \\ 1/3 & 1 \end{bmatrix}$$
, $\mathbf{y} = \begin{bmatrix} 1/4 \\ 1 \\ 1/4 \end{bmatrix}$

Solving
$$\mathbf{Z}^{\mathsf{T}} \mathbf{Z} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \mathbf{Z}^{\mathsf{T}} \mathbf{y} \text{ yields } \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} -0.3462 \\ 0.7115 \end{bmatrix}$$

$$c_2 = 1/a_1 \Rightarrow a_1 = 1.4055, c_1 = b_1/a_1 \Rightarrow b_1 = -0.4866$$

Thus y = 1.4055x/(-0.4866 + x) is an "accetably good" curve that fits the data (It is not optimal in least square sense).

Linearization of Nonlinear Relationships

- - For many applications, however, the parameters obtained from performing least square fit in the transformed space are acceptable.
- Linearization of Nonlinear Relationships
 - Sub-optimal result
 - Easy to compute

Non-Linear Regression **

- The relationship among the parameters, a_i 's, is non-linear and cannot be linearized using direct method.
- For example, $y = a_0(1 e^{-a_1 x})$
- Objective: Find a_0 and a_1 that minimizes

$$\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} \left[y_i - a_0 (1 - e^{-a_1 x_i}) \right]^2$$

- Possible approaches to find the solution:
 - Applying minimization of non-linear function
 - Set partial derivatives to zero and solve non-linear equation.
 - Gauss-Newton Method

Other Notes

- When performing least square fit,
 - The order of the data in the table is not important
 - The order in which you arrange the basis functions is not important.
 - e.g., Least square fit of

$$y = a_0 + a_1 x$$
 or $y = b_0 x + b_1$ to

X	3	5	6
Y	4	1	4

or

X	6	3	5
Y	4	4	1

or

X	5	6	3
Y	1	4	4

would yield the same straight line.