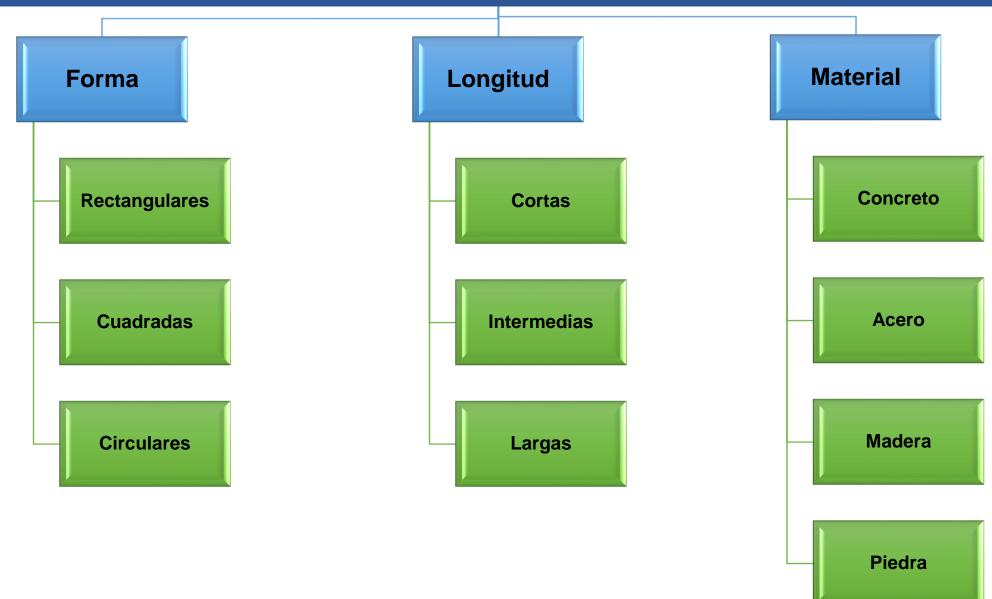


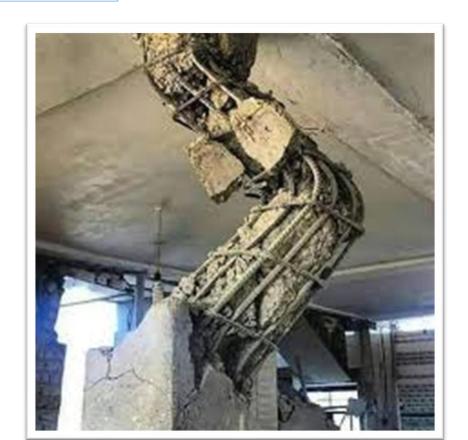
Columnas



Columnas (definición)

- Elementos estructurales que funcionan como soportes verticales
- Trabajan principalmente a compresión y flexión
- Transportan las cargas hasta la cimentación

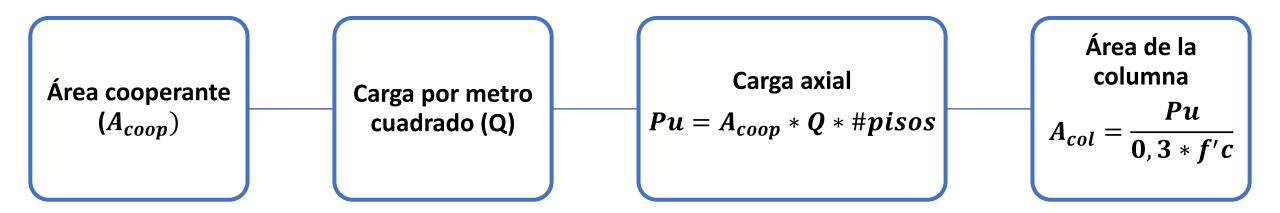
Forma

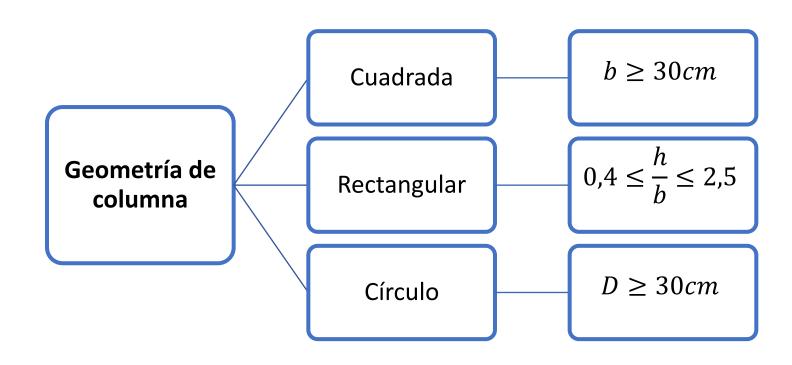

Circulares

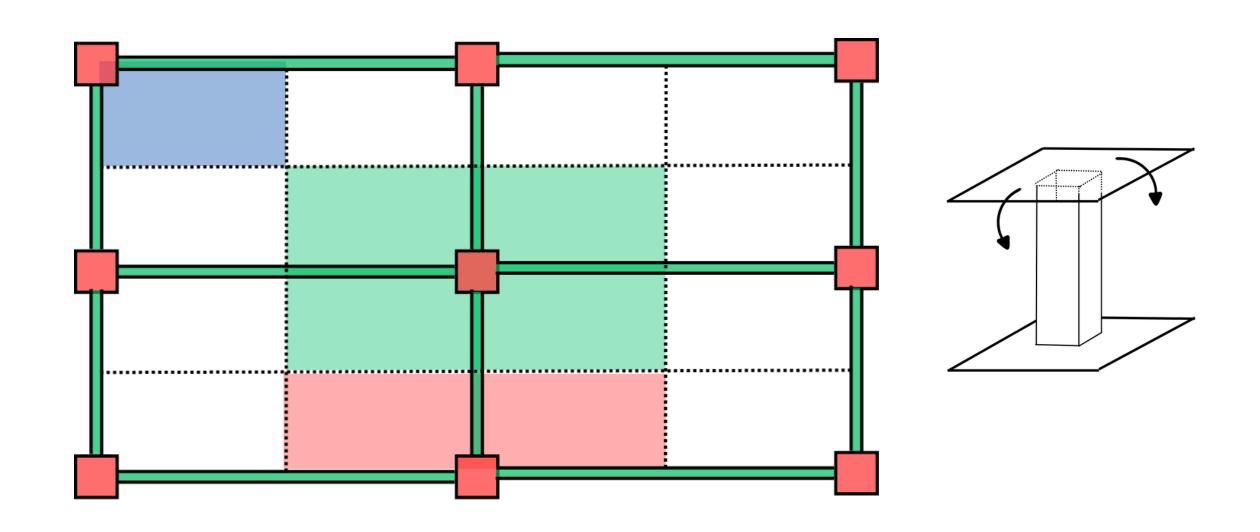
- + Mayor resistencia a flexión
- + No tienen puntos débiles
- + Mayor ductilidad
- Algunos encofrados solo pueden ser usador una vez
- -- Mayor costo

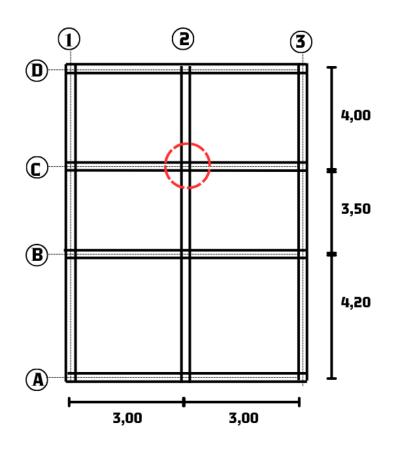
Longitud

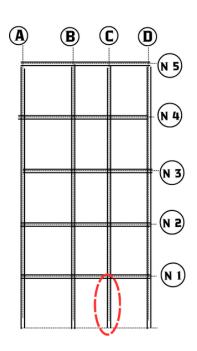
Cortas	Largas
Fallan por aplastamiento	Fallan por pandeo


Material



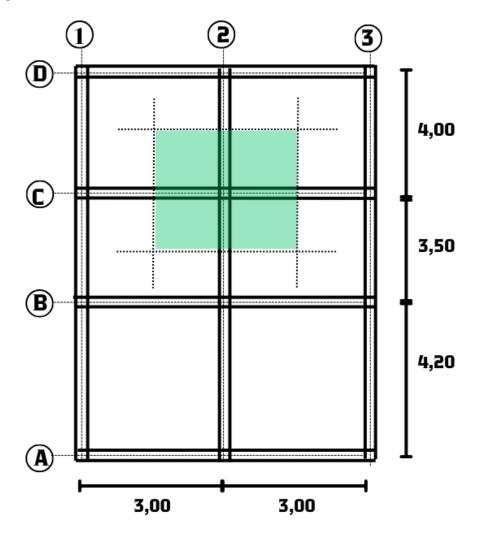

Predimensionamiento


Predimensionamiento



Áreas cooperantes

Ejercicio #1: Calcular las dimensiones de la columna indicada



Datos

CM=
$$550kg/m^2$$

CV= $250 kg/m^2$

$$f'c=210 kg/cm^2$$

Ejercicio #1: Calcular las dimensiones de la columna indicada

1. Cálculo de área cooperante

$$A_{coop} = \frac{L_{iz} + L_d}{2} * \frac{L_{sup} + L_{inf}}{2} = \frac{3+3}{2} * \frac{4+3.5}{2} = 11,25m^2$$

2. Cálculo de carga por metro cuadrado en toda la losa

$$Q = 1.2CM + 1.6CV = (1.2 * 550kg/m^2) + (1.6 * 250 kg/m^2)$$

 $Q = 1060 kg/m^2$

3. Cálculo de carga axial

$$Pu = A_{coop} * Q * \#pisos = 11,25m^2 * 1060 kg/m^2 * 5 = 59.625kg$$

4. Cálculo de área de la columna

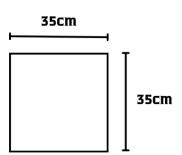
$$A_{col} = \frac{Pu}{0.3 * f'c} = \frac{59.625kg}{0.3 * 210 kg/cm^2} = 946.4cm^2$$

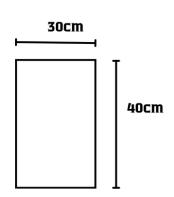
Ejercicio #1: Calcular las dimensiones de la columna indicada

5,1. Cálculo de dimensiones para una columna cuadrada

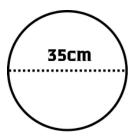
$$A_{col} = b * h$$

 $b = \sqrt{A_{col}} = \sqrt{946,4cm^2} = 30,76cm \rightarrow 35cm$

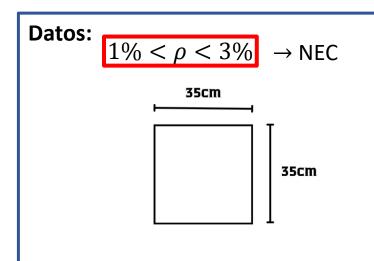



$$A_{col} = b * h = 2x * 3x = 6x^2 \rightarrow x = \sqrt{\frac{A_{col}}{6}} = \sqrt{\frac{946,4cm^2}{6}} = 12,56$$

 $b = 2x = 25,12cm \rightarrow 30cm$

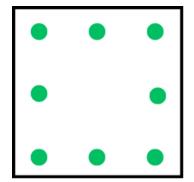

$$h = 3x = 37,68cm \rightarrow 40cm$$

5,3. Cálculo de dimensiones para una columna circular


$$A_{col} = \pi r^2 \rightarrow r = \sqrt{\frac{A_{col}}{\pi}} = \sqrt{\frac{946,4cm^2}{\pi}} = 17,36cm \rightarrow D = 34,71cm \rightarrow 35cm$$

Ejercicio #2: Calcular el área de acero longitudinal necesario en la columna prediseñada

Área
0,785
1,13
1,54
2,01
2,54
3,14

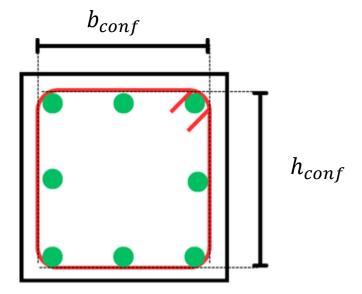

Acero comercial

1. Asumiendo una cuantía del 1%, podemos calcular el área de acero longitudinal

$$A_{ac} = A_{col} * \rho = 1225cm^2 * 1\% = 12,25cm^2$$

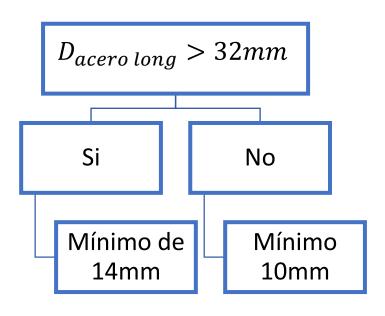
2. Cálculo de la cantidad de varillas que se necesita para cubrir el área de acero previamente calculado

#	# de varilla para cubrir el área de acero
10	16
12	11
14	8
16	7
18	5
20	4

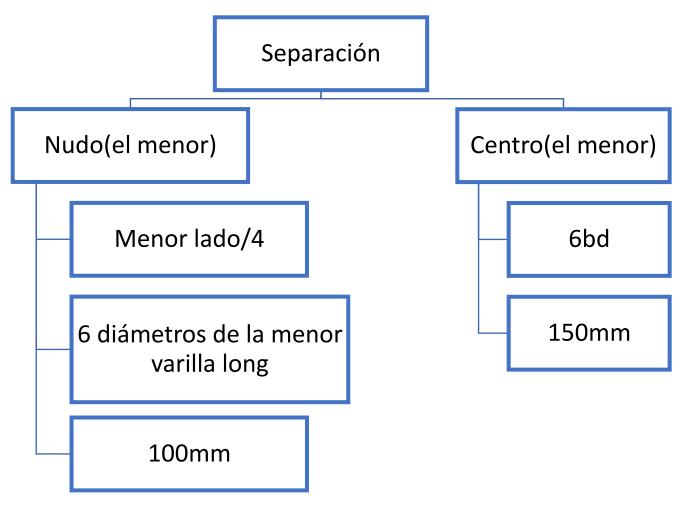


Prediseño (área de acero transversal)

Tabla 18.7.5.4 — Refuerzo transversal para columnas en pórticos especiales resistentes a momento


pointed a monor.					
Refuerzo transversal	Condición	Expresiones aplicables			
A_{sh}/sb_c para estribos	$P_u \le 0.3 A_g f_c'$ y $f_c' \le 70 \text{ MPa}$	Mayor de (a) y (b)	$0.3 \left(\frac{A_g}{A_{ch}} - 1\right) \frac{f_c'}{f_{yt}} $ (a)		
cerrados de confina- miento rectilíneos	$P_u > 0.3 A_g f_c'$ ó $f_c' > 70 \text{ MPa}$	Mayor de (a), (b) y (c)	$0.09 \frac{f'_c}{f_{yt}} \text{(b)}$ $0.2k_f k_n \frac{P_u}{f_{yt} A_{ch}} \text{(c)}$		

 A_{sh} , es el área de acero transversal $sb_c = separación$ de estribos Ag, es el área bruta de la columna (b*h) A_{ch} , es el área confinada interna de la columna f'c = resistencia a la compresión del concreto fy, es el máximo valor del esfuerzo que desarrolla el acero sin que se deforme permanentemente



Prediseño (área de acero transversal)

Requerimiento para el **diámetro** mínimo del acero transversal

Requerimiento para la **separación** del acero transversal

Ejercicio #3: Calcular el área de acero transversal necesario en la columna prediseñada

Datos:

El acero longitudinal son **8Φ14** r=3cm

$$f'c = 210 \, kg/cm^2$$

 $fy = 4200 \, kg/cm^2$
Altura de la columna =3m

- 1. Se escoge el **diámetro mínimo** de acero para el estribo $\emptyset min_{estribo} = 10mm \rightarrow \acute{A}rea de 0,785cm^2$
- 2. Cálculo de la separación máxima de los estribos en el nudo

opción
$$1 = \frac{menor\ lado}{4} = \frac{35cm}{4} = 8,75cm$$
opción $2 = 6 * 1,4cm = 8,4cm$
opción $3 = 10cm$

3. Cálculo de la separación máxima de los estribos en el centro

$$opción 1 = 6 * 1,4cm = 8,4cm$$

 $opción 3 = 15cm$

Se utilizará **8cm** de separación

Ejercicio #3: Calcular el área de acero transversal necesario en la columna prediseñada

Tabla 18.7.5.4 — Refuerzo transversal para columnas en pórticos especiales resistentes a momento

Refuerzo transversal	Condición	Expre	esiones aplicables	
A_{sh}/sb_c para estribos	$P_u \le 0.3 A_g f_c'$ y $f_c' \le 70 \text{ MPa}$	Mayor de (a) y (b)	$0.3 \left(\frac{A_g}{A_{ch}} - 1 \right) \frac{f_c'}{f_{yt}} $ (a)	
cerrados de confina- miento rectilíneos	$P_u > 0.3 A_g f_c'$ ó $f_c' > 70 \text{ MPa}$	Mayor de (a), (b) y (c)	$0.09 \frac{f_c'}{f_{yt}} \text{(b)}$ $0.2k_f k_n \frac{P_u}{f_{yt} A_{ch}} \text{(c)}$	

4. Relación de área de acero transversal y separación

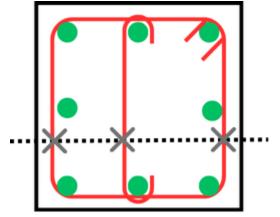
$$h_{conf} = (h - 2rec - \emptyset) = 35cm - (2 * 3cm) * 1cm = 28cm$$

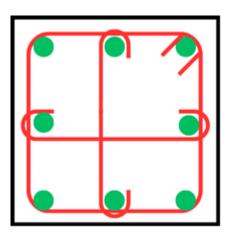
 $b_{conf} = (b - 2rec - \emptyset) = 35cm - (2 * 3cm) * 1cm = 28cm$

$$0.3 * \left(\frac{Ag}{A_{ch}} - 1\right) * \frac{f'c}{f_{yt}} = 0.3 * \left(\frac{35 * 35}{28 * 28} - 1\right) * \frac{210}{4200} = 9.64 * 10^{-3}$$

$$0.09 * \frac{f'c}{f_{vt}} = 0.09 * \frac{210}{4200} = 5.14 * 10^{-3}$$

Se utilizará $9,64 * 10^{-3}$

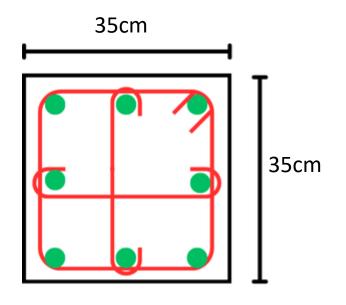

Ejercicio #3: Calcular el área de acero transversal necesario en la columna prediseñada


5. Cálculo de área de acero transversal

$$A_{sh} = 9,64 * 10^{-3} * sb_c * b_{conf} = 9,64 * 10^{-3} * 8cm * 28cm = 2,16cm^2$$

6. Con cuantas varillas trabajar

$$varillas = \frac{A_{sh}}{A_{estribo}} = \frac{2,16cm^2}{0,785cm^2} = 2,89 \rightarrow 3\emptyset10$$


Ejercicio #3: Calcular el área de acero transversal necesario en la columna prediseñada

7. Cálculo de longitud el nudo

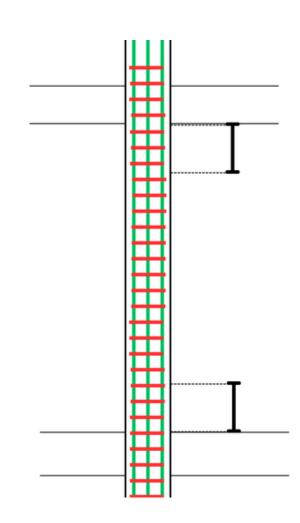
opción
$$1 = \frac{altura\ de\ columna}{6} = \frac{3m}{6} = 0,50m$$

opción $2 = Cara\ mayor = 35cm$
opción $3 = 45cm$

Longitud del nudo 50cm

Resumen de los ejercicios

Ejercicio #1:


Sección cuadrada de base y altura de **35cm**

Ejercicio #2:

El acero longitudinal son 8Φ14

Ejercicio #3:

El acero transversal son **3Φ10** Separadas cada **8mm** Longitud del nudo **50cm**

