
Faculty of Engineering
Civil Engineering

Numerical Methods

Chapter 2

Special Matrices and Gauss-Siedel

Introduction

• Certain matrices have particular structures that can be
exploited to develop efficient solution schemes.

• A banded matrix is a square matrix that has all elements
equal to zero, with the exception of a band centered on the
main diagonal. These matrices typically occur in solution of
differential equations.

• The dimensions of a banded system can be quantified by two
parameters: the band width BW and half-bandwidth HBW.
These two values are related by BW=2HBW+1.

Banded matrix

4

Tridiagonal Systems
• A tridiagonal system has a bandwidth of 3:

ï
ï
þ

ï
ï
ý

ü

ï
ï
î

ï
ï
í

ì

=

ï
ï
þ

ï
ï
ý

ü

ï
ï
î

ï
ï
í

ì

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

4

3

2

1

4

3

2

1

44

333

222

11

r
r
r
r

x
x
x
x

fe
gfe

gfe
gf

• An efficient LU decomposition method, called Thomas
algorithm, can be used to solve such an equation. The
algorithm consists of three steps: decomposition, forward
and back substitution, and has all the advantages of LU
decomposition.

Fig 11.2

Cholesky Decomposition

6

l This method is suitable for only symmetric systems
where:

T
ij jia a and A A= =

11 12 13 11 11 21 31

21 22 23 21 22 22 32

31 32 33 31 32 33 33

0 0
0 * 0

0 0

a a a l l l l
a a a l l l l
a a a l l l l

é ù é ù é ù
ê ú ê ú ê ú=ê ú ê ú ê ú
ê ú ê ú ê úë û ë û ë û

11

21 22

31 32 33

0 0
[] 0

l
L l l

l l l

é ù
ê ú= ê ú
ê úë û

* TA L L=

Cholesky Decomposition

1

1

1
2

1

1,2, , 1

i

ki ij kj
j

ki
ii

k

kk kk kj
j

a l l
l for i k

l

l a l

-

=

-

=

- ×
= = -

= -

å

å

!
1

1

1
2

1

1,2, , 1

i

ki ij kj
j

ki
ii

k

kk kk kj
j

a l l
l for i k

l

l a l

-

=

-

=

- ×
= = -

= -

å

å

!

Pseudocode for Cholesky’s LU
Decomposition algorithm (cont’d)

Gauss-Siedel

• Iterative or approximate methods provide an
alternative to the elimination methods. The Gauss-
Seidel method is the most commonly used iterative
method.

• The system [A]{X}={B} is reshaped by solving the
first equation for x1, the second equation for x2,
and the third for x3, …and nth equation for xn. We
will limit ourselves to a 3x3 set of equations.

Gauss-Siedel

33

2321313
1

22

3231212
2

11

3132121
1

a
xaxabx

a
xaxabx

a
xaxabx

--
=

--
=

--
=

3333232131

2323222121

1313212111

bxaxaxa

bxaxaxa

bxaxaxa

=++

=++

=++

Þ

Now we can start the solution process by choosing
guesses for the x’s. A simple way to obtain initial
guesses is to assume that they are zero. These
zeros can be substituted into x1 equation to
calculate a new x1=b1/a11.

Gauss-Siedel

• New x1 is substituted to calculate x2 and x3. The
procedure is repeated until the convergence
criterion is satisfied:

snew
i

old
i

new
i

ia x
xx ee <

-
= %100,

Jacobi iteration Method

An alternative approach, called Jacobi iteration,
utilizes a somewhat different technique. This
technique includes computing a set of new x’s on the
basis of a set of old x’s. Thus, as the new values are
generated, they are not immediately used but are
retained for the next iteration.

Gauss-Siedel

The Gauss-Seidel method The Jacobi iteration method

Convergence Criterion for Gauss-Seidel Method

• The gauss-siedel method is similar to the technique of
fixed-point iteration.

• The Gauss-Seidel method has two fundamental
problems as any iterative method:

1. It is sometimes non-convergent, and
2. If it converges, converges very slowly.

• Sufficient conditions for convergence of two linear
equations, u(x,y) and v(x,y) are:

1

1

<
¶
¶

+
¶
¶

<
¶
¶

+
¶
¶

y
v

x
v

y
u

x
u

Convergence Criterion for Gauss-Seidel
Method (cont’d)

• Similarly, in case of two simultaneous equations, the
Gauss-Seidel algorithm can be expressed as:

1 12
1 2 2

11 11

2 21
1 2 1

22 22

12

1 2 11

21

1 22 2

(,)

(,)

0

0

b au x x x
a a
b av x x x
a a

au u
x x a

av v
x a x

= -

= -

¶ ¶
= = -

¶ ¶
¶ ¶

= - =
¶ ¶

Convergence Criterion for Gauss-Seidel
Method (cont’d)

Substitution into convergence criterion of two linear
equations yield:

In other words, the absolute values of the slopes must be
less than unity for convergence:

That is, the diagonal element must be greater than the off-
diagonal element for each row.

1,1
22

21

11

12 <<
a
a

a
a

2122

1211

aa

aa

>

>
å
¹
=

>
n

ij
j

jiii aa
1

,

equationsn For

Gauss-Siedel Method- Example 1

10
x20x30471

7
x30x10319

3
x20x10857

x
x
x

471
319

857

x
x
x

102030
30710
20103

21

31

32

3

2

1

3

2

1

...

...

...

.
.

.

..
..
..

+-

+--

++

=
=
=

Þ
ï
þ

ï
ý

ü

ï
î

ï
í

ì
-=

ï
þ

ï
ý

ü

ï
î

ï
í

ì

ú
ú
ú

û

ù

ê
ê
ê

ë

é

-
-

-

• Guess x1, x2, x3= zero for the first guess
Iter. x1 x2 x3 |ea,1|(%) |ea,2| (%) |ea,3| (%)
0 0 0 0 - - -

1 2.6167 -2.7945 7.005610 100 100 100
2 2.990557 -2.499625 7.000291 12.5 11.8 0.076

Improvement of Convergence Using
Relaxation

• Where l is a weighting factor that is assigned a
value between [0, 2]

• If l = 1 the method is unmodified.
• If l is between 0 and 1 (under relaxation) this is

employed to make a non convergent system to
converge.

• If l is between 1 and 2 (over relaxation) this is
employed to accelerate the convergence.

()1new new old
i i ix x xl l= × + - ×

Gauss-Siedel Method- Example 2

3862
3473
2028

321

321

321

-=--
-=+--
-=-+-

xxx
xxx
xxx

1 2 3

1 2 3

1 2 3

8 2 20

2 6 38

3 7 34

x x x

x x x

x x x

- + - = -

- - = -

- - + = -

Rearrange so that
the equations are
diagonally dominant

8
220 32

1 -
+--

=
xxx 6

238 31
2 -

+--
=

xxx
7
334 21

3
xxx ++-

=

Gauss-Siedel Method- Example 2

iteration unknown value ea maximum ea
0 x1 0

x2 0
x3 0

1 x1 2.5 100.00%
x2 7.166667 100.00%
x3 -2.7619 100.00% 100.00%

2 x1 4.08631 38.82%
x2 8.155754 12.13%
x3 -1.94076 42.31% 42.31%

3 x1 4.004659 2.04%
x2 7.99168 2.05%
x3 -1.99919 2.92% 2.92%

Gauss-Siedel Method- Example 2

The same computation can be developed with relaxation where
l = 1.2

First iteration:

Relaxation yields:

Relaxation yields:

Relaxation yields:

5.2
8

)0(2020
8
220 32

1 =
-
+--

=
-

+--
=

xx
x

3)0(2.0)5.2(2.11 =-=x

1 3
2

38 2 38 2(3) 0 7.333333
6 6
x xx - - + - - +

= = =
- -

8.8)0(2.0)333333.7(2.12 =-=x

3142857.2
7

8.8)3(334
7
334 21

3 -=
++-

=
++-

=
xx

x

7771429.2)0(2.0)3142857.2(2.13 -=--=x

Gauss-Siedel Method- Example 2

Iter. unknown value relaxation ea maximum ea
1 x1 2.5 3 100.00%

x2 7.3333333 8.8 100.00%
x3 -2.314286 -2.777143 100.00% 100.000%

2 x1 4.2942857 4.5531429 34.11%
x2 8.3139048 8.2166857 7.10%
x3 -1.731984 -1.522952 82.35% 82.353%

3 x1 3.9078237 3.7787598 20.49%
x2 7.8467453 7.7727572 5.71%
x3 -2.12728 -2.248146 32.26% 32.257%

4 x1 4.0336312 4.0846055 7.49%
x2 8.0695595 8.12892 4.38%
x3 -1.945323 -1.884759 19.28% 19.280%

MATLAB M-File for Gauss-Seidel method

Continued on next page

MATLAB M-File for Gauss-Seidel method

Continued from previous page

» A = [4 –1 –1; 6 8 0; -5 0 12];
» b = [-2 45 80];
» x=Seidel(A,b,x0,tol,100);

i x1 x2 x3 x4
1.0000 -0.5000 6.0000 6.4583
2.0000 2.6146 3.6641 7.7561
3.0000 2.3550 3.8587 7.6479
4.0000 2.3767 3.8425 7.6569
5.0000 2.3749 3.8439 7.6562
6.0000 2.3750 3.8437 7.6563
7.0000 2.3750 3.8438 7.6562
8.0000 2.3750 3.8437 7.6563

Gauss-Seidel method converged

Gauss-Seidel Iteration

Converges faster than the Jacobi method shown in next page

» A = [4 –1 –1; 6 8 0; -5 0 12];
» b = [-2 45 80];
» x=Jacobi(A,b,0.0001,100);

i x1 x2 x3 x4
1.0000 -0.5000 5.6250 6.6667
2.0000 2.5729 6.0000 6.4583
3.0000 2.6146 3.6953 7.7387
4.0000 2.3585 3.6641 7.7561
5.0000 2.3550 3.8561 7.6494
6.0000 2.3764 3.8587 7.6479
7.0000 2.3767 3.8427 7.6568
8.0000 2.3749 3.8425 7.6569
9.0000 2.3749 3.8438 7.6562

10.0000 2.3750 3.8439 7.6562
11.0000 2.3750 3.8437 7.6563
12.0000 2.3750 3.8437 7.6563
13.0000 2.3750 3.8438 7.6562
14.0000 2.3750 3.8438 7.6562

Jacobi method converged

Jacobi Iteration

