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After reading this section, you should be able to: 

1. solve a set of simultaneous linear equations using Naïve Gauss elimination, 

2. learn the pitfalls of the Naïve Gauss elimination method, 

3. understand the effect of round-off error when solving a set of linear equations with 

the Naïve Gauss elimination method, 

4. learn how to modify the Naïve Gauss elimination method to the Gaussian elimination 

with partial pivoting method to avoid pitfalls of the former method,  

5. find the determinant of a square matrix using Gaussian elimination, and 

6. understand the relationship between the determinant of a coefficient matrix and the 

solution of simultaneous linear equations. 

 

How is a set of equations solved numerically? 

One of the most popular techniques for solving simultaneous linear equations is the Gaussian 

elimination method.  The approach is designed to solve a general set of n  equations and n  

unknowns 

11313212111 ... bxaxaxaxa nn =++++  

22323222121 ... bxaxaxaxa nn =++++   

     .                 . 

     .                 . 

     .                 . 

nnnnnnn bxaxaxaxa =++++ ...332211  

Gaussian elimination consists of two steps 

1. Forward Elimination of Unknowns: In this step, the unknown is eliminated in each 

equation starting with the first equation.  This way, the equations are reduced to one 

equation and one unknown in each equation. 

2. Back Substitution:  In this step, starting from the last equation, each of the unknowns 

is found. 

 

Forward Elimination of Unknowns:   

In the first step of forward elimination, the first unknown, 1x  is eliminated from all rows 

below the first row.  The first equation is selected as the pivot equation to eliminate 1x .  So, 

to eliminate 1x  in the second equation, one divides the first equation by 11a  (hence called the 



   

 

pivot element) and then multiplies it by 
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This procedure of eliminating 1x , is now repeated for the third equation to the 
thn  equation 

to reduce the set of equations as 

11313212111 ... bxaxaxaxa nn =++++  

22323222 ... bxaxaxa nn
=+++  

33333232 ... bxaxaxa nn
=+++  

 .                 .  . 

 .                 .  . 

 .                 .  . 

nnnnnn bxaxaxa =+++ ...3322  

This is the end of the first step of forward elimination. Now for the second step of forward 

elimination, we start with the second equation as the pivot equation and 22a  as the pivot 

element.  So, to eliminate 2x  in the third equation, one divides the second equation by 22a  

(the pivot element) and then multiply it by 32a .  This is the same as multiplying the second 

equation by 2232 / aa   and subtracting it from the third equation.  This makes the coefficient of 

2x  zero in the third equation.  The same procedure is now repeated for the fourth equation till 

the 
thn equation to give 

11313212111 ... bxaxaxaxa nn =++++  

22323222 ... bxaxaxa nn
=+++  

33333 ... bxaxa nn
=++  

  .               . 

  .               . 

  .               . 

nnnnn bxaxa =++ ...33  
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The next steps of forward elimination are conducted by using the third equation as a pivot 

equation and so on.  That is, there will be a total of 1−n  steps of forward elimination.  At the 

end of 1−n  steps of forward elimination, we get a set of equations that look like 

++ 212111 xaxa 11313 ... bxaxa nn =++  

            22323222 ... bxaxaxa nn
=+++  

                        33333 ... bxaxa nn
=++  

                                  .             . 

                                  .             . 

                                  .             . 
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Back Substitution:   

Now the equations are solved starting from the last equation as it has only one unknown.   
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Then the second last equation, that is the 
th)1( −n  equation, has two unknowns: nx  and 1−nx , 

but nx  is already known.  This reduces the 
th)1( −n  equation also to one unknown.  Back 

substitution hence can be represented for all equations by the formula 
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Example 1 

The upward velocity of a rocket is given at three different times in Table 1. 

 

                            Table 1  Velocity vs. time data. 

Time, t  (s) Velocity, v  (m/s) 

5 106.8 

8 177.2 

12 279.2 

 

The velocity data is approximated by a polynomial as 

( ) 125           , 32

2

1 ++= tatatatv  

The coefficients 321 and a, , aa  for the above expression are given by 
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Find the values of 321 and  a,, aa  using the Naïve Gauss elimination method.  Find the velocity 

at 11 ,9 ,5.7 ,6=t  seconds. 

 

Solution 

Forward Elimination of Unknowns  

Since there are three equations, there will be two steps of forward elimination of unknowns. 

First step 

Divide Row 1 by 25 and then multiply it by 64, that is, multiply Row 1 by 2.5664/25 = . 

   ( ) 56.28.106  1525   gives Row 1 as 

   408.27356.28.1264  

Subtract the result from Row 2  

 

   
   
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408.27356.28.1264   

2.1771     864     
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−
 

to get the resulting equations as 

















−=

































−−

2.279

208.96

8.106

 

112144

56.18.40

1525

3

2

1

a

a

a

  

Divide Row 1 by 25 and then multiply it by 144, that is, multiply Row 1 by 5.76144/25 = . 

   ( ) 76.58.106 1525   gives Row 1 as 

   168.61576.58.28144  

Subtract the result from Row 3  

 

   
   

968.33576.48.16  0       

168.61576.58.28144  

2.2791    12144    
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−
 

to get the resulting equations as 
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Second step 

We now divide Row 2 by –4.8 and then multiply by –16.8, that is, multiply Row 2 by 
3.54.816.8/ =−− . 

   ( ) 5.3208.96 56.18.40 −−−   gives Row 2 as 

   728.33646.58.160 −−−  

Subtract the result from Row 3 
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   
   

76.0         7.0     0     0 

728.33646.58.160   

968.3354.768.160     
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−−−

 

to get the resulting equations as 
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Back substitution 

From the third equation 

76.07.0 3 =a  

70

760
     3

.

.
a =  

       1.08571       =  

Substituting the value of 3a  in the second equation, 

208.9656.18.4 32 −=−− aa  

8.4

56.1208.96 3

2
−

+−
=

a
a  

  
4.8

08571.11.5696.208
    

−

+−
=  

  690519.    =  

Substituting the value of 2a  and 3a  in the first equation, 

8.106525 321 =++ aaa  
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25
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−−
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  290472.0     =  

Hence the solution vector is 
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The polynomial that passes through the three data points is then 

( ) 32

2

1 atatatv ++=  

125 ,08571.16905.19290472.0      2 ++= ttt  

Since we want to find the velocity at 11 and 9 ,5.7 ,6=t  seconds, we could simply substitute 

each value of t  in ( ) 08571.16905.19290472.0 2 ++= tttv  and find the corresponding 

velocity.  For example, at 6=t  
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However we could also find all the needed values of velocity at t  = 6, 7.5, 9, 11 seconds 

using matrix multiplication. 
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Example 2 

Use Naïve Gauss elimination to solve 

45101520 321 =++ xxx  

751.17249.23 321 =+−− xxx  

935 321 =++ xxx     

Use six significant digits with chopping in your calculations. 

Solution 

Working in the matrix form  
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Forward Elimination of Unknowns 

First step 
Divide Row 1 by 20 and then multiply it by –3, that is, multiply Row 1 by 15.020/3 −=− . 

   ( ) 15.045101520 −  gives Row 1 as 

   75.65.125.23 −−−−  
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Subtract the result from Row 2  

 

   
   
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to get the resulting equations as 
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Divide Row 1 by 20 and then multiply it by 5, that is, multiply Row 1 by 25.020/5 =  

   ( ) 25.045101520   gives Row 1 as 

   25.115.275.35  

Subtract the result from Row 3  

 

   
   
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to get the resulting equations as 
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Second step 

Now for the second step of forward elimination, we will use Row 2 as the pivot equation and 

eliminate Row 3: Column 2.  

Divide Row 2 by 0.001 and then multiply it by –2.75, that is, multiply Row 2 by 

2750001.0/75.2 −=− . 

   ( ) 2750501.85.8001.00 −  gives Row 2 as 

   75.233772337575.20 −−−  

Rewriting within 6 significant digits with chopping 

   7.233772337575.20 −−−  

Subtract the result from Row 3  

 

   
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3375.452 5.23375        0      0    

7.2337723375 2.75   0   

25.2.50       75.2   0     
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Rewriting within 6 significant digits with chopping 

    4.233755.2337500 −  

to get the resulting equations as 
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This is the end of the forward elimination steps. 



   

 

Back substitution 

We can now solve the above equations by back substitution.  From the third equation, 

4.233755.23375 3 =x  

             
5.23375

4.23375
3 =x  

                  999995.0=  

Substituting the value of 3x  in the second equation 

501.85.8001.0 32 =+ xx  

0.001
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2
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..
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49995.8501.8 −
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     05.1=  

Substituting the value of 3x  and 2x  in the first equation, 

45101520 321 =++ xxx  
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    9625.0 =   

Hence the solution is 
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Compare this with the exact solution of 
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Are there any pitfalls of the Naïve Gauss elimination method? 

Yes, there are two pitfalls of the Naïve Gauss elimination method. 

Division by zero: It is possible for division by zero to occur during the beginning of the 

1−n  steps of forward elimination. 

For example 

1165 32 =+ xx  

16754 321 =++ xxx  

15329 321 =++ xxx  

will result in division by zero in the first step of forward elimination as the coefficient of 1x  

in the first equation is zero as is evident when we write the equations in matrix form. 
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But what about the equations below: Is division by zero a problem? 

18765 321 =++ xxx  

2531210 321 =++ xxx  

56191720 321 =++ xxx  

Written in matrix form, 
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there is no issue of division by zero in the first step of forward elimination. The pivot element 

is the coefficient of 1x  in the first equation, 5, and that is a non-zero number. However, at the 

end of the first step of forward elimination, we get the following equations in matrix form 
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Now at the beginning of the 2nd step of forward elimination, the coefficient of 2x  in Equation 

2 would be used as the pivot element. That element is zero and hence would create the 

division by zero problem. 



   

 

So it is important to consider that the possibility of division by zero can occur at the 

beginning of any step of forward elimination. 

 

Round-off error:  The Naïve Gauss elimination method is prone to round-off errors.  This is 

true when there are large numbers of equations as errors propagate.  Also, if there is 

subtraction of numbers from each other, it may create large errors.  See the example below. 

 

Example 3 

Remember Example 2 where we used Naïve Gauss elimination to solve 

45101520 321 =++ xxx  

751.17249.23 321 =+−− xxx  

935 321 =++ xxx  

using six significant digits with chopping in your calculations?  Repeat the problem, but now 

use five significant digits with chopping in your calculations. 

Solution 

Writing in the matrix form 
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Forward Elimination of Unknowns 

First step 

Divide Row 1 by 20 and then multiply it by –3, that is, multiply Row 1 by 15.020/3 −=− . 

   ( ) 15.045101520 −  gives Row 1 as 

   75.65.125.23 −−−−  

Subtract the result from Row 2  

 

   
   

  501.8    5.8  001.0   0        

75.65.125.23   

751.17 249.23     
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to get the resulting equations as 
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Divide Row 1 by 20 and then multiply it by 5, that is, multiply Row 1 by 25.020/5 = . 

   ( ) 25.045101520   gives Row 1 as 

   25.115.275.35  

Subtract the result from Row 3  

 

   
   

2.25  .5075.20     

25.115.2 75.3   5   

93       1   5     

−−

−
 

to get the resulting equations as 
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















− 5.075.20

5.8001.00

101520

















3

2

1

x

x

x

=

















− 25.2

501.8

45

 

Second step 

Now for the second step of forward elimination, we will use Row 2 as the pivot equation and 

eliminate Row 3: Column 2.  

Divide Row 2 by 0.001 and then multiply it by –2.75, that is, multiply Row 2 by 

2750001.0/75.2 −=− . 

   ( ) 2750501.85.8001.00 −  gives Row 2 as 

   75.233772337575.20 −−−  

Rewriting within 5 significant digits with chopping 

   233772337575.20 −−−  

Subtract the result from Row 3  

 

   
   

 33742   23375        0      0    

2337723375 2.75   0   

25.2.50       75.2   0     

−−−−

−−

 

Rewriting within 6 significant digits with chopping 

    233742337500 −  

to get the resulting equations as 

















2337500

5.8001.00

101520

 

















3

2

1

x

x

x

= 

















23374

501.8

45

  

This is the end of the forward elimination steps. 

Back substitution 

We can now solve the above equations by back substitution.  From the third equation, 

2337423375 3 =x  

23375

23374
3 =x  

99995.0    =  

Substituting the value of 3x  in the second equation 

501.85.8001.0 32 =+ xx  

0.001

0.99995585018
     

001.0

5.8501.8 3
2

−
=

−
=

..

x
x

 

     

001.0

4995.8501.8

001.0

499575.8501.8

−
=

−
=

 



   

 

     
001.0

0015.0
=  

     5.1=  

Substituting the value of 3x  and 2x  in the first equation, 

45101520 321 =++ xxx  

20

10 1545 32

1

xx
x

−−
=  

 
20

99995.0105.11545
    

−−
=  

     

20

500.12

20

5005.12

20

9995.95.22

20

9995.95.2245

=

=

−
=

−−
=

 

    625.0 =   

Hence the solution is 

 
















=

3

2

1

x

x

x

X  

      

















=

99995.0

5.1

625.0

 

Compare this with the exact solution of 

 
















=

3

2

1

x

x

x

X

















=

1

1

1

 

 

What are some techniques for improving the Naïve Gauss elimination method? 

As seen in Example 3, round off errors were large when five significant digits were used as 

opposed to six significant digits.  One method of decreasing the round-off error would be to 

use more significant digits, that is, use double or quad precision for representing the 

numbers.  However, this would not avoid possible division by zero errors in the Naïve Gauss 

elimination method.  To avoid division by zero as well as reduce (not eliminate) round-off 

error, Gaussian elimination with partial pivoting is the method of choice. 
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How does Gaussian elimination with partial pivoting differ from Naïve Gauss 

elimination? 

The two methods are the same, except in the beginning of each step of forward elimination, a 

row switching is done based on the following criterion.  If there are n  equations, then there 

are 1−n  forward elimination steps.  At the beginning of the thk  step of forward elimination, 

one finds the maximum of  

kka , kka ,1+ , …………, nka  

Then if the maximum of these values is pka  in the 
thp  row, npk  , then switch rows p  

and k .  

The other steps of forward elimination are the same as the Naïve Gauss elimination method.  

The back substitution steps stay exactly the same as the Naïve Gauss elimination method. 

 

Example 4 

In the previous two examples, we used Naïve Gauss elimination to solve 

45101520 321 =++ xxx    

751.17249.23 321 =+−− xxx  

935 321 =++ xxx  

using five and six significant digits with chopping in the calculations.  Using five significant 

digits with chopping, the solution found was 

 
















=

3

2

1

x

x

x

X  

      

















=

99995.0

5.1

625.0

 

This is different from the exact solution of 

 
















=

3

2

1

x

x

x

X  

















=

1

1

1

        

Find the solution using Gaussian elimination with partial pivoting using five significant digits 

with chopping in your calculations. 

Solution 

















−−

315

7249.23

101520

 

















3

2

1

x

x

x

  =   

















9

751.1

45

 



   

 

Forward Elimination of Unknowns 

Now for the first step of forward elimination, the absolute value of the first column elements 

below Row 1 is 

20 , 3− , 5  

        or 

20, 3, 5 

So the largest absolute value is in the Row 1.  So as per Gaussian elimination with partial 

pivoting, the switch is between Row 1 and Row 1 to give 

















−−

315

7249.23

101520

 

















3

2

1

x

x

x

  =  

















9

751.1

45

 

Divide Row 1 by 20 and then multiply it by –3, that is, multiply Row 1 by 15.020/3 −=− . 

   ( ) 15.045101520 −  gives Row 1 as 

   75.65.125.23 −−−−  

Subtract the result from Row 2  

 

   
   

  501.8    5.8  001.0   0        

75.65.125.23   

751.17 249.23     

−−−−−

−−

 

to get the resulting equations as 

















315

5.8001.00

101520

















3

2

1

x

x

x

 = 

















9

501.8

45

 

Divide Row 1 by 20 and then multiply it by 5, that is, multiply Row 1 by 25.020/5 = . 

   ( ) 25.045101520   gives Row 1 as 

   25.115.275.35  

Subtract the result from Row 3  

 

   
   

2.25  .5075.20     

25.115.2 75.3   5   

93       1   5     

−−

−
 

to get the resulting equations as 

















− 5.075.20

5.8001.00

101520

















3

2

1

x

x

x

  =  

















− 25.2

501.8

45

 

This is the end of the first step of forward elimination. 

Now for the second step of forward elimination, the absolute value of the second column 

elements below Row 1 is 

001.0 , 75.2−  

          or 

0.001, 2.75 

So the largest absolute value is in Row 3.  So Row 2 is switched with Row 3 to give 
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















−

5.8001.00

5.075.20

101520

  

















3

2

1

x

x

x

  =  

















−

501.8

25.2

45

 

Divide Row 2 by –2.75 and then multiply it by 0.001, that is, multiply Row 2 by 

00036363.075.2/001.0 −=− . 

   ( ) 00036363.025.25.075.20 −−−  gives Row 2 as 

   00081816.000018182.000099998.00 −  

Subtract the result from Row 3  

 

   
   

.500181848  50018182.8                      0   0     

00081816.00.00018182 .000999980   0   

501.8.58              .0010   0     

−−
 

Rewriting within 5 significant digits with chopping 

   5001.85001.800  

to get the resulting equations as 

















−

5001.800

5.075.20

101520

  

















3

2

1

x

x

x

  =  

















−

5001.8

25.2

45

 

Back substitution 

5001.85001.8 3 =x  

           
5001.8

5001.8
3 =x  

                 =1 

Substituting the value of 3x  in Row 2 

25.25.075.2 32 −=+− xx  

75.2

5.025.2 2
2

−

−−
=

x
x  

  
75.2

15.025.2
   

−

−−
=  

  
75.2

5.025.2
   

−

−−
=  

75.2

75.2
     

−

−
=  

1     =  

Substituting the value of 3x  and 2x  in Row 1 

45101520 321 =++ xxx  

20

101545 32

1

xx
x

−−
=  

     
20

11011545 −−
=  



   

 

    

20

1030
 

20

101545
 

−
=

−−
=

 

     
20

20
=  

     1=  
So the solution is  

 
















=

3

2

1

x

x

x

X  

      = 

















1

1

1

 

This, in fact, is the exact solution.  By coincidence only, in this case, the round-off error is 

fully removed. 

 

Can we use Naïve Gauss elimination methods to find the determinant of a square 

matrix? 

One of the more efficient ways to find the determinant of a square matrix is by taking 

advantage of the following two theorems on a determinant of matrices coupled with Naïve 

Gauss elimination. 

 

Theorem 1:  

Let ][A  be a nn  matrix.  Then, if ][B  is a nn  matrix that results from adding or 

subtracting a multiple of one row to another row, then )det()det( BA = (The same is true for 

column operations also). 

 

Theorem 2:  

Let ][A  be a nn  matrix that is upper triangular, lower triangular or diagonal, then 

nnii aaaaA = ......)det( 2211   

                  
=

=
n

i

iia
1

 

This implies that if we apply the forward elimination steps of the Naïve Gauss elimination 

method, the determinant of the matrix stays the same according to Theorem 1.  Then since at 

the end of the forward elimination steps, the resulting matrix is upper triangular, the 

determinant will be given by Theorem 2. 

 

Example 5 

Find the determinant of  
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















=

112144

1864

1525

][A  

Solution 

Remember in Example 1, we conducted the steps of forward elimination of unknowns using 

the Naïve Gauss elimination method on ][A  to give 

 
















−−=

7.000

56.18.40

1525

B  

According to Theorem 2 

)det()det( BA =  

           7.0)8.4(25 −=  

           00.84−=  

 

What if I cannot find the determinant of the matrix using the Naïve Gauss elimination 

method, for example, if I get division by zero problems during the Naïve Gauss 

elimination method? 

Well, you can apply Gaussian elimination with partial pivoting.  However, the determinant of 

the resulting upper triangular matrix may differ by a sign.  The following theorem applies in 

addition to the previous two to find the determinant of a square matrix. 

 

Theorem 3:  

Let ][A  be a nn  matrix.  Then, if ][B  is a matrix that results from switching one row with 

another row, then )det()det( AB −= . 

 

Example 6 

Find the determinant of  

















−

−

−

=

515

6099.23

0710

][A  

Solution 

The end of the forward elimination steps of Gaussian elimination with partial pivoting, we 

would obtain 















 −

=

002.600

55.20

0710

][B  

( ) 002.65.210det =B  

            05.150=  



   

 

Since rows were switched once during the forward elimination steps of Gaussian elimination 

with partial pivoting, 

( ) )det(det BA −=  

            05.150−=  

 

Example 7 

Prove  

( )1det

1
)det(

−
=

A
A  

Solution 

( ) ( )

( ) ( )

( )
( )1

1

1

1

det

1
det

1detdet

det det

][]][[

−

−

−

−

=

=

=

=

A
A

AA

IAA

IAA

 

If ][A  is a nn  matrix and 0)det( A , what other statements are equivalent to it? 

1. ][A  is invertible. 

2. 1][ −A  exists. 

3. ][][][ CXA =  has a unique solution. 

4. ]0[][][ =XA  solution is ]0[][


=X . 

5. ][][][][][ 11 AAIAA −− == . 

 

 

Key Terms: 

Naïve Gauss Elimination  

Partial Pivoting  

Determinant 
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