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Special Matrices and Gauss-Siedel



Introduction

 Certain matrices have particular structures that can be
exploited to develop efficient solution schemes.

A banded matrix is a square matrix that has all elements
equal to zero, with the exception of a band centered on the
main diagonal. These matrices typically occur in solution of
differential equations.

 The dimensions of a banded system can be quantified by two
parameters: the band width BW and half-bandwidth HBW.
These two values are related by BW=2HBW+1.



Banded matrix




Tridiagonal Systems

* A tridiagonal system has a bandwidth of 3:
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* An efficient LU decomposition method, called Thomas
algorithm, can be used to solve such an equation. The
algorithm consists of three steps: decomposition, forward
and back substitution, and has all the advantages of LU
decomposition.



(a) Decomposition

D0 k=2, n

& = ex/Tk-1

fk = Tk — €+ Gk-1
END DO

(b) Forward substitution

DO k=2, n
P = g — € * N1
END DO

(c) Back substitution

Xn = I'n/ Ty

D0 k=n-1, 1, —1
Xk = (Fk— Gk * Xer1)/ Ti

END DO



Cholesky Decomposition

e This method is suitable for only symmetric systems
where:
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Cholesky Decomposition




Pseudocode for Cholesky’s LU
Decomposition algorithm (cont’d)

) K= L,n
DO i =1, k — 1
sum = .

D0 g =1, 1 — 1
sum = sum + ajj * dkjy
END DO
dxi = (aki — Sum)/aii
END DO
sum = 0.
DO j =1, k — 1
sum = sum + a;
END DO
dkk = \/akk — Sum
END DO




Gauss-Siedel

* |terative or approximate methods provide an
alternative to the elimination methods. The Gauss-
Seidel method is the most commonly used iterative
method.

* The system [A]{X}={B} is reshaped by solving the
first equation for x,;, the second equation for x,,
and the third for x;, ...and nt" equation for x,. We
will limit ourselves to a 3x3 set of equations.



Gauss-Siedel

a X, +a,x, +a;;x; = bl X, = b, —a,x, —a;;x,
a
b, —a, x, —a,x
— _ 3%3
Y = by —ay X, —ayx,
=
ay X, + a5, +ayx; = b, A33

Now we can start the solution process by choosing
guesses for the x’s. A simple way to obtain initial
guesses is to assume that they are zero. These
zeros can be substituted into x; equation to

calculate a new x,=b/a,.



Gauss-Siedel

* New x; is substituted to calculate x, and x;. The
procedure is repeated until the convergence
criterion is satisfied:
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Jacobi iteration Method

An alternative approach, called Jacobi iteration,
utilizes a somewhat different technique. This
technique includes computing a set of new x’s on the
basis of a set of old x’s. Thus, as the new values are
generated, they are not immediately used but are
retained for the next iteration.
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The Gauss-Seidel method The Jacobi iteration method



Convergence Criterion for Gauss-Seidel Method

 The gauss-siedel method is similar to the technique of
fixed-point iteration.

* The Gauss-Seidel method has two fundamental
problems as any iterative method:
1. Itis sometimes non-convergent, and
2. If it converges, converges very slowly.

e Sufficient conditions for convergence of two linear
equations, u(x,y) and v(x,y) are:
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Convergence Criterion for Gauss-Seidel
Method (cont’d)

e Similarly, in case of two simultaneous equations, the
Gauss-Seidel algorithm can be expressed as:
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Convergence Criterion for Gauss-Seidel
Method (cont’d)

Substitution into convergence criterion of two linear

equations yield: a,

a

In other words, the absolute values of the slopes must be
less than unity for convergence: /

a,,
dy

<1, <1

all‘ > ‘alz‘ For n equationt
D) = Z g
azz‘ > ‘a21‘ = J‘

J=i
That is, the diagonal element must be greater than the off-
diagonal element for each row.



@Ql\fdel Method- Examplel
Jd

[A] } / 7.85+0.1y,+0.24,
i | (7.85 X, 103 03] sz ; -6
,/ _
—0.3 4x2$:<—]9.3¥ = x, = /+ i 0
/ 7
0.3 -0. Jls ) (714 = 71.4-0.3y+ 0.2
O = {73( )‘Lﬁ‘n\ o 7/
* Guess Xl, X,, X3= z€ro for the first guess
Iter. x;, x(z( ‘ x§/ €a11(%) _ |€a2| (%) [€43] (%)
0 ] J/ v ¢
2.6167 -2.7945 7.005610 100 100 100
2.990557 -2.499625 7.000291 12.5 11.8 0.076

2
3
Y



Improvement of Convergence Using
Relaxation

new new old
x =A-x, +(1—/1)-xl.

Where A is a weighting factor that is assigned a
value between [0, 2]

If A =1the method is unmodified.

If A is between 0and 1 (under relaxation) this is
employed to make a non convergent system to
converge.

If A is between 1 and 2 (over relaxation) this is
employed to accelerate the convergence.



Gauss-Siedel Method- Example 2

R, +4, —/2x3 =-20
?>)c1@>(2+7x3 =-34 ~ -
(€2

X, = 06X, 1) = %—h)

Rearrange so that
the equations are —> @x —X,=-
diagonally dominant

/ —3x1—x2@(3=—34
/—20—)62—I—2x3 —38—-2x, + x, / —34 +3x, + x,

—8 —6 7



Gauss-Siedel Method- Example 2

iteration unknown value &, maximum &,

X4 0

)

X3 0
75

0
/N
O
2

100.00%
X, 7.166667  100.00%
X5 27619  100.00%  100.00%
X, 4.08631  38.82%
X, 8.155754  12.13%
X5 -1.04076  42.31%  42.31%
3 X, 4.0046597  2.04%
X, 7.00168” 2.05%
X5 1 .99919/ 2.92% 2.92%




Gauss-Siedel Method- Example 2

The same computation can be developed with relaxation where
A=1.2
First iteration:
X, :—20—x2 + 2x,4 :—20—0+2(O) 95
-8 -8
Relaxation yields: x, =1.2(2.5)-0.2(0) =3
x, = —38—221 +X5 —38—26(3)+O _ 7333333
Relaxation yields: x, =1.2(7.333333) - 0.2(0) =8.8
—34+3x, +x, —-34+3(3)+8.8

X, = — =—2.3142857
7 7

Relaxation yields: x, =1.2(-2.3142857) - 0.2(0) =—2.7771429



Gauss-Siedel Method- Example 2

Iter. unknown value relaxation &, maximum g,

1 X4 2.5 3 100.00%

X, 7.3333333 8.8 100.00%

X3 -2.314286 -2.777143 100.00%  100.000%
2 X4 4.2942857 4.5531429 34.11%

X, 8.3139048 8.2166857 7.10%

X3 -1.731984 -1.522952 82.35%  82.353%
3 X4 3.9078237 3.7787598  20.49%

X, 7.8467453 7.7727572 5.71%

X3 -2.12728 -2.248146  32.26% 32.257%
4 X4 4.0336312 4.0846055 7.49%

X 8.0695595 8.12892 4.38%

X3 -1.945323 -1.884759  19.28% 19.280%







MATLAB M-File for Gauss-Seidel method

Continued on next page






MATLAB M-File for Gauss-Seidel method

Continued from previous page







Gauss-Seidel Iteration

» A =[4 -1 -1; 6 8 0; -5 0 127;
» b = [-2 45 80];
» x=Seidel (A,b,x0,to0l,100);

i x1 x2 x3 x4
1.0000 -0.5000 6.0000 6.4583
2.0000 2.6146 3.6641 7.7561
3.0000 2.3550 3.8587 7.6479
4.0000 2.3767 3.8425 7.6569
5.0000 2.3749 3.8439 7.6562
6.0000 2.3750 3.8437 7.6563
7.0000 2.3750 3.8438 7.6562
8.0000 2.3750 3.8437 7.6563

Gauss-Seidel method converged

Converges faster than the Jacobi method shown in next page







Jacobi Iteration

» A [4 -1 -1; 6 8 0; -5 0 12];
» b = [-2 45 80];
» x=Jacobi(A,b,0.0001,100);
i x1 x2 x3 x4

1.0000 -0.5000 5.6250 6.6667
2.0000 2.5729 6.0000 6.4583
3.0000 2.6146 3.6953 7.7387
4.0000 2.3585 3.6641 7.7561
5.0000 2.3550 3.8561 7.6494
6.0000 2.3764 3.8587 7.6479
7.0000 2.3767 3.8427 7.6568
8.0000 2.3749 3.8425 7.6569
9.0000 2.3749 3.8438 7.6562
10.0000 2.3750 3.8439 7.6562
11.0000 2.3750 3.8437 7.6563
12.0000 2.3750 3.8437 7.6563
13.0000 2.3750 3.8438 7.6562
14.0000 2.3750 3.8438 7.6562

Jacobi method converged




