
Faculty of Engineering
Civil Engineering

Numerical Methods   

Chapter 2

Special Matrices and Gauss-Siedel



Introduction

• Certain matrices have particular structures that can be
exploited to develop efficient solution schemes.

• A banded matrix is a square matrix that has all elements
equal to zero, with the exception of a band centered on the
main diagonal. These matrices typically occur in solution of
differential equations.

• The dimensions of a banded system can be quantified by two
parameters: the band width BW and half-bandwidth HBW.
These two values are related by BW=2HBW+1.



Banded matrix
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Tridiagonal Systems
• A tridiagonal system has a bandwidth of 3:
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• An efficient LU decomposition method, called Thomas 
algorithm, can be used to solve such an equation. The 
algorithm consists of three steps: decomposition, forward 
and back substitution, and has all the advantages of LU 
decomposition.



Fig 11.2



Cholesky Decomposition
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l This method is suitable for only symmetric systems 
where: 
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Cholesky Decomposition
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Pseudocode for Cholesky’s LU 
Decomposition algorithm (cont’d)



Gauss-Siedel

• Iterative or approximate methods provide an
alternative to the elimination methods. The Gauss-
Seidel method is the most commonly used iterative
method.

• The system [A]{X}={B} is reshaped by solving the
first equation for x1, the second equation for x2,
and the third for x3, …and nth equation for xn. We
will limit ourselves to a 3x3 set of equations.



Gauss-Siedel
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Now we can start the solution process by choosing
guesses for the x’s. A simple way to obtain initial
guesses is to assume that they are zero. These
zeros can be substituted into x1 equation to
calculate a new x1=b1/a11.



Gauss-Siedel

• New x1 is substituted to calculate x2 and x3. The
procedure is repeated until the convergence
criterion is satisfied:
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Jacobi  iteration Method

An alternative approach, called Jacobi iteration,
utilizes a somewhat different technique. This
technique includes computing a set of new x’s on the
basis of a set of old x’s. Thus, as the new values are
generated, they are not immediately used but are
retained for the next iteration.



Gauss-Siedel

The Gauss-Seidel method The Jacobi iteration method



Convergence Criterion for Gauss-Seidel Method

• The gauss-siedel method is similar to the technique of 
fixed-point iteration.

• The Gauss-Seidel method has two fundamental 
problems as any iterative method:

1. It is sometimes non-convergent, and
2. If it converges, converges very slowly.

• Sufficient conditions for convergence of two linear 
equations, u(x,y) and v(x,y) are:
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Convergence Criterion for Gauss-Seidel 
Method (cont’d)

• Similarly, in case of two simultaneous equations, the 
Gauss-Seidel algorithm can be expressed as:
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Convergence Criterion for Gauss-Seidel 
Method (cont’d)

Substitution into convergence criterion of two linear 
equations yield:

In other words, the absolute values of the slopes must be 
less than unity for convergence:

That is, the diagonal element must be greater than the off-
diagonal element for each row.
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Gauss-Siedel Method- Example 1
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• Guess x1, x2, x3= zero for the first guess
Iter.     x1 x2 x3 |ea,1|(%) |ea,2| (%) |ea,3| (%)
0            0                0                     0               - - -

1         2.6167  -2.7945         7.005610       100             100            100
2         2.990557    -2.499625     7.000291       12.5           11.8           0.076



Improvement of Convergence Using 
Relaxation 

• Where l is a weighting factor that is assigned a 
value between [0, 2]

• If  l = 1 the method is unmodified.
• If   l is between  0 and 1 (under relaxation) this is 

employed to make a non convergent system to 
converge.

• If   l is between  1 and 2 (over relaxation) this is 
employed to accelerate the convergence.
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Gauss-Siedel Method- Example 2
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Gauss-Siedel Method- Example 2

iteration unknown value ea maximum ea
0 x1 0

x2 0
x3 0

1 x1 2.5 100.00%
x2 7.166667 100.00%
x3 -2.7619 100.00% 100.00%

2 x1 4.08631 38.82%
x2 8.155754 12.13%
x3 -1.94076 42.31% 42.31%

3 x1 4.004659 2.04%
x2 7.99168 2.05%
x3 -1.99919 2.92% 2.92%



Gauss-Siedel Method- Example 2

The same computation can be developed with relaxation where 
l = 1.2

First iteration:

Relaxation yields: 

Relaxation yields: 

Relaxation yields: 
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Gauss-Siedel Method- Example 2

Iter. unknown value relaxation ea maximum ea
1 x1 2.5 3 100.00%

x2 7.3333333 8.8 100.00%
x3 -2.314286 -2.777143 100.00% 100.000%

2 x1 4.2942857 4.5531429 34.11%
x2 8.3139048 8.2166857 7.10%
x3 -1.731984 -1.522952 82.35% 82.353%

3 x1 3.9078237 3.7787598 20.49%
x2 7.8467453 7.7727572 5.71%
x3 -2.12728 -2.248146 32.26% 32.257%

4 x1 4.0336312 4.0846055 7.49%
x2 8.0695595 8.12892 4.38%
x3 -1.945323 -1.884759 19.28% 19.280%





MATLAB  M-File for Gauss-Seidel method

Continued on next page





MATLAB  M-File for Gauss-Seidel method

Continued from previous page





» A = [4 –1 –1; 6 8 0; -5 0 12];
» b = [-2 45 80];
» x=Seidel(A,b,x0,tol,100);

i x1        x2        x3     x4 ....
1.0000   -0.5000    6.0000    6.4583
2.0000    2.6146    3.6641    7.7561
3.0000    2.3550    3.8587    7.6479
4.0000    2.3767    3.8425    7.6569
5.0000    2.3749    3.8439    7.6562
6.0000    2.3750    3.8437    7.6563
7.0000    2.3750    3.8438    7.6562
8.0000    2.3750    3.8437    7.6563

Gauss-Seidel method converged

Gauss-Seidel Iteration

Converges faster than the Jacobi method shown in next page





» A = [4 –1 –1; 6 8 0; -5 0 12];
» b = [-2 45 80];
» x=Jacobi(A,b,0.0001,100);

i        x1        x2        x3      x4 ....
1.0000   -0.5000    5.6250    6.6667
2.0000    2.5729    6.0000    6.4583
3.0000    2.6146    3.6953    7.7387
4.0000    2.3585    3.6641    7.7561
5.0000    2.3550    3.8561    7.6494
6.0000    2.3764    3.8587    7.6479
7.0000    2.3767    3.8427    7.6568
8.0000    2.3749    3.8425    7.6569
9.0000    2.3749    3.8438    7.6562

10.0000    2.3750    3.8439    7.6562
11.0000    2.3750    3.8437    7.6563
12.0000    2.3750    3.8437    7.6563
13.0000    2.3750    3.8438    7.6562
14.0000    2.3750    3.8438    7.6562

Jacobi method converged

Jacobi Iteration


