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The main objective of a course on structural concrete design is to develop, in the engineering
student, the ability to analyze and design a reinforced concrete member subjected to different
types of forces in a simple and logical manner using the basic principles of statistics and some
empirical formulas based on experimental results. Once the analysis and design procedure is fully
understood, its application to different types of structures becomes simple and direct, provided
that the student has a good background in structural analysis.

The material presented in this book is based on the requirements of the American Concrete
Institute (ACI) Building Code (318-08). Also, information has been presented on material
properties, including volume changes of concrete, stress—strain behavior, creep, and elastic and
nonlinear behavior or reinforced concrete.

Concrete structures are widely used in the United States and almost all over the world.
The progress in the design concept has increased in the last few decades, emphasizing safety,
serviceability, and economy. To achieve economical design of a reinforced concrete member,
specific restrictions, rules, and formulas are presented in the codes to ensure both safety and
reliability of the structure. Engineering firms expect civil engineering graduates to understand
the code rules and, consequently, to be able to design a concrete structure effectively and
economically with minimum training period or overhead costs. Taking this into consideration,
this book is written to achieve the following objectives:

1. To present the material for the design of reinforced concrete members in a simple and
logical approach.

2. To arrange the sequence of chapters in a way compatible with the design procedure of
actual structures.

3. To provide a large number of examples in each chapter in clear steps to explain the analysis
and design of each type of structural member.

4. To provide an adequate number of practical problems at the end of each chapter to achieve
a high level of comprehension.

5. To explain the failure mechanism of a reinforced concrete beam due to flexure and to
develop the necessary relationships and formulas for design.

xv
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6. To explain why the code used specific equations and specific restrictions on the design
approach based either on a mathematical model or experimental results. This approach will
improve the design ability of the student.

7. To provide adequate number of design aids to help the student in reducing the repetitive
computations of specific commonly used values.

8. To enhance the student’s ability to use a total quality and economical approach in the design
of concrete structures and to help the student to design reinforced concrete members with
confidence.

9. To explain the nonlinear behavior and the development of plastic hinges and plastic rotations
in continuous reinforced concrete structures.

10. To provide a summary at the end of each chapter to help the student to review the materials
of each chapter separately.

11. To provide new information on the design of special members, such as beams with variable
depth (Chapter 8), stairs (Chapter 18), seismic design utilizing IBC 2006 (Chapter 20), and
beams curved in plan (Chapter 21), that are not covered in other books on concrete.

12, To present information on the design of reinforced concrete frames, principles of limit
design, and moment redistribution in continuous reinforced concrete structures.

13. To provide examples in SI units in all chapters of the book. Equivalent conversion factors
from customary units to SI units are also presented. Design tables in SI units are given in
Appendix B.

14. References are presented at the end of most chapters.

The book is an outgrowth of the author’s lecture notes, which represent their teaching and
industrial experience over the past 28 years. The industrial experience of the authors includes the
design and construction supervision and management of many reinforced, prestressed, and precast
concrete structures. This is in addition to the consulting work they performed for international
design and construction firms, professional registration in the United Kingdom, Canada, and
other countries, and a comprehensive knowledge of other European codes on the design of
concrete structures.

The book is written to cover two courses in reinforced concrete design. Depending on the
proficiency required, the first course may cover Chapters 1 through 11 and part of Chapter 13,
whereas the second course may cover the remaining chapters. Parts of the late chapters may
also be taught in the first course as needed. A number of optional sections have been included
in various chapters. These sections are indicated by an asterisk (*) in the Table of Contents and
may easily be distinguished from those that form the basic requirements of the first course. The
optional sections may be covered in the second course or relegated to a reading assignment.
Brief descriptions of the chapters are given below.

The first chapter of the book presents information on the historical development of concrete,
codes of practice, loads and safety provisions, and design philosophy and concepts. The second
chapter deals with the properties of concrete as well as steel reinforcement used in the design
of reinforced concrete structures, including stress—strain relationships, modulus of elasticity and
shear modulus of concrete, shrinkage, creep, fire resistance, high-performance concrete, and
fibrous concrete. Because the current ACI Code emphasizes the strength approach based on
strain limits, this approach has been adopted throughout the text. Chapters 3 and 4 cover the
analysis and design of reinforced concrete sections based on strain limits. The behavior of
reinforced concrete beams loaded to failure, the types of flexural faiture, and failure mechanism
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are explained very clearly. It is essential for the student to understand the failure concept and
the inherent reserve strength and ductility before using the necessary design formulas.

Chapter 5 covers alternative design methods based on methods described in Appendix A,
B, and C of the ACI code. It explains the alternative load factors with the relative strength
reduction factors and describes the strut and tie provisions.

Chapter 6 deals with the serviceability of reinforced concrete beams, including deflection
and control of cracking. Chapters 7 and 8 cover the bond, development length, shear, and
diagonal tension. In Chapter 8, expressions are presented for the design of members of variable
depth in addition to prismatic sections and deep beams. It is quite common sometimes to design
members with variable depth in actual structures. An example is introduced to explain the design
of deep beams using the strut and tie approach.

Chapter 9 covers the design of one-way slabs, including joist-floor systems. Distributions
of loads from slabs to beams and columns are also presented in this chapter to enhance the stu-
dent’s understanding of the design loads on each structural component. Chapter 10, 11, and 12
cover the design of axially loaded, eccentrically loaded, and long columns, respectively. Chapter
10 allows the student to understand the behavior of columns, failure conditions, ties and spirals,
and other code limitations. Absorbing basic information, the student is introduced in Chapter
11 to the design of columns subjected to compression and bending. New mathematical models
are introduced to analyze column sections controlled by compression or tension stresses. Biax-
ial bending for rectangular and circular columns are introduced using Bresler, PCA, and Hsu
methods. Design of long columns is presented in Chapter 12 using the ACI moment-magnifier
method.

Chapter 13 and 14 cover the design of footings and retaining walls, whereas Chapter 15
covers the design of reinforced concrete sections for shear and torsion. Torsional theories as
well as ACI Code design procedure are explained. Chapter 16 deals with continuous beams and
frames. A unique feature of this chapter is the introduction of the design of frames, frame hinges,
limit state design collapse mechanism, rotation and plastic hinges, and moment redistribution.
Adequate examples are presented to explain these concepts.

Design of two-way slabs introduced in Chapter 17. All types of two-way slabs, includ-
ing waffle slabs, are presented with adequate examples. Summary of the design procedure is
introduced with tables and diagrams. Chapter 18 covers the design of reinforced concrete stairs.
Slabtype as well as stepped-type stairs are explained. The second type, although quite common,
has not been covered in any text. Chapter 19 covers an introduction to prestressed concrete.
Methods of prestressing, fully and partially prestressed concrete design, losses, and shear design
are presented with examples. Chapter 20 presents the seismic design and analysis of members
utilizing the IBC 2006 and the ACI code. Chapter 21 deals with the design of curved beams. In
actual structures curved beams are used frequently. These beams are subjected to flexure, shear,
and torsion.

In Appendix A and B of this book, design tables using customary units and SI units are
presenated.

The photos shown in this book were taken by the authors. We wish to express appreciation
to John Gardner and Murat Saatcioglu from the University of Ottawa, Canada, for the photos
provided in the seismic chapter.

Our sincere thanks go out to Nadim Wehbe, South Dakota State University, Ahmet Pamuk,
Florida A&M University, M. Issa, University of Illinois Chicago, and Faisal Wafa, King Abdul-
Aziz University, for their constructive comments to this edition. Our thanks to Basile Rabbat of
the Portland Cement Association, Skokie, Illinois, for many discussions on the code interpretation.
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Special thanks are due to the civil engineering students at South Dakota State University and
San Jose State Untversity for their feedback while using the manuscript.

Our appreciation and thanks go out to Najah Elias for her boundless time and in helping
in the revisions of this manuscript and updating the solution manual. Qur thanks also go to
Vickie S. Estrada from San Jose State University for the time she put into making the necessary
additions to the manuscript. Also, our appreciation and thanks go to Snezana Ristanovic for
the valuable contribution and time she spent in the seismic design chapter and review of other
chapters.

Finally, the book is written to provide basic reference materials on the analysis and design
of structural concrete members in a simple, practical, and logical approach. Because this is
a required course for seniors in civil engineering, we believe this book will be accepted by
reinforced concrete instructors at different universities as well as designers who can make use
of the information in their practical design of reinforced concrete structures.

M. Nadim Hassoun Akthem Al-Manaseer
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Distance from extreme compression fiber to neutral axis

Side of rectangular column measured transverse to the span
Cross-sectional constant Y (1 — 0.63x/y)x3y/3; compression force
Compression force in a concrete section with a depth equal to a
Correction factor applied to the maximum end moment in columns
Creep coefficient = creep strain per unit stress per unit length

Force in compression steel

Factor relating shear and torsional stress properties = b, d/} x2y
Compression force in web

Force in the compression steel

Distance from extreme compression fiber to centroid of tension steel
Distance from extreme compression fiber to centroid of compression steel
Nominal diameter of reinforcing bar

Distance from tension extreme fiber to center of bar closest to that fiber, used for
crack control

Distance from extreme compression fibers to extreme tension steel
Dead load, diameter of a circular section

Eccentricity of load

Eccentricity of load with respect to centroid of tension steel
Modulus of elasticity, force created by earthquake

Modulus of elasticity of concrete = 33w'./f!

Modulus of elasticity of beam concrete

Modulus of elasticity of column concrete

Modulus of elasticity of slab concrete

Flexural stiffness of compression member

Modulus of elasticity of steel =29 x 10°psi = 2 x 10° MPa
Flexural stress

Xix
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Notation

Maximum flexural compressive stress in concrete due to service loads
Allowable compressive stress in concrete (alternate design method)
28-day compressive strength of concrete (standard cylinder strength)
Compressive strength of concrete at transfer (initial prestress)
Compressive stress in concrete due to prestress after all losses
Compressive stress in concrete at extreme fiber due to the effective prestressing
force after all losses

Stress in prestress steel at nominal strength

Tensile strength of prestressing tendons

Yield strength of prestressing tendons

Modulus of rupture of concrete = 7.51./f7 psi

Stress in tension steel due to service load

Stress in the compression steel due to service load

Effective stress in prestressing steel after all losses

Tensile stress in concrete

Yield strength of steel reinforcement

Lateral pressure of liquids

Nominal strength of a strut, tie, or nodal zone

Nominal strength of a strut

Nominal strength of a tie

Shear modulus of concrete (in torsion) = 0.45E,

Total depth of beam or slab or column

Depth of flange in flanged sections

Total depth of shearhead cross section

Lateral earth pressure

Moment of inertia

Moment of inertia of gross section of beam about its centroidal axis
Moment of inertia of gross section of column

Moment of inertia of cracked transformed section

Effective moment of inertia, used in deflection

Moment of inertia of gross section neglecting steel

Moment of inertia of gross section of slab

Moment of inertia of steel reinforcement about centroidal axis of section
Polar moment of inertia

Kip = 10001b, a factor used to calculate effective column length
Flexural stiffness of beam

Flexural stiffness of column

Flexural stiffness of equivalent column

Flexural stiffness of slab

Torsional stiffness of torsional member

Kilonewton

Kip per square inch

Clear span

Unsupported length of column

Live load, span length

Development length
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Is times the applicable modification factor

Basic development length of a standard hook
Clear span

Unsupported length of compression member
Length of shearhead arm

Span length in the direction of moment

Span length in direction transverse to span /;
Bending moment

Smaller end moment at end of column

Larger end moment at end of column

Maximum service load moment

Balanced moment in columns, used with Py
Cracking moment

Modified moment

Nominal moment strength = M, /¢

Nominal moment strength using an eccentricity ¢’
Total factored moment

Plastic moment

Moment strength due to factored loads

Part of M, when calculated as singly reinforced
Part of M, due to compression reinforcement or overhanging flanges in T- or
L-sections

Moment strength using an eccentricity ¢’
Shearhead moment resistance

Modular ratio = E/E,

Normal force

Factored normal load

Normal force in bearing at base of column
Neutral axis

Pounds per square inch

Qutside perimeter of gross area = 2{xq + Yo)
Perimeter of shear flow in area A,

Unfactored concentrated load

Balanced load in column (at failure)

Euler buckling load

Nominal axial strength of column for a given e
Axial strength of a concentrically loaded column
Prestressing force in the tendon at the jacking end
Factored load = ¢ P,

Prestressing force in the tendon at any point x
Soil-bearing capacity

Allowable bearing capacity of soil

Ultimate bearing capacity of soil using factored loads
Radius of gyration, radius of a circle

Resultant of force system, reduction factor for long columns, or R = R, /¢
A factor = M, /bd?

Spacing between bars, stirrups, or ties




xxii Notation

SI International system of units

t Thickness of a slab

T Torque, tension force

1. Nominal torsional strength provided by concrete

T, Cracking torsional moment

T, Nominal torsional strength provided by concrete and steel
T Nominal torsional strength provided by reinforcement
T, Torque provided by factored load = ¢7,

u Bond stress

U Design strength required to resist factored loads

%4 Shear stress produced by working loads

Ve Shear stress of concrete

Ver Shear stress at which diagonal cracks develop

Vh Horizontal shear stress

Vs Shear stress produced by a torque

vy Shear stress produced by factored loads

1% Unfactored shear force

Ve Shear strength of concrete

Vei Nominal shear strength of concrete when diagonal cracking results from
combined shear and moment

Vew Nominal shear strength of concrete when diagonal cracking results from
excessive principal tensile stress in web

Va Shear force at section due to unfactored dead load (d = distance from the face of
support)

Vp Nominal shear strength = V. + V;

vV, Vertical component of effective prestress force at section

V, Shear strength carried by reinforcement

Vu Shear force due to factored loads

w Width of crack at the extreme tension fiber, unit weight of concrete

Wy Factored load per unit length of beam or per unit area of slab

w Wind load or total load

X0 Length of the short side of a rectangular section

X] Length of the short side of a rectangular closed stirrup

¥b Same as y;, except to extreme bottom fibers

Yo Length of the long side of a rectangular section

¥ Distance from centroidal axis of gross section, neglecting reinforcement, to
extreme top fiber

¥ Length of the long side of a rectangular closed stirrup

o Angle of inclined stirrups with respect to longitudinal axis of beam, ratio of
stiffness of beam to that of slab at a joint

o, Ratio of flexural stiffness of columns to combined flexural stiffness of the slabs
and beams at a joint; (X K Y E(K; + Kp)

Qe Ratio of flexural stiffness of equivalent column to combined flexural stiffness of
the slabs and beams at a joint: (K. )/ Z(K; + Kj)

oy Average value of a for all beams on edges of a panel

oy Ratio of stiffness of shearhead arm to surrounding composite slab section

B Ratio of long to short side of rectangular footing, measure of curvature in biaxial

bending
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Ratio of a/c, where a = depth of stress block and ¢ = distance between neutral
axis and extreme compression fibers (This factor is 0.85 for f! < 4000 psi and
decreases by 0.05 for each 1000 psi in excess of 4000 psi but is at least 0.65.)
Ratio of unfactored dead load to unfactored live load per unit area

Ratio of long to short sides of column or loaded area

Ratio of maximum factored dead load moment to maximum factored total
moment

Ratio of torsional stiffness of edge beam section to flexural stiffness of slab:
EpCRE 1,

Distance between rows of reinforcement on opposite sides of columns to total
depth of column #

Fraction of unbalanced moment transferred by flexure at slab-colamn connections
Factor for type of prestressing tendon (0.4 or 0.28)

Fraction of unbalanced moment transferred by eccentricity of shear at
slab-column connections

Magnification factor

Moment magnification factor for frames braced against sidesway

Moment magnification factor for frames not braced against sidesway
Deflection

Strain

Strain in concrete

Strain in steel

Strain in compression steel

Yield strain = f,/E;

Slope angle

Multiplier factor for reduced mechanical properties of lightweight concrete
Multiplier for additional long-time deflection

Poisson’s ratio; coefficient of friction

Parameter for evaluating capacity of standard hook

A constant equal to approximately 3.1416

Ratio of the tension steel area to the effective concrete area = A;/bd

Ratio of compression steel area to effective concrete area = A} /bd

(p— )

Balanced steel ratio

Ratio of total steel area to total concrete arca

Ratio of prestressed reinforcement A ,5/bd

Ratio of volume of spiral steel to volume of core

Aslbyd

Strength-reduction factor

Factor used to modify development length based on reinforcement coating
Factor used to modify development length based on reinforcing size

Factor used to modify development length based on reinforcement location
Tension reinforcing index = p f,/f'c

Compression reinforcing index = p' fy/f

Prestressed steel index = pp, fps/f

Prestressed steel index for flanged sections

Tension reinforcing index for flanged sections

Compression reinforcing index for flanged sections computed as for w, @, and '







To Convert to Multiply By

1. Length
Inch Millimeter 254
Foot Millimeter 304.8
Yard Meter 09144
Meter Foot 3.281
Meter Inch 39.37

2. Area
Square inch Square millimeter 645
Square foot Square meter 0.0929
Square yard Square meter 0.836
Square meter Square foot 10.76

3. Volume
Cubic inch Cubic millimeter 16390
Cubic foot Cubic meter 0.02832
Cubic yard Cubic meter 0.765
Cubic foot Liter 28.3
Cubic meter Cubic foot 35.31
Cubic meter Cubic yard 1.308

4. Mass
Ounce Gram 28.35
Pound (Ib) Kilogram 0.454
Pound Gallon 0.12
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Conversion Factors

To Convert to Multipty By
Short ton (2000 1b) Kilogram 907
Long ton (22401b) Kilogram 1016
Kilogram Pound (1b) 2.205
Slug Kilogram 14.59

5. Density
Pound/cubic foot Kilogram/cubic meter 16.02
Kilogram/cubic meter Pound/cubic foot 0.06243

6. Force
Pound (Ib) Newton (N} 4.448
Kip (16001b) Kilonewton (kN) 4.448
Newton (N) Pound 0.2248
Kilonewton (kN) Kip (K) 0.225

7. Forceflength
Kip/foot Kilonewton/meter 14.59
Kilonewton/meter Pound/foot 68.52
Kilonewton/meter Kip/foot 0.06852

8. Force/area (siress)

Pound/square inch (psi) Newton/square centimeter 0.6895
Pound/square inch (psi) Newton/square millimeter (MPa) 0.0069
Kip/square inch (Ksi) Meganewton/square meter 6.895
Kip/square inch (Ksi) Newton/square millimeter 6.895
Pound/square foot Kilonewton/square meter .04788
Pound/square foot Newton/square meter 47.88
Kip/square foot Kilonewton/square meter 47.88
Newton/square millimeter Kip/square inch (Ksi) 0.145
Kilonewton/square meter Kip/square foot 0.0208
Kilonewton/square meter Pound/square foot 20.8

9. Moments
Foot-Kip Kilonewton-meter 1.356
Inch-Kip Kilonewton-meter 0.113
Inch-Kip Kilogram force-meter 11.52
Kilonewton-meter Foot-Kip 0.7375
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tallest concrete building in the United States.
1.1 STRUCTURAL CONCRETE

The design of different structures is achieved by performing, in general, two main steps: (1) deter-
mining the different forces acting on the structure using proper methods of structural analysis,
and (2) proportioning all structural members economically, considering the safety, stability,
serviceability, and functionality of the structure. Structural concrete is one of the materials com-
monly used to design all types of buildings. Its two component materials, concrete and steel,
work together to form structural members that can resist many types of loadings. The key to
its performance lies in strengths that are complementary: Concrete resists compression and steel
reinforcement resists tension forces.

The term structural concrete indicates all types of concrete used in structural applications.
Structural concrete may be plain, reinforced, prestressed, or partially prestressed concrete; in addi-

tion, concrete is used in composite design. Composite design is used for any structural member,
such as beams or columns, when the member contains a combination of concrete and steel shapes.

1.2 HISTORICAL BACKGROUND

The first modern record of concrete is as early as 1760, when John Smeaton used it in Britain
in the first lock on the river Calder [1]. The walls of the lock were made of stones filled in
with concrete. In 1796, J. Parker discovered Roman natural cement, and 15 years later Vicat
burned a mixture of clay and lime to produce cement. In 1824, Joseph Aspdin manufactured

1
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portland cement in Wakefield, Britain. It was called portland cement because when it hardened,
it resembled stone from the quarries of the Isle of Portland.

In France, Frangois Marte Le Brun built a concrete house in 1832 in Moissac, in which
he used concrete arches of 18-ft span. He used concrete to build a school in St. Aignan in
1834 and a church in Corbariece in 1835. Joseph Louis Lambot [2] exhibited a small rowboat
made of reinforced concrete at the Paris Exposition in 1854. In the same year, W. B. Wilkinson
of England obtained a patent for a concrete floor reinforced by twisted cables. The Frenchman
Frangois Cignet obtained his first patent in 1855 for his system of iron bars, which were embedded
in concrete floors and extended to the supports. One year later, he added nuts at the screw ends
of the bars, and in 1869, he published a book describing the applications of reinforced concrete.

Joseph Monier, who obtained his patent in Paris on July 16, 1867, was given credit for the
invention of reinforced concrete [3]. He made garden tubs and pots of concrete reinforced with
iron mesh, which he exhibited in Paris in 1867. In 1873, he registered a patent to use reinforced
concrete in tanks and bridges, and four years later, he registered another patent to use it in beams
and columns [1].

In the United States, Thaddeus Hyatt conducted flexural tests on 50 beams that contained
iron bars as tension reinforcement and published the results in 1877. He found that both concrete
and steel can be assumed to behave in a homogeneous manner for all practical purposes. This
assumption was important for the design of reinforced concrete members using elastic theory.
He used prefabricated slabs in his experiments and considered prefabricated units to be best
cast in T-sections and placed side by side to form a floor slab. Hyatt is generally credited with
developing the principles upon which the analysis and design of reinforced concrete are now
based.

A reinforced concrete house was built by W. E. Ward near Port Chester, New York, in
1875. Tt used reinforced concrete for walls, beams, slabs, and staircases. P. B. In 1877, Write
described in the American Architect and Building News the applications of reinforced concrete
in Ward’s house as a new method in building construction.

E. L. Ransome, head of the Concrete Steel Company in San Francisco, used reinforced
concrete in 1879 and deformed bars for the first time in 1884, During 18891891, he built the
two-story Leland Stanford Museum in San Francisco using reinforced concrete. He also built a
reinforced concrete bridge in San Francisco. In 1900, after Ransome introduced the reinforced
concrete skeleton, the thick wall system started to disappear in construction. He registered the
skeleton type of structure in 1902, using spiral reinforcement in the columns as was suggested
by Armand Considére of France. A. N. Talbot, of the University of Illinois, and F. E. Turneaure
and M. O. Withney, of the University of Wisconsin, conducted extensive tests on concrete to
determine its behavior, compressive strength, and modulus of elasticity.

In Germany, G. A. Wayass bought the French Monier patent in 1879 and published his
book on Monier methods of construction in 1887. Rudolph Schuster bought the patent rights
in Austria, and the name of Monier spread throughout Europe, which is the main reason for
crediting Monier as the inventor of reinforced concrete.

In 1900, the Ministry of Public Works in France called for a committee headed by Armand
Considére, chief engineer of roads and bridges, to establish specifications for reinforced concrete,
which were published in 1906.

Reinforced concrete was further refined by introducing some precompression in the tension
zone to decrease the excessive cracks. This refinement was the preliminary introduction of partial
and full prestressing. In 1928, Eugene Freyssinet established the practical technique of using
prestressed concrete [4].
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The Barwick House, a three-story concrete building built in 1905, Montreal, Canada.

From 1915 to 1935, research was conducted on axially loaded columns and creep effects
on concrete; in 1940, eccentrically loaded columns were investigated. Ultimate-strength design
started to receive special attention, in addition to diagonal tension and prestressed concrete. The
American Concrete Institute Code (ACI Code) specified the use of ultimate-strength design in
1963 and included this method in all later codes. Building codes and specifications for the design
of reinforced concrete structures are established in most countries, and research continues on
developing new applications and more economical designs.

1.3 ADVANTAGES AND DISADVANTAGES OF REINFORCED CONCRETE

Reinforced concrete, as a structural material, is widely used in many types of structures. It is
competitive with steel if economically designed and executed.
The advantages of reinforced concrete can be summarized as follows:

It has a relatively high compressive strength.

It has better resistance to fire than steel.

It has a long service life with low maintenance cost.

In some types of structures, such as dams, piers, and footings, it is the most economical
structural material.

5. It can be cast to take the shape required, making it widely used in precast structural
components. It yields rigid members with minimum apparent deflection.

2w
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The disadvantages of reinforced concrete can be summarized as follows:

1. It has a low tensile strength of about one-tenth of its compressive strength.
2. It needs mixing, casting, and curing, all of which affect the final strength of concrete.

3. The cost of the forms used to cast concrete is relatively high. The cost of form material
and artisanry may equal the cost of concrete placed in the forms.

4. It has a low compressive strength as compared to steel (the ratio is about 1:10, depending
on materials), which leads to large sections in columns of multistory buildings.

5. Cracks develop in concrete due to shrinkage and the application of live loads.

1.4 CODES OF PRACTICE

The design engineer is usually guided by specifications called the codes of practice. Engineering
specifications are set up by various organizations to represent the minimum requirements neces-
sary for the safety of the public, althongh they are not necessarily for the purpose of restricting
engineers.

Most codes specify design loads, allowable stresses, material quality, construction types,
and other requirements for building construction. The most significant code for structural concrete
design in the United States is the Building Code Requirements for Structural Concrete, ACI
318, or the ACI Code. Most of the design examples of this book are based on this code. Other
codes of practice and material specifications in the United States include the International Code,
the Uniform Building Code, Standard Building Code, National Building Code, Basic Building
Code, South Florida Building Code, American Association of State Highway and Transportation
Officials (AASHTO) specifications, and specifications issued by the American Society for Testing
and Materials (ASTM), American Railway Engineering Association (AREA), and Bureau of
Reclamation, Department of the Interior.

Different codes other than those of the United States include the British Standard (BS) Code
of Practice for Reinforced Concrete, CP 110 and BS 8110; the National Building Code of Canada;
the German Code of Practice for Reinforced Concrete, DIN 1045; Specifications for Steel Rein-
forcement (U.S.S.R.); and Technical Specifications for the Theory and Design of Reinforced
Concrete Structures, CC-BA (France), and the CEB Code (Comite European Du Beton).

1.5 DESIGN PHILOSOPHY AND CONCEPTS

The design of a structure may be regarded as the process of selecting the proper materials and pro-
portioning the different elements of the structure according to state-of-the-art engineering science
and technology. In order to fulfill its purpose, the structure must meet the conditions of safety,
serviceability, economy, and functionality. This can be achieved using design approach-based
strain limits in concrete and steel reinforcement.

The unified design method (UDM) is based on the strength of structural members assuming
a failure condition, whether due to the crushing of the concrete or to the yield of the reinforcing
steel bars. Although there is some additional strength in the bars after yielding (due to strain
hardening), this additional strength is not considered in the analysis of reinforced concrete
members. In this approach, the actual loads, or working loads, are muitiplied by load factors to
obtain the factored design loads. The load factors represent a high percentage of the factor for
safety required in the design. Details of this method are presented in Chapters 3, 4, and 11. The
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ACI Code emphasizes this method of design, and its provisions are presented in the body of the
Code. The reason for introducing this approach by the ACI Code relates to the fact that different
design methods were developed for reinforced and prestressed concrete beams and columns.
Also, design procedures for prestressed concrete were different from reinforced concrete. The
purpose of the Code approach is to simplify and unify the design requirements for reinforced
and prestressed flexural members and compression members.

A second approach for the design of reinforced and prestressed concrete flexural and
compression members is called the strength design method, or the alternative provisions (ADM),
as introduced in the ACI Code, Appendix B. When this method is used in the design, the
designer must adhere to all sections of Appendixes B and C and substitute accordingly for
the corresponding sections of the Code. Reinforcement limits, strength reduction factors, load
factors, and moment redistribution are affected. The provisions of this method satisfy the Code
and are equally acceptable.

A third approach for the design of concrete members is called the strut and tie method
(STM). The provisions of this method are introduced in the ACI Code, Appendix A. It applies
effectively in regions of discontinuity such as support and load applications on beams. Conse-
quently, the structural element is divided into segments and then analyzed using the truss analogy
approach, where the concrete resists compression forces as a strut, while the steel reinforcement
resists tensile forces as a tie.

A basic method that is not commonly used is called the working stress design or the
elastic design method. The design concept is based on the elastic theory assuming a straight
line stress distribution along the depth of the concrete section under service loads. The members
are proportioned on the basis of certain allowable stresses in concrete and steel. The allowable
stresses are fractions of the crushing strength of concrete and yield strength of steel. This method
has been deleted from the ACI Code. The application of this approach is still used in the design
of prestressed concrete members under service load conditions, as shown in Chapter 19.

Limit state design is a further step in the strength design method. It indicates the state of
the member in which it ceases to meet the service requirements such as losing its ability to with-
stand external loads, or suffering excessive deformation, cracking, or local damage. According
to the limit state design, reinforced concrete members have to be analyzed with regard to three
limiting states:

1. Load carrying capacity (safety, stability, and durability)
2. Deformation (deflections, vibrations, and impact)
3. The formation of cracks.

The aim of this analysis is to ensure that no limiting state will appear in the structural
member during its service life.

1.6 UNITS OF MEASUREMENT

Two units of measurement are commonly used in the design of structural concrete. The first is the
U.S. customary system (lying mostly in its human scale and its ingenious use of simple numerical
proportions), and the second is the SI (Le Systéme International d’Unités), or metric, system.

The metric system is planned to be in universal use within the coming few years. The
United States is committed to change to SI units. Great Britain, Canada, Australia, and other
countries have been using SI units for several years.

The base units in the SI system are the units of length, mass, and time, which are the meter
{(m), the kilogram (kg), and the second (s), respectively. The unit of force, a derived unit called
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the newton (N), is defined as the force that gives the acceleration of 1 meter per second per
second (1 m/s?) to a mass of 1kg, or IN = 1kg x m/s?.

The weight of a body, W, which is equal to the mass, m, multiplied by the local gravitational
acceleration, g (9.81 m/s?), is expressed in newtons (N). The weight of a body of 1kg mass is
W =mg = lkg x 9.81m/s? = 9.8] N.

Multiples and submultiples of the base SI units can be expressed through the use of prefixes.
The prefixes most frequently used in structural calculations are the kilo (k), mega (M), milli (m),
and micro (). For example,

1km=1000m 1mm=000lm 1pum=10"%m
1kN=1000 N 1 Mg= 1000 kg =10° g

1.7 LOADS

Structural members must be designed to support specific loads.

Loads are those forces for which a given structure should be proportioned. In general, loads
may be classified as dead or live.

Dead loads include the weight of the structure (its self-weight) and any permanent material
placed on the structure, such as tiles, roofing materials, and walls. Dead loads can be determined
with a high degree of accuracy from the dimensions of the elements and the unit weight of
materials.

Live loads are all other loads that are not dead loads. They may be steady or unsteady
or movable or moving; they may be applied slowly, suddenly, vertically, or laterally, and their
magnitudes may fluctuate with time. In general, live loads include the following:

» Occupancy loads caused by the weight of the people, furniture, and goods

+ Forces resulting from wind action and temperature changes

» The weight of snow if accumulation is probable

» The pressure of liquids or earth on retaining structures

+ The weight of traffic on a bridge

* Dynamic forces resulting from moving loads (impact), earthquakes, or blast loading

The ACI Code does not specify loads on structures; however, occupancy loads on different
types of buildings are prescribed by the American National Standards Institute (ANSI) [S]. Some
typical values are shown in Table 1.1. Table 1.2 on page 7 shows weights and specific gravity
of various materials.

AASHTO and AREA specifications prescribe vehicle loadings on highway and railway
bridges, respectively. These loads are given in Refs. 6 and 7.

Snow loads on structures may vary between 10 and 40 Ib/ft? (0.5 and 2 kN/m?), depending
on the local climate.

Wind loads may vary between 15 and 301b/ft?, depending on the velocity of wind. The
wind pressure of a structure, F, can be estimated from the following equation:

F = 0.00256C, V? (1.1)
where
V = velocity of air (mi/h)
C; = shape factor of the structure
F = the dynamic wind pressure (Ib/ft?)



1.7 Loads 7

Table 1.1 Typical Uniformly Distributed Design Loads

Design Live Load
Occupancy Contents Ib/ft2 kN/m?
Assembly hail Fixed seats 60 29
Movable scats 100 4.8
Hospital Operating rooms 60 2.9
Private rooms 40 19
Hotel Guest rooms 40 1.9
Public rooms 100 4.8
Balconies 100 438
Housing Private houses and apartments 40 1.9
Public rooms 100 48
Institution Classrooms 40 1.9
Corridors 100 4.3
Library Reading rooms 60 29
Stack rooms 150 7.2
Office building Offices 50 24
Lobbies 100 4.8
Stairs (or balconies) 100 438
Storage warehouses Light 100 48
Heavy 250 12.0
Yards and terraces 100 4.8
Table 1.2 Density and Specific Gravity of Various Materials
Density
Material Ib/ft? kg/m? Specific Gravity
Building materials
Bricks 120 1.924 1.8-2.0
Cement, portland, loose 90 1,443 —
Cement, portland, set 183 2,933 2.7-32
Earth, dry, packed 95 1,523 —
Sand or gravel, dry, packed 100120 1,600-1,924 —
Sand or gravel, wet 118-120 1,892-1,924 —
Liquids
Oils 58 930 0.9-0.94
Water (at 4 °C) 62.4 1,000 1.0
Ice 56 898 0.88-0.92
Metals and minerals
Aluminum 165 2,645 2.55-2.75
Copper 556 8,913 9.0
Iron 450 7,214 7.2
Lead 710 11,380 11.38
Steel, rolled 490 7.855 7.85
Limestone or marble 165 2,645 25-238
Sandstone 147 2,356 2.2-2.5
Shale or slate 175 2,805 2.7-29
Normal-weight concrete
Plain 145 2,324 22-2.4

Reinforced or prestressed 150 2,405 23-25
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As an example, for a wind of 100 mi/h with C; = 1, the wind pressure is equal to 25.6 Ib/ft?, It
is sometimes necessary to consider the effect of gusts in computing the wind pressure by multiplying
the wind velocity in Eq. 1.1 by a gust factor, which generally varies between 1.1 and 1.3.

The shape factor, C, varies with the horizontal angle of incidence of the wind. On vertical
surfaces of rectangular buildings, C; may vary between 1.2 and 1.3. Detailed information on
wind loads can be found in Ref. 5.

1.8 SAFETY PROVISIONS

Structural members must always be proportioned to resist loads greater than the service or actual
load in order to provide proper safety against failure. In the strength design method, the member
is designed to resist factored loads, which are obtained by multiplying the service loads by load
factors. Different factors are used for different loadings. Because dead loads can be estimated
quite accurately, their load factors are smaller than those of live loads, which have a high degree
of uncertainty. Several load combinations must be considered in the design to compute the max-
imum and minimum design forces. Reduction factors are used for some combinations of loads
to reflect the low probability of their simultanecous occurrences. The ACI Code presents specific
values of load factors to be used in the design of concrete structures (see Chapter 3, Section 3.5).

In addition to load factors, the ACI Code specifies another factor fo allow an additional
reserve in the capacity of the structural member. The nominal strength is generally calculated using
accepted analytical procedure based on statistics and equilibrium; however, in order to account
for the degree of accuracy within which the nominal strength can be calculated, and for adverse
variations in materials and dimensions, a strength reduction factor, ¢, should be used in the strength
design method. Values of the strength reduction factors are given in Chapter 3, Section 3.6.

To summatize the above discussion, the ACI Code has separated the safety provision into
an overload or load factor and to an undercapacity (or strength reduction) factor, ¢. A safe design
is achieved when the structure’s strength, obtained by multiplying the nominal strength by the
reduction factor, ¢, exceeds or equals the strength needed to withstand the factored loadings
(service loads times their load factors). For example,

M, <¢M, and V, <¢V, {1.2)
where

M, and V, = external factored moment and shear forces
M, and V, = nominal flexural strength and shear strength of the member, respectively

Given a load factor of 1.2 for dead load and a load factor of 1.6 for live load, the overall
safety factor for a structure loaded by a dead load, D, and a live load, L, is

12D + 1. . . .
Factor of safety = 1+ 1-0F (l) = 12+ 16(L/D) (l) (1.3)
D+ L ¢ 1+(L/D)y \¢
The factor of safety for the varions values of ¢ and L/D ratios is shown below.
¢ 0.9 0.8 0.7
L/D 0 l 2 3 0 1 2 3 0 | 2 3

Factor of Safety 1.33 1.56 1.63 1.67 150 1.74 1.83 1.88 1.71 200 210 215
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For members subjected to flexure (beams), with tension-controlled sections, ¢ = 0.9, and the
factor of safety ranges between 1.33 for L/D = 0 and 1.67 for L/D = 3. These values are less
than those specified by the ACI Code 318-99 of 1.56 for L/D = 0 and 1.81 for L/D = 3.0
based on load factors of 1.4 for the dead load and 1.7 for the live load. This reduction ranges
between 17 and 8% respectively.

For members subjected to axial forces (spiral columns), ¢ = 0.7, and the factor of
safety ranges between 1.71 for L/D = 0 and 2.15 for L/D = 3. The increase in the factor
of safety in columns reflects the greater overall safety requirements of these critical building

elements.
A general format of Eq. 1.2 may be written as follows [8]:
¢R > voZ(v:i Q) (1.4)
where

R, = nominal strength of the structural number
¢ = undercapacity factor (<1.0)
T Q; = sum of load effects
v; = overload factor
vg — analysis factor (>1.0)

The subscript i indicates the load type, such as dead load, live load, and wind load. The analysis
factor, v, is greater than 1.0 and is introduced to account for uncertainties in structural analysis.
The overload factor, v;, is introduced to account for several factors such as an increase in live
load due to a change in the use of the structure and variations in erection procedures. The design
concept is referred to as load and resistance factor design (LRFD) [8,9].

1.9 STRUCTURAL CONCRETE ELEMENTS

Structural concrete can be used for almost all buildings, whether single story or multistory. The
concrete building may contain some or all of the following main structural elements, which are
explained in detail in other chapters of the book:

« Slabs are horizontal plate elements in building floors and roofs. They may carry gravity
loads as well as lateral loads. The depth of the slab is usuvally very small relative to its
length or width (Chapters 9 and 17).

« Beams are long, horizontal or inclined members with limited width and depth. Their main
function is to support loads from slabs (Chapters 3 and 4).

o Columns are critical members that support loads from beams or slabs. They may be sub-
jected to axial loads or axial loads and moments (Chapters 10 and 11).

o Frames are structural members that consist of a combination of beams and columns or
slabs, beams, and columns. They may be statically determinate or statically indeterminate
frames (Chapter 16).

« Footings are pads or strips that support columns and spread their loads directly to the soil
(Chapter 13).

« Walls are vertical plate elements resisting gravity as well as lateral loads as in the case of
basement walls (Chapter 14).
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1.10 STRUCTURAL CONCRETE DESIGN

The first step in the design of a building is the general planning carried out by the architect
to determine the layout of each floor of the building to meet the owner’s requirements. Once
the architectural plans are approved, the structural engineer then determines the most adequate
structural system to ensure the safety and stability of the building. Different structural options
must be considered to determine the most economical solution based on the materials available
and the soil condition. This result is normally achieved by

1. Idealizing the building into a structural model of load-bearing frames and elements
2. Estimating the different types of loads acting on the building

3. Performing the structural analysis using computer or manual calculations to determine the
maximum moments, shear, torsional forces, axial loads, and other forces

4. Proportioning the different structural elements and calculating the reinforcement needed

S. Producing structural drawings and specifications with enough details to enable the contrac-
tor to construct the building properly

1.11  ACCURACY OF CALCULATIONS

In the design of concrete structures, exact calculations to determine the size of the concrete
elements are not needed. Calculators and computers can give an answer to many figures after
the decimal point. For a practical size of a beam, slab, or column, each dimension should be
approximated to the nearest 1 or 1% inch. Moreover, the steel bars available in the market are
limited to specific diameters and areas, as shown in Table A.12 (Appendix A). The designer
should choose a group of bars from the table with an area equal to or greater than the area
obtained from calculations. Also, the design equations in this book based on the ACI Code are
approximate. Therefore, for a practical and economical design, it is adequate to use four figures
(or the full number with no fractions if it is greater than four figures) for the calculation of forces,
stresses, moments, or dimensions such as length or width of section. For strains, use five or six
figures because strains are very small quantities measured in 2 millionth of an inch (for example,
a strain of 0.000358 in./in.). Stresses are obtained by multiplying the strains by the modulus of
elasticity of the material, which has a high magnitude (for example, 29,000,000 Ib/in.?) for steel.
Any figures less than five or six figures in strains will produce quite a change in stresses.

Examples

For forces, use 28.45 K, 28451b, 567.8 K (four figures).
For force/length, use 2.451 K/ft or 2451 b/t

For length or width, use 14.63in., 1.219ft (or 1.22 ft).
For areas, use 7.537in.2, and for volumes, use 48.72in.%.
For strains, use 0.002078.
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1.12 CONCRETE HIGH-RISE BUILDINGS

High-rise buildings are becoming the dominant feature of many U.S. cities; a great number of
these buildings are designed and constructed in structural concrete.

Although at the beginning of the century the properties of concrete and joint behavior
of steel and concrete were not fully understood, a 16-story building, the Ingalls Building, was
constructed in Cincinnati in 1902 with a total height of 210 ft (64 m). In 1922, the Medical Arts
Building, with a height of 230 ft (70 m), was constructed in Dallas, Texas. The design of concrete
buildings was based on elastic theory concepts and a high factor of safety, resulting in large
concrete sections in beams and columns. After extensive research, high-strength concrete and
high-strength steel were allowed in the design of reinforced concrete members. Consequently,
small concrete sections as well as savings in materials were achieved, and new concepts of
structural design were possible.

To visualize how high concrete buildings can be built, some structural concrete skyscrapers
are listed in Table 1.3. The CN Tower is the world’s tallest free-standing concrete structure.

The reader should realize that most concrete buildings are relatively low and range from
one to five stories. Skyscrapers and high-rise buildings constitute less than 10% of all concrete
buildings.

Photos of some different concrete buildings and structures are shown.

A<

l o
b_.,'.“.,_ o I

Renaissance Center, Detroit, Michigan. Marina City Towers, Chicago, Illinois.
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CN Tower, Toronto, Canada
(height 1465 ft, or 447 m).

Concrete bridge for the city transit system, Washington, DC.
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Reinforced concrete grain silo using the slip form system, Brookings, South Dakota.

Table 1.3 Examples of Reinforced Concrete Skyscrapers
Year Structure Location Stories Height, ft (m)
1965 Lake Point Tower Chicago 70 645 (197)
1969 One Shell Plaza Houston 52 714 (218)
1975 Peachtree Center Plaza Hotel Atlanta 71 723 (220)
1976 Water Tower Place Chicago 74 859 (262)
1976 CN Tower Toronto — 1465 (447)
1977 Renaissance Center Westin Hotel Detroit 73 740 (226)
1983 City Center Minneapolis 40 528 (158)
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CHAPTER 2

PROPERTIES OF
REINFORCED
CONCRETE

IBM Building, Montreal, Canada (the highest concrete
building in Montreal, with 50 stories).

21 FACTORS AFFECTING THE STRENGTH OF CONCRETE

In general, concrete consists of coarse and fine aggregate, cement, water, and—in many cases—
different type of admixture. The materials are mixed together until a cement paste is developed,
filling most of the voids in the aggregates and producing a uniform dense concrete. The plastic
concrete is then placed in a mold and left to set, harden, and develop adequate strength. For
the design of concrete mixtures, as well as composition and properties of concrete materials, the
reader is referred to Refs. 1-6.

The strength of concrete depends upon many factors and may vary within wide limits
with the same production method. The main factors that affect the strength of concrete are
described next.

2.1.1 Water-Cement Ratio

The water—cement ratio is one of the most important factors affecting the strength of concrete.
For complete hydration of a given amount of cement, a water—cement ratio (by weight) equal
to 0.25 is needed. A water—cement ratio of about 0.35 or higher is needed for the concrete to
be reasonably workable without additives. This ratio corresponds to 4 gal of water per sack of

15
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cement (941b) (or 17.81b per 50 kg of cement). Based on this cement ratio, a concrete strength
of about 6000 psi may be achieved. A water—cement ratio of 0.5 and 0.7 may produce a concrete
strength of about 5000 psi and 3000 psi, respectively.

2.1.2 Properties and Proportions of Concrete Constituents

Concrete is a mixture of cement, aggregate, and water. An increase in the cement content in the
mix and the use of well-graded aggregate increase the strength of concrete. Special admixtures
are usually added to the mix to produce the desired quality and strength of concrete.

2.1.3 Method of Mixing and Curing

The use of mechanical concrete mixers and the proper time of mixing both have favorable effects
on strength of concrete. Also, the use of vibrators produces dense concrete with a minimum
percentage of voids. A void ratio of 5% may reduce the concrete strength by about 30%.

The curing conditions exercise an important influence on the strength of concrete. Both
moisture and temperature have a direct effect on the hydration of cement. The longer the period
of moist storage, the greater the strength. If the curing temperature is higher than the initial
temperature of casting, the resuiting 28-day strength of concrete is reached earlier than 28 days.

2.1.4 Age of the Concrete

The strength of concrete increases appreciably with age, and hydration of cement continues for
months. In practice, the strength of concrete is determined from cylinders or cubes tested at the
age of 7 days and 28 days. As a practical assumption, concrete at 28 days is 1.5 times as strong
as at 7 days: The range varies between 1.3 and 1.7. The British code of practice [2] accepts
concrete if the strength at 7 days is not less than two-thirds of the required 28-day strength. For
a normal portland cement, the increase of strength with time, relative to 28-day strength, may
be assumed as follows:

Age 7days 14days 28days 3 months 6months 1year 2years B5years
Strength ratio 0.67 0.86 1.0 1.17 1.23 1.27 1.31 1.35

2.1.5 Loading Conditions

The compressive strength of concrete is estimated by testing a cylinder or cube to failure in
a few minutes. Under sustained loads for years, the ultimate strength of concrete is reduced
by about 30%. Under 1-day sustained loading, concrete may lose about 10% of its com-
presstve strength. Sustained loads and creep effect as well as dynamic and impact effect,
if they occur on the structure, should be considered in the design of reinforced concrete
members.

2.1.6 Shape and Dimensions of the Tested Specimen

The common sizes of concrete specimens used to predict the compressive strength are either 6-by
12-in. (150- by 300-mm) cylinders or 6-in. (150-mm) cubes. When a given concrete is tested in
compression by means of cylinders of like shape but of different sizes, the larger specimens give
lower strength indexes. Table 2.1 [4] gives the relative strength for various sizes of cylinders as
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Table 2.1 Effect of Size of Compression Specimen on Strength of Concrete

Size of cylinder
{in.) {mm) Relative Compressive Strength
2 x4 50 x 100 1.09
3Ix6 75 x 150 1.06
6 x 12 150 x 300 1.00
8 x 16 200 x 400 0.96
12 x 24 300 x 600 0.91
18 x 36 450 x 900 0.86
24 x 48 600 x 1200 0.84
36 x 72 900 x 1800 0.82

Table 2.2 Strength Correction Factor for Cylinders of Different Height-Diameter Ratios

Ratio 2.0 1,75 150 1258 110 100 075 050
Strength correction factor 1.00 098 096 093 090 087 070 050
Strength relative to standard cylinder  1.00 1.02 1.04 1.06 1.11 1.18 143 200

Table 2.3 Relative Strength of Cylinder versus Cube [6]
(psi} 1000 2200 2900 3500 3800 4900 5300 5900 6400 7300
Compressive Strength (N/mm?) 7.0 155 200 245 270 245 370 415 450 515

Strength Ratio of
Cylinder to Cube 077 076 0.81 087 091 093 094 095 096 096

a percentage of the strength of the standard cylinder; the heights of all cylinders are twice the
diameters.

Sometimes concrete cylinders of nonstandard shape are tested. The greater the ratio of
specimen height to diameter, the lower the strength indicated by the compression test. To compute
the equivalent strength of the standard shape, the results must be multiplied by a correction factor,
Approximate values of the correction factor are given in Table 2.2, extracted from ASTM C
42/C 42 M-03. The relative strengths of a cylinder and a cube for different compressive strengths

are shown in Table 2.3.

2.2 COMPRESSIVE STRENGTH

In designing structural members, it is assumed that the concrete resists compressive stresses and
not tensile stresses; therefore, compressive strength is the criterion of quality concrete. The other
concrete stresses can be taken as a percentage of the compressive strength, which can be easily
and accurately determined from tests. Specimens used to determine compressive strength may
be cylindrical, cubical, or prismatic.

Test specimens in the form of a 6-in. (150 mm) or 8-in. (200 mm) cube are used in Great
Britain, Germany, and other parts of Europe.
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Figure 2.1 Modes of failure of standard concrete cylinders.

Prism specimens are used in France, Russia, and other countries and are usualty 70 by 70
by 350mm or 100 by 100 by 500 mm. They are cast with their longer sides horizontal and are
tested, like cubes, in a position normal to the position of cast.

Before testing, the specimens are moist-cured and then tested at the age of 28 days by
gradually applying a static load until rupture occurs. The rupture of the concrete specimen may
be caused by the applied tensile stress (failure in cohesion), the applied shearing stress (sliding
failure), the compressive stress (crushing failure), or combinations of these stresses.

The failure of the concrete specimen can be in one of three modes [5], as shown in Fig. 2.1.
First, under axial compression, the specimen may fail in shear, as in Fig. 2.1a. Resistance to
failure is due to both cohesion and internal friction.

The second type of failure (Fig. 2.15) results in the separation of the specimen into columnar
pieces by what is known as splitting, or columnar, fracture. This failure occurs when the strength
of concrete is high, and lateral expansion at the end bearing surfaces is relatively unrestrained.

The third type of failure (Fig. 2.1c) is seen when a combination of shear and splitting
failure occurs.

2.3 STRESS-STRAIN CURVES OF CONCRETE

The performance of a reinforced concrete member under load depends, to a great extent, on the
stress—strain relationship of concrete and steel and on the type of stress applied to the member.
Stress—strain curves for concrete are obtained by testing a concrete cylinder to rupture at the
age of 28 days and recording the strains at different load increments,

Figure 2.2 shows typical stress—strain curves for concretes of different strengths. All curves
consist of an initial relatively straight elastic portion, reaching maximum stress at a strain of
about 0.002; then rupture occurs at a strain of about 0.003. Concrete having a compressive
strength between 3000 and 6000 psi (21 and 42 N/mm?) may be adopted. High-strength concrete
with a compressive strength greater than 6000 psi (6000~ 15,000 psi) is becoming an important
building material for the design of concrete structures.
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Figure 2.2 Typical stress—strain curves of concrete.

Standard capped cylinders ready for testing.
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2.4 TENSILE STRENGTH OF CONCRETE

Concrete is a brittle material, and it cannot resist the high tensile stresses that are important when
considering cracking, shear, and torsional problems. The low tensile capacity can be attributed
to the high stress concentrations in concrete under load, so that a very high stress is reached in
some portions of the specimen, causing microscopic cracks, while the other parts of the specimen
are subjected to low stress.

Direct tension tests are not reliable for predicting the tensile strength of concrete, due to
minor misalignment and stress concentrations in the gripping devices. An indirect tension test in
the form of splitting a 6- by 12-in. (150- by 300-mm) cylinder was suggested by the Brazilian
Fernando Carneiro. The test is usually called the splirting test. In this test, the concrete cylinder
is placed with its axis horizontal in a compression testing machine. The load is applied uniformly
along two opposite lines on the surface of the cylinder through two plywood pads, as shown in
Fig. 2.3. Considering an element on the vertical diameter and at a distance y from the top fibers,
the element is subjected to a compressive stress

D?.
fe= 2F ( — 1) 2.1)
LD \y(D —y)
and a tensile stress
2P
= 2.2
fSP aLD (22)

where P is the compressive load on the cylinder and D and L are the diameter and length of
the cylinder. For a 6- by 12-in. (150- by 300-mm) cylinder and at a distance y = D/2, the
compression strength is f, = 0.0265P, and the tensile strength is fJ, = 0.0088P = f./3.

The splitting strength of £, can be related to the compressive strength of concrete in
that it varies between six and seven times \/f for normal concrete and between four and five
times \/TZ for lightweight concrete. The direct tensile stress, f, can also be estimated from the

mmmh
Compression
stress
(a) Cytinder splitting (b) Distribution of (¢) Cyilinder after
test horizontal stress testing

Figure 2.3 Cylinder splitting test [6]: {a) configuration of test, (b) distribution of hori-
Zontal stress, and {c) cylinder after testing.
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Concrete cylinder splitting test.

split test: Its value varies between 0.5 f_\.’p and 0.7 fg’p The smaller of these values applies to
higher-strength concrete. The splitting strength, fs’p, can be estimated as 10% of the compressive
strength up to f! = 6000 psi (42 N/mm?). For higher values of compressive strength, fs’p can be
taken as 9% of f.

In general, the tensile strength of concrete ranges from 7% to 11% of its compressive
strength, with an average of 10%. The lower the compressive strength, the higher the relative
tensile strength.

2.5 FLEXURAL STRENGTH (MODULUS OF RUPTURE) OF CONCRETE

Experiments on concrete beams have shown that ultimate tensile strength in bending is greater
than the tensile stress obtained by direct or splitting tests. Flexural strength is expressed in terms
of the modulus of rupture of concrete ( f,), which is the maximum tensile stress in concrete in
bending. The modulus of rupture can be calculated from the flexural formula used for elastic
materials, f, = Mc/I, by testing a plain concrete beam. The beam, 6 by 6 by 28in. (150 by
150 by 700 mm), is supported on a 24-in. (600-mm) span and loaded to rupture by two loads,
4in. (100 mm) on either side of the center. A smaller beam of 4 by 4 by 20in. (100 by 100 by
500 mm) on a 16-in. (400-mm) span may also be used.

The modulus of rupture of concrete ranges between 11% and 23% of the compressive
strength. A value of 15% can be assumed for strengths of about 4000 psi (28 N/mm?). The ACI
Code prescribes the value of the modulus of rupture as

fr = 7.54/f! (psi) = 0.622/f/ (N/mm?) (2.3)
where

) is a modification factor for type of concrete (ACI 8.6.1)
A = 1.0 Normal-weight concrete
A = 0.85 Sand-lightweight concrete
A = 0.75 for all-lightweight concrete
Linear interpolation shall be permitted between 0.85 and 1.0 on the basis of volumetric frac-

tions, for concrete containing normal-weight fine aggregate and a blend of lightweight and
normal-weight coarse aggregate.
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The modulus of rupture as related to the strength obtained from the split test on cylinders
may be taken as f, = (1.25 to 1.50) fs'p

2.6 SHEAR STRENGTH

Pure shear is seldom encountered in reinforced concrete members, because it is usually accom-
panied by the action of normal forces. An element subjected to pure shear breaks transversely
into two parts. Therefore, the concrete element must be strong enough to resist the applied
shear forces.

Shear strength may be considered as 20% to 30% greater than the tensile strength of
concrete, or about 12% of its comgressive strength. The ACI Code allows a nominal shear stress
of Zk\/f psi (0.174 J_ N/mm*“) on plain concrete sections. For more information, refer to
Chapter 8.

2.7 MODULUS OF ELASTICITY OF CONCRETE

One of the most important elastic properties of concrete is its modulus of elasticity, which can
be obtained from a compressive test on concrete cylinders. The modulus of elasticity, E,, can
be defined as the change of stress with respect to strain in the elastic range:

unit stress

2.4)

unit strain

The modulus of elasticity is a measure of stiffness, or the resistance of the material to
deformation. In concrete, as in any elastoplastic material, the stress is not proportional to the
strain, and the stress—strain relationship is a curved line. The actual stress—strain curve of
concrete can be obtained by measuring the strains under increments of loading on a standard
cylinder.

The initial tangent modulus (Fig. 2.4) is represented by the slope of the tangent to the
curve at the origin under elastic deformation. This modulus is of limited value and cannot be
determined with accuracy. Geometrically, the tangent modulus of elasticity of concrete, E,, is
the slope of the tangent to the stress—strain curve at a given stress. Under long-time action of
load and due to the development of plastic deformation, the stress-to-total-strain ratio becomes
a variable nonlinear quantity.

For practical applications, the secant modulus can be used. The secant modulus is rep-
resented by the slope of a line drawn from the origin to a specific point of stress (B) on the
stress—strain curve (Fig. 2.4). Point B is normally located at f7/2.

The ACI Code section 8.5.1 gives a simple formula for calculating the modulus of elasticity
of normal and lightweight concrete considering the secant modulus at a level of stress, f,, equal
to half the ultimate concrete strength, f7,

E. =33w'>./f! psi(w in pcf) = 0.043 w'*./f/ N/mm? (2.5)

where w = unit weight of concrete (between 90 and 1601b/ft> (pcf) or 1400 to 2600 kg/m?)
and f/ = ultimate strength of a standard concrete cylinder. For normal-weight concrete, w is
approximately 145 pcf (2320 kg/m®); thus,

E. = 57,600,/ f! psi = 4780,/ f! MPa (2.6)
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Figure 2.4 Stress—strain curve and modulus of elasticity of concrete. Lines a-d repre-
sent (a) initial tangent modulus, (b) tangent modulus at a stress, £, (¢) secant modulus
at a stress, f;, and {d) secant modulus at a stress f/2.

The ACI Code allows the use of E. = 57,000 \/f7 (psi) = 4700,/ f] MPa. The module of
elasticity, E., for different values of f7 are shown in Table A.10.

2.8 POISSON’S RATIO

Poisson’s ratio, i, is the ratio of the transverse to the longitudinal strains under axial stress
within the elastic range. This ratio varies between 0.15 and 0.20 for both normal and lightweight
concrete. Poisson’s ratio is used in structural analysis of flat slabs, tunnels, tanks, arch dams, and
other statically indeterminate structures. For isotropic elastic materials, Poisson’s ratio is equal
to 0.25. An average value of 0.18 can be used for concrete.

2.9 SHEAR MODULUS

The modulus of elasticity of concrete in shear ranges from about 0.4 to 0.6 of the corresponding
modulus in compression. From the theory of elasticity, the shear modulus is taken as follows:

201+ )
where p = Poisson’s ratio of concrete. If i is taken equal to 1/, then G, = 0.43E,; = 24,500,/ f/.

G 2.7)
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Test on a standard concrete cylinder to determine the modulus of elasticity of concrete.

2.10 MODULAR RATIO

The modular ratio, n, is the ratio of the modulus of elasticity of steel to the modulus of elasticity
of concrete: n = E/E..

Because the modulus of elasticity of steel is considered constant and is equal to 29 x
108 psi and E. = 33w!> /f/,

29 x 10°
n= ———— (2.8)
Bw'S
For normal-weight concrete, E. = 57,400 ,/ f/; hence, n can be taken as
500 42
n = ——(f! in psi) = —=(f! in N/mm?) (2.9)

The significance and the use of the modular ratio are explained in Chapter 6.

2.11 VOLUME CHANGES OF CONCRETE

Concrete undergoes volume changes during hardening. If it loses moisture by evaporation, it
shrinks, but if the concrete hardens in water, it expands. The causes of the volume changes in
concrete can be attributed to changes in moisture content, chemical reaction of the cement with
water, variation in temperature, and applied loads.
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2.11.1 Shrinkage

The change in the volume of drying concrete is not equal to the volume of water removed
[6]. The evaporation of free water causes little or no shrinkage. As concrete continues to dry,
water evaporates and the volume of the restrained cement paste changes, causing concrete to
shrink, probably due to the capillary tension that develops in the water remaining in concrete,
Emptying of the capillaries causes a loss of water without shrinkage, but once the absorbed
water is removed, shrinkage occurs.

Many factors influence the shrinkage of concrete caused by the variations in moisture
conditions [5]:

t. Cement and water content. The more cement or water content in the concrete mix, the
greater the shrinkage.

2. Composition and fineness of cement. High-early-strength and low-heat cements show more
shrinkage than normal portland cement. The finer the cement, the greater the expansion
under moist conditions.

3. Type, amount, and gradation of aggregatre. The smaller the size of aggregate particles, the
greater the shrinkage. The greater the aggregate content, the smaller the shrinkage [7].

4, Ambient conditions, moisture, and temperature. Concrete specimens subjected to moist
conditions undergo an expansion of 200 to 300 x 1078, but if they are left to dry in air,
they shrink. High temperature speeds the evaporation of water and, consequently, increases
shrinkage.

5. Admixtures. Admixtures that increase the water requirement of concrete increase the shrink-
age value.

0. Size and shape of specimen. As shrinkage takes place in a reinforced concrete member,
tension stresses develop in the concrete, and equal compressive stresses develop in the
steel. These stresses are added to those developed by the loading action. Therefore, cracks
may develop in concrete when a high percentage of steel is used. Proper distribution of
reinforcement, by producing better distribution of tensile stresses in concrete, can reduce
differential internal stresses.

The values of final shrinkage for ordinary concrete vary between 200 and 700 x 1079,
For normal-weight concrete, a value of 300 x 107° may be used. The British Code [8] gives
a value of 500 x 107 which represents an unrestrained shrinkage of 1.5mm in a 3m length
of thin, plain concrete sections. If the member is restrained, a tensile stress of about 10 N/mm?>
{1400 psi) arises. If concrete is kept moist for a certain period after setting, shrinkage is reduced;
therefore, it is important to cure the concrete for a period of no fewer than 7 days.

Exposure of concrete to wind increases the shrinkage rate on the upwind side. Shrinkage
causes an increase in the deflection of structural members, which in turn increases with time.
Symmetrical reinforcement in the concrete section may prevent curvature and deflection due to
shrinkage.

Generally, concrete shrinks at a high rate during the initial period of hardening, but at later
stages the rate diminishes gradually. It can be said that 15% to 30% of the shrinkage value
occurs in 2 weeks, 40% to 80% occurs in 1 month, and 70% to 85% occurs in 1 year.

2.11.2 Expansion Due to Rise in Temperature

Concrete expands with increasing temperature and contracts with decreasing temperature. The
coefficient of thermal expansion of concrete varies between 4 and 7 x 107° per degree Fahrenheit.



26 Chapter 2 Properties of Reinforced Concrete

An average value of 5.5 x 10~% per degree Fahrenheit (12 x 10~ per degree Celsius) can be
used for ordinary concrete. The British code [8] suggests a value of 1073 per degree Celsius.
This value represents a change of length of 10 mm in a 30-m member subjected to a change in
temperature of 33°C. If the member is restrained and unreinforced, a stress of about 7 N/mm?
(1000 psi) may develop.

In long reinforced concrete structures, expansion joints must be provided at lengths of 100
to 2001t (30 to 60 m). The width of the expansion joint is about 1in. (25 mm). Concrete is not
a good conductor of heat, whereas steel is a good one. The ability of concrete to carry load is
not much affected by temperature.

2.12 CREEP

Concrete is an elastoplastic material, and beginning with small stresses, plastic strains develop
in addition to elastic ones. Under sustained load, plastic deformation continues to develop over
a period that may last for years. Such deformation increases at a high rate during the first 4
months after application of the load. This slow plastic deformation under constant stress is called
creep.

Figure 2.5 shows a concrete cylinder that is loaded. The instantaneous deformation is &1,
which is equal to the stress divided by the modulus of elasticity. If the same stress is kept
for a period of time, an additional strain, ¢, due to creep effect, can be recorded. If load is
then released, the elastic strain, &1, will be recovered, in addition to some creep strain. The
final permanent plastic strain, £3, will be left, as shown in Fig. 2.5. In this case, &3 = (1 —
a)ey, where ¢ is the ratio of the recovered creep strain to the total creep strain. The ratio «
ranges between 0.1 and 0.2. The magnitude of creep recovery varies with the previous creep and
depends appreciably upon the period of the sustained load. Creep recovery rate will be less if
the loading period is increased, probably due to the hardening of concrete while in a deformed
condition.

The uvltimate magnitude of creep varies between 0.2 x 10~% and 2 x 107 per unit stress
(Ib/in.2) per unit length. A value of 1 x 10 can be used in practice. The ratio of creep strain
to elastic strain may be as high as 4.

Bt i ! BT RNTTR
T%L __/c_

/7
(@ b (4] (o)
Figure 2.5 Deformation in a loaded concrete cylinder: {8) specimen unloaded, (b)

elastic deformation, (¢) elastic plus creep deformation, {¢) permanent deformation after
retease of load.
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Creep takes place in the hardened cement matrix around the strong aggregate. It may be
attributed to slippage along planes within the crystal lattice, internal stresses caused by changes
in the crystal lattice, and gradual loss of water from the cement gel in the concrete.

The different factors that affect the creep of concrete can be summarized as follows [9]:

1. Level of stress. Creep increases with an increase of stress in specitens made from concrete
of the same strength and with the same duration of load.

2. Duration of loading. Creep increases with the loading period. About 80% of the creep
occurs within the first 4 months; 90% occurs after about 2 years.

3. Strength and age of concrete. Creep tends to be smaller if concrete is loaded at a late age.
Also, creep of 2000 psi (14 N/mm?)—strength concrete is about 1.41 x 107, whereas that
of 4000 psi (28 N/mm?)—strength concrete is about 0.8 x 10~¢ per unit stress and length
of time.

4. Ambient conditions. Creep is reduced with an increase in the humidity of the ambient air.

5. Rate of loading. Creep increases with an increase in the rate of loading when followed by
prolonged loading.

6. Percentage and distribution of steel reinforcement in a reinforced concrete member. Creep
tends to be smaller for higher proportion or better distribution of steel.

7. Size of the concrete mass. Creep decreases with an increase in the size of the tested
specimen.

8. Type, fineness, and content of cement. The amount of cement greatly affects the final creep
of concrete, as cement creeps about 15 times as much as concrete.

9. Water—-cement ratio. Creep increases with an increase in the water—cement ratio.

10. Tvpe and grading of aggregate. Well-graded aggregate will produce dense concrete and
consequently a reduction in creep.

11. Type of curing. High-temperature steam curing of concrete, as well as the proper use of a
plasticizer, will reduce the amount of creep.

Creep develops not only in compression, but also in tension, bending, and torsion.

The ratio of the rate of creep in tension to that in compression will be greater than | in
the first 2 weeks, but this ratio decreases over longer periods [5].

Creep in concrete under compression has been tested by many investigators. Troxell,
Raphale, and Davis [10] measured creep strains periodically for up to 20 years and estimated
that of the total creep after 20 years, 18% to 35% occurred in 2 weeks, 30% to 70% occurred
in 3 months, and 64% to 83% occurred in 1 year.

For normal concrete loaded after 28 days, C, = 0.13./¢, where C, = creep strain per unit
stress per unit length. Creep augments the deflection of reinforced concrete beams appreciably
with time. In the design of reinforced concrete members, long-term deflection may be critical
and has to be considered in proper design. Extensive deformation may influence the stability of
the structure.

Sustained loads affect the strength as well as the deformation of concrete. A reduction of
up to 30% of the strength of unreinforced concrete may be expected when concrete is subjected
to a concentric sustained load for 1 year.

The fatigue strength of concrete is much smaller than its static strength. Repeated loading
and unloading cycles in compression lead to a gradual accumulation of plastic deformations. If
concrete in compression is subjected to about 2 million cycles, its fatigue limit is about 50% to
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60% of the static compression strength. In beams, the fatigue limit of concrete is about 55% of
its static strength [11].

2.13 MODELSE FOR PREDICTING THE SHRINKAGE AND CREEP OF CONCRETE
2.13.1 The ACI 209 Model

The American Concrete Institute recommend the ACI 209 model [12]. Branson and Christianson
[13] first developed this model in 1970. The ACI 209 model was used for many years in the
design of concrete structures. The model is simple to use but limited in its accuracy.

Shrinkage calculation. Calculation of shrinkage using the ACI 209 model can be performed if
the following parameters and conditions are known: curing method (moist-cured or steam-cured
concrete), relative humidity, H, type of cement, specimen shape, ultimate shrinkage strain, &gy,
age of concrete after casting, ¢, age of the concrete drying commenced, usually taken as the age
at the end of moist curing, ..

The shrinkage strain is defined as follows:

lt) = o KuKinba 2.10)
where
t = Age of concrete after casting (days)
t. = Age of the concrete drying commenced (days)

b = Constant in determining shrinkage strain, depends on curing method according to
Table 2.4

K = Shape and size correction factor for shrinkage according to the Eq. 2.11
K¢ = Relative humidity correction factor for shrinkage according to Eq. 2.12
&shu (ultimate shrinkage strain) 780 x 10~% (mm/mm) (for both moist- and steam-cured

concrete)
Shape and size correction factor for shrinkage should be calculated as follows:
Vv
K = 1.14 — 0.0035 (E) (2.11)

where
V = volume of the specimen (mm?>)
S = surface of the specimen (mm?)
Relative humidity correction factor for shrinkage is

1.40 = 0.01H for 40% < H < 80%

Kan = 3.00 —0.03H4 for 81% < H < 100%

(2.12)

Table 2.4 Values of Constant b as a Function of Curing Method

Moist-Cured Concrete Steam-Cured Concrete
b =35 b=2355
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where
H = Relative humidity (in %)

Creep calculation. The total-load dependent strain at time t, &;. (¢, tg) of a concrete member
uniaxially loaded at time #¢ with a constant stress o may be calculated as follows:

ic(t, to) = &;(to) + &.(t, 1) (2.13)
where

€;(tp) = The initial elastic strain at loading
ec(t, to) = The creep strain at time ¢ > fo.

o

gilto) = Eome (2.14)
a
ec(t, tg) = Ce(t) (2.15)
cmtg

where

Ecm, = Modulus of elasticity at age of loading (MPa) as given in Eq. 2.17
C.(2) = Creep coefficient at time z, as given in Eq. 2.19
Usually, the total-load dependent strain is presented with compliance function, also called creep

function, J{z, to), which represent the total-load dependent strain at time ¢z produced by a unit
constant stress that has been acting since time z¢.

14+ Cc(¢
J(t, ) = 1+l (2.16)
Ecmtg
Eem = 0.043(y)2/f1(t0) (2.17)
where
y = Concrete unit weight (kg/m?)
fl(to) = Mean concrete compressive strength at age of loading (MPa)
’ _ fo
fe(t0) = fomng Py (2.18)
where
Jemyy = Average 28-day concrete compressive strength (MPa)
b and care constants according to Table 2.5:
Table 2.5 Constants b and ¢ as a Function of Cement Type and Curing Method
Type of Cement Moist-Cured Concrete Steam-Cured Concrete
I b=4 ¢ =085 b=1 c =095
I1I b =230 c=092 b =070 ¢ =098
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Table 2.6 Correction Factors

Curing Method to {days) H Kea Ken Kes

Moist Cured > 1 day > 40% N/A N/A N/A
>7days = 40%  125(rp) %1 127 — 00067H  1.14 — 0.0035(V/S)

Stem Cured > 1 day >40%  L13(tp) %% 127 — 0.0067H  1.14 — 0.0035(V/S)
> 7 days > 40% N/A N/A N/A

Creep coefficient, C.(z), can be determined as follows:

0.60
¢
Cc(t) = mccchhKcaKcs (219)

0+
where
Co = Ultimate creep coefficient = 2.35
K = Relative humidity correction factor for creep determined from Table 2.6

K = Age at loading correction factor determined from Table 2.6
K s = Shape and size correction factor for creep determined from Table 2.6

2.13.2 The B3 Model
The model was developed by Bazant and Baweja [14).

Shrinkage calculation. Required parameters for calculation of shrinkage strain using the B3
model are concrete mean compressive strength at 28 days, curing conditions, cement type, relative
humidity, water content in concrete, and specimen shape.

The shrinkage strain can be estimated using the following equation:

85(1‘) = (8shu)(Kh)S(t) (2‘20)
where
egme = Ultimate shrinkage strain according to Eq. 2.21

Kp, = Humidity function for shrinkage according to Table 2.9
S(t) = Time function for shrinkage according to Eq. 2.22

Ultimate shrinkage strain can be calculated using the following equation:
eshu = —@102[0.019(0) 21 ( fom,e) "2 4 270] x 107° (2.21)
where

ot = Type of cement correction factor according to Table 2.7
oy = Curing condition correction factor according to the Table 2.8
w = Water content (kg/m®)

fempe = Mean compressive concrete strength at 28 days (MPa)

Type of cement correction factor a; can be determined using Table 2.7.

Curing condition correction factor «; can be determined using Table 2.8.
Humidity function for shrinkage, K, should be determined according to Table 2.9.
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Tabhle 2.7 Correction Factor a1 as a Function of Cement Type

Type of Cement a1
I 1.00
1I 0.85
III 1.10

Table 2.8 Correction Factor o as a Function of Type of Cuting

Type of Curing oz

Steam cured 0.7
Water cured or H = 100% 1.00
Sealed during curing 1.20

Table 2.9 Humidity Function for Shrinkage, Kx

Humidity Kh

H < 98% 1 — (HNoo)?

H = 100% -0.2

98% < H < 100% Linear interpolation
where

H is relative humidity (%)
Time function for shrinkage, S(¢), should be calculated according to the following equation:

t-tc

$(z) = tanh (2.22)
Io
where
t = Age of concrete after casting (days)
t. = Age of the concrete drying commenced (days)
T s = Shrinkage half-time (days) according to the Eq. 2.23
Ton = 0.085(t.) "% (fem) " P [2K(V/SF (2.23)

where K; = Cross-section shape correction factor according to Table 2.10
K¢ can be assumed to be 1 if type of member is not defined.

Creep calculation. The creep function, also called creep compliance, J{(¢, 7o) is given by
Eq. 2.24:

J(t, 1) = q1 + Colt, o) + Cylt, to, t) (2.24)
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Table 2.10 Correction Factor, Ks as a Function of Cross-Section Shape

Cross-Section Shape K,

Infinite slab 1.00
Infinite cylinder L.15
Infinite square prism 1.25
Sphere 1.30
Cube 1.55
where

g1 = The instantaneous strain, given in Eq. 2.25

Colt, to) = The compliance function for basic creep composed of three terms, an
aging viscoelastic term, a nonaging viscoelastic term and an aging flow
term given in Eq. 2.27

Ca(t, to,t;) = The compliance function for drying creep, given in Eq. 2.35
0.6

Ecmgg

q1 = (2.25)

where

Ecmyy = Modulus of elasticity of concrete at 28 days as given in the following

equation:
Ecmyy = 4735,/ femog (2.26)
The compliance function for basic creep, Co(z, #p), should be calculated as follows:
t
Colt. t0) = 200, 1p) + g3 In[1 + (¢ — 2)°' ] + g4 In (g) (2.27)

where
g2 = Aging viscoelastic compliance parameter
Q(, t¢) = The binomial integral
g3 = Nonaging viscoelastic compliance parameter
g4+ = Flow compliance parameter
to = Age of concrete at loading (days)

g2 = 185.4()°°(fomp) ™% x 1076 (2.28)

where ¢ is the cement content (kg/m?).

) 0 =1/rlt)
0t = 070 |1+ %] 229)
where
1
Q) = (2.30)

0.086(#5)*/® + 1.21(2)*/°
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In[1 + (¢ — )°1)

Z(t, 10) = T (2.31)
rto) = 1.7(t0)*'? + 8 (2.32)
g3 = 0.29¢> (%)4 (2.33)

gs =203 (%)— 7 1076 (2.34)

The compliance function for drying creep, Ca(t, fo. ), should be calculated as follows:

C4(t, 1o, 1) = gs/exp[—8 H ()] — exp[—8 H (to)) (2.35)

where

g5 = Drying creep compliance parameter that can be calculated from the following

equation:
-0.6
v = 0.757|8spn % 10°] 236
Jemag
where
&4 = Ultimate shrinkage strain, given by Eq. 2.21
H(t) and H(to) are spatial averages of pore relative humidity.
H
=1—-{{1=-—}SC .
Hi)=1 [( 100) ( )] (237
H(tg) =1 (1 7 S(to) (2.38)
o= 100/ °° ‘
S(t) is given by Eq. 2.22 and
o — I
S(tp) = tanh (2.39)

T is given by Eq. 2.23.

2.13.3 The GL 2000 Model
The GL 2000 Model was developed by Gardner et. al and is described in Ref. 15.

Shrinkage calculation. Parameters required for calculation of shrinkage strain using the GL
2000 model are mean 28-day concrete compressive strength, fom,, relative humidity, H, age of
concrete at the beginning of shrinkage, z., type of cement, and specimen shape.

The shrinkage strain can be calculated using the following equation:

£5() = esmuB () B(1) (2.40)
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where

€snu = Ultimate shrinkage strain according to Eq. 2.41
B(h) = Correction term for effect of humidity according to Eq. 2.42
B(¢) = Correction term for effect of time according to Eq. 2.43

Ultimate shrinkage strain should be calculated from the following equation:

1/2
eshu=(900)K( ) x 107¢ (241)

Jemag

where

K = Shrinkage constant, which depends on cement type as shown in Table 2.11
Jemys = Mean 28-day concrete compressive strength (MPa)
Shrinkage constant X can be determined from Table 2.11.
Correction term for effect of humidity, B(4), should be calculated as shown:

H

4
Bh)y=1-1.18 (ﬁ) (2.42)

where

H = Relative humidity (%)
Correction term for effect of time, 8(¢), should be determined as follows:

f—1, 1,2
P = (z — 1, +0.12(V/S)2) (2.43)

where

t = Age of concrete after casting (days)
. = Age of concrete at the beginning of shrinkage (days)
V/§ = Volume-to-surface area ratio (mm)

Creep calculation. The creep compliance is composed of two parts: the elastic strain and the
creep strain according to the following equation:

Ity = —— + ZL0 (2.44)

E CInty Ecng

Table 2.11 Shrinkage Constant, K, as a Function of Cement Type

Type of Cement K
I 1.00
1| 0.75

I 1.15
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where

Ecm, = Modulus of elasticity of concrete at loading (MPa)
Em,; = Modulus of elasticity of concrete at 28 days (MPa)
@(t, to) = Creep coefficient

where fom, = Concrete mean compressive strength at loading (MPa), which can be determined

as follows:
£374

f cmig = f crig m
Coefficients a and b are related to the cement type as shown in Table 2.12.

EcmZB = 35(X) + 43%\} fcmm (2~46)
Creep coefficient, ¢(z, 7o), can be calculated as shown:

- t = 1) AN T
¢t 1) = D)2 ((, T 1003 + 14) + (g) (t ~ 10+ 7)

0.5
-1ty
2.5(1 — 1.086h* 2.4
23 ) (: — 19 +0.12(V/S)2) @4
If ¢(g=1¢t then &) =1 (2.48)
fo—1 05793
=11- < 2.4
If 1>t then ) [ (to s +0.12(V/5)2) ] (2.49)

h = H /100 (H = Relative humidity(%))

2.13.4 The CEB 90 Model
The CEB 90 Model was developed by Muller and Hillsdorf [16].

Shrinkage calculation. Parameters required for calculation of shrinkage strain using the CEB
90 model are mean 28-day concrete compressive strength, fom,, relative humidity, H, age of
concrete at the beginning of shrinkage, f., type of cement, and specimen shape.

The strain due to shrinkage may be calculated from the following equation:

‘93 (tv IC) = é"CS(})SS (ts r(.‘) (250)

Table 2.12 Coefficient a and b as a Function of Cement Type

Cement Type a b
I 2.8 0.77
11 3.4 0.72

II1 1.0 0.92
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where

€csy = Notional shrinkage coefficient according to Eq. 2.51

Bs(t, 1) = Coefficient describing development of shrinkage with time according to
Eq. 2.54

Notional shrinkage coefficient is
Eesg = Es( fempg ) PRH (2.51)
where

€s(femyg) = Concrete strength factor on shrinkage according to Eq. 2.52
Aru = Relative humidity factor on notional shrinkage coefficient according to

Table 2.13
Concrete strength factor on shrinkage, &,( Jemys)» can be calculated as follows:
&5 femye) = [160 + 10(B) (9 - f—"l‘;%ﬁ)] x 1076 (2.52)

where

Bsc = Coefficient that depends on type of cement according to Table 2.14.
Jemps = Mean 28-day concrete compressive strength (MPa)

Coefficient B, dependent on humidity, Bry, should be determined according to Table 2.14,

where
H 2
=1 — 2.53
Ban =1 (100) (2.53)

The development of shrinkage with time is given by

_ (t—1c)
Bst — 1) = \/0.56(he/4)2 nyr— (2.54)

Table 2,13 Determination of Coefficient Sgy

Humidity Bry
40% < H < 9% —1.55 x Bt
H > 99% 0.25

Table 2.14 Coefficient Bec

Type of Cement European Type American Type Bac
Slow hardening SL II 4
Normal/rapid hardening R I 5
Rapid hardening, high strength RS m 8
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where

t = Age of concrete (days)
1. = Age of concrete at the beginning of shrinkage (days)
h, = Effective thickness to account for volume/surface ratio {mm)

Effective thickness, k., can be determined as follows:

_ 24
B U

he (2.55)

where

A, = Cross-section of the structural member (mm?)
u = Perimeter of the structural member in contact with the atmosphere (mm)

Creep calculation. Creep compliance represents the total stress dependent strain per unit stress.
It can be calculated as

J(t, 1) = ! +¢(”t°) (2.56)

Ecmto Ecng

where

Ecmi, = Modulus of elasticity at age of loading (MPa)
Ecm,; = Modulus of elasticity at 28 days (MPa)

(1, 10) = Creep coefficient
28 )
Eemty = Ecmgg €Xp I:O.SS (l VT ] 2.57)

S is the coefficient that depends on cement type and can be determined from Table 2.15.

Ecmye = 21500, % (2.58)

Creep coefficient, ¢(t, to), can be evaluated from the given equation:

@, 1) = PoB(t, 1) (2.59)

Table 2,15 Coefficient S as a Function of Cement Type

Cement Type European Type U.S. Type s

Slow hardening SL 11 0.38
Normal/rapid hardening R 1 0.25
Rapid hardening high strength RS III 0.20




Chapter 2 Properties of Reinforced Concrete

where

¢o = Notional creep coefficient
Bc(t, to) = Equation describing development of creep with time after loading

®o = PrRuB(fomy ) B (20) (2.60)
where ¢ry = Relative humidity factor on the notional creep coefficient, which is given by
1 — H/100
=l —— 2.61
Pru 01675 A (2.61)
B(femyg) = Concrete strength factor on the notional creep coefficient, which is given by
5.3
ﬁ(fcng) = (2~62)

y Jempg /10

B (t0) = Age of concrete at loading factor on the notional creep coefficient, which is given by

1

) = ————
plo) 0.1+ 20

(2.63)

An equation describing development of creep with time after loading, 8.(¢, ¢), can be calculated
using the following equation:

t—1 03

(ttg) = ———— 2.64
Be(t, to) (ﬁ,,+z—:o) (2.64)
Bu = 1.5h[1 + (0.012H)"*] + 250 < 1500 days (2.65)

2.13.5 The CEB 90-99 Model
The CEB 90-99 is a modification of the CEB 90 and is described in Ref. 17.

Shrinkage calculation. In this new model, total shrinkage contains of autogenous and dry-
ing shrinkage component. In high-performance concrete, autogenous shrinkage is significant
and needs to be considered in prediction of shrinkage. This new approach was necessary so
that shrinkage of normal as well as high-performance concrete can be predicted with sufficient
accuracy [1].

Total shrinkage strain can be calculated using the following equation:

es(, 8c) = £45(1) + £45(2, 1;) (2.66)
where

€a5(t) = Autogenous shrinkage at time ¢
gas(t, t.) = Drying shrinkage at time ¢

Autogenous shrinkage, £,4(¢), should be calculated as follows:

Eas(f) = €asy ( fompg ) Pas(?) (2.67)
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where

Easy( fomgg) = National autogenous shrinkage coefficient according to Eq. 2.68

Bas(t) = Function to describe the time-development of autogenous shrinkage, from
Eq. 2.69

National autogenous shrinkage coefficient, £casy( fom), €an be calculated as follows:

_Jowns /10 )2'5 x 10~

&+ femp/ 10 (2.68)

5aso(fcm23) = —0lgs (

where

&, = Coefficient that depends on type of cement
= 800 for slowly hardening cements
= 700 for normal or rapidly hardening cements
= 600 for rapidly hardening high-strength cements
femys = Mean compressive strength of concrete at an age of 28 days (MPa)

Function B,(t) should be calculated using the following equation:
Bas(t) = 1 — exp[—~0.2(N""] (2.69)

where t = Age of concrete (days)

Drying shrinkage, £4(f, 7.), can be estimated by the following equation:
gaslt, 1) = Edso(fcng)ﬁRH(H)ﬁds(f — 1) (2.70)
where

€dsy (femys) = Notional drying shrinkage coefficient according to Eq. 2.71

Bru(H) = Coefficient to take into account the effect of relative humidity on drying
shrinkage according to Eq. 2.72

Bas(t — 1) = Function to describe the time development of drying shrinkage according to

Eq. 2.74
Notional drying shrinkage coefficient, &4s5(femgg), may be calculated from the following
equation:
£asy (fempg) = [(220 + 1100i5, ) eXP(—0lds; femag /10)] x 1078 (2.71)
where

a4s, = Coefficient that depends on type of cement

= 3 for slowly hardening cements

= 4 for normal or rapidly hardening cements

= 6 for rapidly hardening high-strength cements
45, = Coefficient that depends on type of cement

= 0.13 for slowly hardening cements

= (.11 for normal or rapidly hardening cements

= (.12 for rapidly hardening high-strength cements
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Coefficient Sry(H) should be calculated as follows:

H\?
Bt = —1.55 l:] — (m) J for 40% < H < 99% x B,

0.25 for H > 99% x f,

(2.72)

where

H = Ambient relative humidity (%)
Bs, = Coefficient to take into account the self-desiccation in high-performance concrete.

0.1
8, =( 35 ) <10 @2.73)

f cmyg

It can be determined as follows:

Function B45(f — 1) may be estimated as follows:

B (r—t)—( ¢t )0'5 (2.74)
BT T 056t ¥ (- 1) ‘

where
f. = Concrete age at the beginning of drying (days)
h, = ﬁ': = notional size of member (mm), where A, is the cross-section (mm?) and u
isuthe perimeter of the member in contact with the atmosphere (mm)

Creep calculation. Total stress-dependent strain per unit stress, also called creep compliance
or creep function can be determined as follows;

+ $(t, to)

J(t, 1) =
cmtg E cmog

(2.75)

where

Eemyy = Modulus of elasticity at age of loading (MPa)
E¢m,s = Modulus of elasticity at day 28 (MPa)
(1, ip) = Creep coefficient

28
Ecmig = Eomyg €Xp [0.53 (1 ~ (7))] (2.76)
0

S is the coefficient that depends on cement type and compressive strength and can be determined
from Table 2.16.

Ecnyg = 21500, ﬁl—“gs Q.77)

Creep coefficient, ¢(t, tg), can be evaluated from the given equation:

¢(t. 10) = doB.(t, o) (2.78)
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Table 2.6 Coefficient S as a Function of Cement Type and Compressive Strength

M

femys (MPa) Type of Cement S
Rapidly hardening high strength 0.20
<60 Normal and rapidly hardening 0.25
Slow hardening 0.38
>60 All types 0.20
where
¢o = Notional creep coefficient
B.(t, to) = Equation describing development of creep with time after loading
$0 = druB(fomyg) Blf0) (2.79)
¢ru = Relative humidity factor on the notional creep coefficient
¢rE = [1 + %;—il%al] o (2.80)
where
35 197
o = [ﬁ:ng] (2.81)
35 102
oy = [ fcmzs] (2.82)
B femys) = Concrete strength factor on the notional creep coefficient,
B(femyg) = —53_ (2.83)
V femgs /10
B(tg) = Age of concrete at loading factor on the notional creep coefficient
Blr) = m (2.84)
where
to = to.1 l:——gﬁ + 1:| > 0.5 days (2.85)
241y

ot

to = Age of concrete at loading (days)
to.+ = Age of concrete at loading adjusted according to the concrete temperature;
for T = 20°C, #p 7 corresponds to fp
o = Coefficient that depends on type of cement
= —1 for slowly hardening cement
= 0 for normal or rapidly hardening cement
= 1 for rapidly hardening high-strength cement
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An equation describing development of creep with time after loading, B.(¢, to), can be
calculated using the following equation:

B(:t)—( = )0’3 (2.86)
= Ba+i—1 )
Bu = L5k 11 + (0.012H)®] + 25005 < 150003 (2.87)
35 0.5
3 [ﬂ:mzs] (2.88)

2.13.6 The AASHTO Model

Shrinkage calculation. Parameters required for calculation of shrinkage strain using the AASHTO
mode] are: curing method (moist-cured or steam-cured concrete), 28-day concrete compressive
strength, fomy,, relative humidity, H, drying time of concrete, ¢, type of cement, and specimen
shape.

The strain due to shrinkage may be calculated from the following equation:

» For moist-cured concrete:
t

350+1¢

&y = —ksky, ( )0.51 x 1073 (2.89)

« For steam-cured concrete:

t
Eoh = —hskn (55 0+1

) 0.56 x 103 (2.90)

where

t = drying time (day)
ks = size factor for shrinkage specified in Eq. 2.91
kp = humidity factor for shrinkage specified in Eq. 2.92

Size factor for shrinkage should be calculated as follows:
t

36(V/S -
b = | 26855V £ | 1064 - 94(v/5) 29
4 923
45 + ¢
where
V = Volume of the specimen (in.%)
S = Surface of the specimen (in.2)
Humidity factor for shrinkage is:
140 - H
kh = —70‘—*— for H < 80%
(2.92)
_3(100 — H)

kr, for H > 80%

70
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.....

¥

where
H = Relative humidity (%)

Creep calculation. The creep compliance represents the total stress dependent strain per unit
stress. It can be calculated as:

J(t, 1) = F '“;:") (2.93)
where
(1, 1p) = Creep coefficient as given in Eq. 2.94
E. = Modulus of elasticity at 28 days (ksi) as given in Eq. 2.97
The creep coefficient may be calculated from the following equation:
0.6
¥ (1, 10) = 3.5kks (1 58 — gﬁ) M Jt_:(:"i T (2.94)

where
t = Maturity of concrete (day)
1o = Age of concrete when load is initially applied (day)
H = Relative humidity (%)
k¢ = Factor for the effect of concrete strength as given in Eq. 2.95
k. = Factor for the effect of the volume-to-surface ratio of the component as given in

Eq. 2.96
The factor for the effect of concrete strength should be calculated as follows:
1
k= — (2.95)
0.67 + w‘”;‘—”

where
femys = Specified concrete compressive strength at 28 days (Ksi)

The factor for the effect of the volume-to-surface ratio of the component should be calculated

as follows:
t

0.36(V/S) 1. 1.77e=034V/S)
k= 2620-36(V/S) 4 ¢ [ 80+ 1.77e (2.96)
! 2.587
45 +1¢
where
V = Volume of the specimen (in.*)
S = Surface of the specimen (in.2)
The modulus of elasticity at 28 days should be calculated as follows:
E. = 330000}/ f! (297

where

w. = Concrete unit weight (Kcf)
f! = Specified concrete compressive strength at 28 days (Ksi)
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Example 2.1

Calculate shrinkage strain and creep compliance for the concrete specimen given below. Use the ACI

209 model.

Given factors:
Humidity = 75%
he=2V/S =2A./u = 76mm
femyy =45.2 MPa

w = 207.92kg/m’
w/c = 0.46

afc =373

t = 35 days

to = 28 days

t. = 8 days

y = 2405kg/m?

Cement type III
Moist-cured concrete

Solution
Shrinkage calculation

(t—1¢
1= —K.Kq
g (1) b+ -1 ss L shEshy

Esha = 780 x 107¢ mm/mm

According to Table 2.4, b = 35
V/§ =38 mm

v
Ky = 1.14 — 0.0035 (E) = 1.14 — 0.0035(38) = 1.007

For H = 75%,
Kih =140 - 001H = 1.40 — 0.01(75) = 0.65
(’ - fc)
8t} = mKssKsheshu
(35-18) -6 _6
= — 1. X 1 =12223
35+ (35— 8}{1 007)(0.65)(780 x 107 =2 x 10 mm/mm

Creep calculation

14+ C.(8)

cmtg

J(1, 1) =

Determination of Ecpy,

b =230, c = 0.92 (Table 2.5)
' fo 28
- —  =452— =
Jelt0) = fomy b+ cig 234092 x 28

Ecmig = 0.043(y)2 /f1(10) = 0.043(2405)*/2/45.1 = 34058.8 MPa

=45.1 MPa

(Eq. 2.7)
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Determination of C.(¢)
Cew =235
Kg = 1.27 — 0.0067(H) = 1.27 — 0.0067(75) = 0.767
Koo = 1.25(80) 0118 = 1,25(28)70 1% = 0.844

Koo = 1.14 — 0.0035(V/S) = 1.14 — 0.0035(38) = 1.007
0.60 35(}.60

!

Ce(t) = WCQQKChKCBKcs = W235 x 0.767 x 0.844 x 1.00 = 0.702

14+ Cq(2) {+0.702 _6
J(t, 1) = = =499 x 107" ——

)= —¢ . 34058.8 MPa
Example 2.2
Using the B3 model, calculate shrinkage strain and creep function for the specimen given in
Example 2.1.
Solution

Shrinkage calculation

£5(2) = (Esh(Kn)S(2)

Determination of &gy
o1 = 1.10 (Table 2.7)
o = 1.0 (Table 2.8)
eams = @102[0.019(w) ! (fomyg) "2 + 270] x 1078
= (1.10)(1.0)[0.019(207.92)* (45.2) 28 4 270] x 107% = 827 x 107 mm/mm

Determination of X
According to the Table 2.6, for H = 75%

H\® 75 \3
=]~ - =1-|— =0.57
Ky=1 (100) 1 (100) 0.578

K, = 1.0, since the type of member is not defined
T = 0.085(6) "% fomye) P 2K(V/S)F
= 0.085(8) %% (45.2)"05[2(1.0)(38)]* = 160.3

35-8
S(¢) = tanh 1/ =0.389
Tsh

£5(t) = (Eona)(Kn)S(t) = (827 x 10'6)(0.578)(0.389) = 185.9 x 10~® mm/mm

Determination of S{t)

Creep calculation

J(¢t, 10) = q1 + Colt, 10} + Calt, 70, tc) (2.15)
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Determination of g,

Ecng = 4735y fomgs = 4735+/45.2 = 31833.9 MPa

0.6 0.6 1
= = = 1 . _6—
N B 318339 — 88 107G
Calculation of Cylt, 79)
w  207.92
= — = """ =452 kg/m’
¢ w/fc 0.46 52 kg/m
g2 = 185.4(0)% (fumgg) ™% x 1070 = 185.4(452)%5(45.2) %% x 107%
= 127.6 x 107°
1 1
o) = = =0,
Q) = 5 08600 + 121(0)"7 — 0.086(2877 + L2128 — 182
1al1l _ 301 1 35 — 0.1
Z(, 1y = LG - Il +G35 2801

N - V28
rto) = L7(t0)""% + 8 = 1.7(28)%12 +- 8 = 10.54

Qs (oY ) 771/ 0.18210.54 7~1/10:54
Q(t, t(]) = Qf('{)) [1 + Z(t, ru)r(m) =0.182]1 + W =0.148

4
g3 = 0.29¢; ( %—) = 0.29(127.6 x 1076)(0.46)" = 1.66 x 10~°
0.7
gs =203 (g) x 1076 = 20.3(3.73)%7 x 1076 — 8.08 x 10

t
Co(t, t0) = 200, %) + g3 {1 + (¢ — 20)>! 1 + g4 In (g)
35
= (127.6 x 107%)(0.148) + (1.66 x 10~6)In[1 + (35 — 28)*7] + (8.08 x 10~%)In (E)
=22.01 x 10-6L
=122 =

a

Calculation of Cu(t, to, t.):

_ 0.757|sgn x 10°17%¢ 0757|827 x 10~ x 10°|~9¢
h .f;:ng - 45.2

gs —297.5 x 10~

S(t) = 0.389

to — 1. 28 -8
fp) =ta h1/ =t ‘/— = (.339
S) n ™ anh 1603

H 75
H(!)-——I-—[(l— )S(t)]=1— (l— W)0.389]=0.9O3

75
H{p) =1~ [(l - )S(tg)] =1- [(l - m) 0.339] =0915

2= g
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Ca(t, to, £} = gs/exp[—8H (1)] — exp[—8H (1p)]

1
= (297 x 107%)y/exp[—8 x 0.903] — exp[—8 x 0.915) = 2.43 x 107 -

J(t, ) = q1 + Colt, 10) + Cy (2. to, 1)

= (18.85 x 107%) + (22.01 x 1075) + (2.43 x 107%) = 43.3 x 10-6&%
a

Example 2.3

Using the GL 2000 model, calculate the shrinkage strain and creep function for the specimen given
in Example 2.1,

Solution
Shrinkage calculation

gs(t) = e B(R)B(1)
Calculation of &gy

K = 1.15 (Table 2.11)

30 \'/? 30 \ '/
ashu=(900)K( ) x10-6=(_900)(1.15)(——) x 1076 = 843.2 x 107® mm/mm

omos 45.2
Calculation of 8(h)

H\* 75\¢
=1-118[— 1} =1-1.18{ = | =0627

B =1 113(100) 1 (100) 0.6

Calculation of B(r):

I — 1 +0.12(V/S5)? 358 4 0.12(38)2
£ (1) = B BB = (843.2 x 107°)(0.627)(0.367) = 194 x 10~ mm/mm

- 172 _ 172
ﬁ(!):( . ) =( 3-8 ) = 0.367

Creep calculation

1 ¢(t9 fO)
J(@, ) = =+
( 0) Ecmlo Ecng

Calculation of Egpy, and Ecmyg
fp = 28 days = Ecmyy = Eemyg
Ecmy = 3500 + 4300/ fomyg = 3500 + 4300+/45.2 = 32409.3 MPa

Calculation of ¢(i, to)
1o = 28 > 1, = 8 days

ot 05705 28— 3 05705
d¢)=|1- =11- -
v [ (fo — o+ 0.12(V/S)2) ] [ (23 -8+ 0-12‘33)2) ] o
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h = H/100 = 75/100 = 0.75

_ (t — 1g)%3 7\>? R "
ot 10) = (1) [2 ((,—_,Om) * (5) (z -1 +7)

+2.5(1 —1086h2)( =h )0'5
) ) t—ty+0.12(V/S5)?

_ 9803 0.5 _ 05
—0.824 2( (35 —28) )+ (l) ( 35 -28 )
(35 — 2803 + 14 28 35-284+7

_ 0.5
+2.5(1 — 1.086(0.75)%) ( 3528 ) } = 0.636

35— 28 +0.12(38)2

1 , 1 .
TGt 1) = + 200 0636 _ 505 x 1075

Ecmiy  Ecmy  32409.3 T 322093 MPa

Example 2.4

Using the CEB 90 model, calculate shrinkage strain and creep function for the specimen given in
Example 2.1.

Solution
Shrinkage calculation
&t 1) = (3csn)ﬂs(1s i)

Calculation of ey,
ﬁsc =38

& (fomg) = [160+ 10(Bse) (9— fj"(‘;s)] X 1078

452
= [160+ 10(8) (9 — W)] x 107% =518.4 x 10~® mm/mm

For H = 75%,
Bru = —1.558m
Ban = | — (H/100)* = 1 — (75/100)° = 0.578
Bru = —1.5584n = —1.55 x 0.578 = —0.896
Eesp = &5 (fomgg) (Bru) = (518.4 x 107°)(~0.896) = —464.2 x 10~° mm/mm

Calculation of 8.(t — r.)

24,
he =

_ (5 _ (35-8) N
i \/ 0.56(h./4)2 +(r —1c) 5/ 056(76/47 + (35— ®) ~ P

= 76 mm

5, 1) = (£esy) Bs(t — 1) = (—464.2 x 107°)(0.343) = —159.3 x 10~ mm/mm
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Creep calculation

1 P, 1)
J(t, to) = +
( 0 Ecmto Ecm'_;g

Calculation of Ecyy, and Ecp,y

to = 28 days = Ecmlo = Ecmgg

- 452
Ecmy = 21500, fl—“(')-ﬁ = 21500, —5 = 35548 MPa

Calculation of ¢(¢, tp)

e — 14 A0 1P g
RH — 0‘16W - 0.16V3 76/4 o
5.3 53
e _ = 2.49
B(femys) / Forns /10 452710
Bt) = ! = l = 0.438

0.1 4592 0.1+42802
B0 = PR B (Fomny )Bt0) = (1.586)(2.49)(0.488) = 1.927
By = 1.5h.[1 + (0.012H)'%] + 250 = L.5(76)[1 + (0.012 x 75)"%] + 250
=379 < 1500 days

0.2 e
_ L—1p _(_35=28 =
Belt. o) = (ﬁH +,_,0) = (379+35 —28) -0

ot 10) = doBe(t, fp) = 1.927 x 0.3 = 0.578

I ) 1 0578 o
J(t, 1) = = =444 x 107" —
) = g Eom 35548 | 35548 * 1 MPa

49

Example 2.5

Using the new CEB 90-99 model to calculate shrinkage strain and creep function for the specimen

given in Example 2.1.

Solution

Shrinkage calculation
&y (f, tc) = £a5(t) + '9ds(f, Ic)

Calculation of £,5(¢)
otgs = 600 for rapidly hardening high-strength cements

2.5
fcmza/lO ) x 10—6

asg(fomyg) = —as (m

452/10 \*° ¢ -
=600 — 1070 = —72.6 x 1
00(6+45.2/10) X 72.6 x 107" mm/mm
Bus(t) = 1 — exp(—0.2(1)%%) = 1 — exp(—0.2(35)*%) = 0.6%4

Easlt) = Easy(Fomay YBas(£) = (=726 x 107°)(0.694) = —50.4 x 107 mm/mm
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Calculation of g4 (7, 2.)
ags, = 6 for rapidly hardening high-strength cements
tds, = 0.12 for rapidly hardening high-strength cements
Edso{ fomys) = [(220 + 1100045, JeXp(—etas, fompg/100] x 1078
={(220 + 110 x 6)exp(—0.12 x 45.2/10)] x 10~% = 511.6 x 10~® mm/mm

35 0.1 35 0.1
b = (fmm) = (m) —097=10

For 40% < H = 75% < 99% (0.97) = 96.5%,

H\? 75 \3
Bryu = ~1.55 [1 - (ﬁ)) } =—1.55 [1 - (ﬁ) ] = —0.896

_ =1 0.5
Pas(t = 1c) = (0.56(h /82t (f — rc))

= = 0.343
0.56(76/100)2 + (35 — 8)
£as(t, 1) = €dsg (fcng )Bru (H) Bas(t ~ 1)
= (511.6 x 107%)(—0.896)(0.343) = —157.2 x 10"® mm/mm
st te) = eas(t) + 8451, 1) = (—=50.4 x 107%) + (~157.2 x 107%) = =207.6 x 10™° mm/mm

Creep calculation
1 + &(t, 1)

cmly Ecng

J(t, ng) =

Calculation of Ecm, and Eemy,
to =28 days = Ecrm(; = Ecng

m 45,
Emyg = 21,500, % = 21,500,) 15—02 = 35,548 MPa

Calculation of ¢(t, tp)

r 0.7 ¢.7

[ Ferozy 45.2
oy = =|— =0.950
: -fm] [45.2]

T 1— H/100 1 —75/100

ru = |1+ 0.163/;7/4“‘]“2 = [ t 0l6 76/
53 5.3

ﬁ(fcmzs) = m = \/m =

Y ) 9
=tor| ——+1| =28|——0 +1|=3252054
ohr [2+:(}_-%+ ] 8[2+28‘-2 * ] = 1 s

0.836] 0.950 = 1.419

2.49
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P 1

0.1+102 ~ 0.1 +325%2

&0 = PRAB(fomy ) B(tp) = 1.415 x 2.49 x 0.475 = 1.674

35 105 [ 35 70
o3 = =j—=| =0.880
? [me?,s] [45'2]

Bu = 1.5k [1 + (0.012H)'3] + 25003
=1.5x76 x [1 4+ (0.012 x 75)!8] 4 250 x 0.88 = 351 < 1500 x 0.880 = 1320

0.3 0.3
- -2
PR BETN I T

= 0.475

B) =

Brti—1o 351+35- 28
B8, 16) = doBelt. to) = 1.674 x 0307 = 0.514
I ey 1 0514 1
’ = = = R 1 —_—
Tt = et = 55w T s 0 1

&1

Example 2.6

Using the AASHTO model, calculate shrinkage strain and creep function for the specimen given in

Example 2.1.

Solution

Shrinkage calculation
For moist-cured concrete, &g, should be taken as:

i
gh = — KKy (3'5_"“"_0+l

) 0.51 x 1073

Determination of K;:

V/S =38 mm=1.5in.
p -
266036(v/S) 1 ¢ | [ 1064 —94(V/S)
ks = 7 923

45 +1 -

t

K. = | 269305 4 ¢ [1064 — 94(1.5)7 _ {
T ! 923 -

4541t

Determination of Kj:
For H = 75%,

40— H] 140-75
K, = = = 0.
g [ 70 ] 70 0.93

Calculation of £s:

35

= 1x093x [ —r
Esh x ><(35.0+35

)0.51 x 103 = —=237.15 x 107% in/in.
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Creep calculation
The creep coefficient should be taken as:

(t — 19)%¢
10.0 + (r — 15)06

H\ o
Yt to) = 35K Ky (1.58 - ﬁa) 7 118

Determination of k,:

B t
L = 26¢0-36(Y/8) 4 ¢ 1.80 — 1.77¢0:54V/S)
. ! 2.587
- 4541
™ b
k _ 2680'36(].5) —+ 7 1.80 + 1.776—0.S4Xf.5 .
o ! 2.587 =
L 45+t

Determination of ky:

fompg = 45.2 MPa = 6,55 Ksi

ky = —‘f— = ——teer =0715
0.67+ —28 0.67+ —
) 9 R

Calculation of ¥ (1, to):

(35 - 28)06
10.0 + (35 — 28)06

V/(fr tO) =35x 1 x 0715 (158 - -;—2%) X 28_0'“8 >

¥z, ) = 0.3923

Determination of E,:
w, = 2405 Kg/m® = 0.15 Kcf
E. = 330000 /!
E. = 33000 x 0.15"°/6.55 = 4906.5 Ksi

Calculation of J(z, tg):

b (e 10)
J(z, fo) = E_c + E.
1 0.3923 1
= =284 x 107%—
I 0) = Zo5e= + 15065 <10 e

1 1
ttp) =284 x 1070 — =412 x 1076 —
J(¢, o) x 10 i 41.2 x 10 MPa




2.16 High-Performance Concrete 53
2.14 UNIT WEIGHT OF CONCRETE

The unit weight, w, of hardened normal concrete ordinarily used in buildings and similar struc-
tures depends on the concrete mix, maximum size and grading of aggregates, water—cement
ratio, and strength of concrete. The following values of the unit weight of concrete may be used:

1. Unit weight of plain concrete using maximum aggregate size of 3 in. (20mm) varies
between 145 and 150 1b/ft3 (2320 to 2400 kg/m?). For concrete of strength less than 4000 psi
(280 kg/cm?), a value of 145 1b/ft® (2320kg/m®) can be used, whereas for higher-strength
concretes, w can be assumed to be equal to 150 1b/ft3 (2400 kg/m®).

2. Unit weight of plain concrete of maximum aggregate size of 4 to 6in. (100 to 150 mm)
varies between 150 and 160 1b/ft3 (2400 to 2560kg/m>). An average value of 155 1b/ft?
may be used.

3. Unit weight of reinforced concrete, using about 0.7% to 1.5% of steel in the concrete
section, may be taken as 150 Ib/ft® (2400kg/m®). For higher percentages of steel, the unit
weight, w, can be assumed to be 155 Ib/ft® (2500 kg/m?).

4. Unit weight of lightweight concrete used for fireproofing, masonry, or insulation purposes
varies between 20 and 90 Ib/ft> (320 and 1440kg/m?). Concrete of upper values of 90 pcf
or greater may be used for load-bearing concrete members.

The unit weight of heavy concrete varies between 200 and 270 Ib/ft® (3200 and 4300 kg/m®).
Heavy concrete made with natural barite aggregate of 1 % in. maximum size (38 mm) weighs
about 225 1b/ft> (3600 kg/m>). Iron ore sand and steel-punchings aggregate produce a unit weight
of 2701b/ft> (4320 kg/m?). [18].

2.15 FIRE RESISTANCE

Fire resistance of a material is its ability to resist fire for a certain time without serious loss
of strength, distortion, or collapse [19]. In the case of concrete, fire resistance depends on the
thickness, type of construction, type and size of aggregates, and cement content. It is important
to consider the effect of fire on tall buildings more than on low or single-story buildings, because
occupants need more time to escape.

Reinforced concrete is a much better fire-resistant material than steel. Steelwork heats
rapidly, and its strength drops appreciably in a short time. Concrete itself has low thermal
conductivity. The effect of temperatures below 250°C is small on concrete, but definite loss is
expected at higher temperatures.

2.16 HIGH-PERFORMANCE CONCRETE

High-performance concrete may be assumed to imply that the concrete exhibits combined prop-
erties of strength, toughness, energy absorption, durability, stiffness, and a relatively higher
ductility than normal concrete. This improvement in concrete quality may be achieved by using
a new generation of additives and superplasticizers, which improves the workability of concrete
and, consequently, its strength. Also, the use of active microfillers such as silica fume, fly ash,
and polymer improves the strength, porosity, and durability of concrete. The addition of different
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Casting and finishing precast concrete wall panels.

types of fiber to the concrete mix enhances many of its properties, including ductility, strength,
toughness, and many other properties.

Because it is difficult to set a limit to measure high-performance concrete, one approach is
to define a lower-bound limit based on the shape of its stress-strain response in tension [20]. If
the stress-strain relationship curve shows a quasi strain-hardening behavior—or, in other words,
a postcracking strength larger than the cracking strength with an elastic-plastic behavior—then
high performance is achieved [20]. In this behavior, multicracking stage is reached with high
energy-absorption capacity. Substantial progress has been made recently in understanding the
behavior and practical application of high-performance concrete.

2.17 LIGHTWEIGHT CONCRETE

Lightweight concrete is a concrete that has been made lighter than conventional normal-weight
concrete and, consequently, it has a relatively lower density. Basically, reducing the density
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requires the inclusion of air in the concrete composition. This, however, can be achieved in four
distinct ways:

1. By omitting the finer sizes from the aggregate grading, thereby creating what 1s called
no-fines concrete. It is a mixture of cement, water, and coarse aggregate only (2 i 8)
mixed to produce concrete with many uniformly distributed voids.

2. By replacing the gravel or crushed rock aggregate with a hollow cellular or porous aggre-
gate, which includes air in the mix. This type is called lightweight aggregate concrete.
Lightweight aggregate may be natural, such as pumice, pozzolans, and volcanic slags; arti-
ficial (from industrial by-products), such as furnace clinker and foamed slag; or industrially
produced, such as perlite, vermiculite, expanded clay, shale, and slate.

3. By creating gas bubbles in a cement slurry, which, when it sets, leaves a spongelike
structure. This type is called aerated concrete.

4. By forming air cells in the slurry by chemical reaction or by vigorous mixing of the slurry
with a preformed stable foam, which is produced by using special foam concentrate in a
high-speed mixer. This type is called cellular concrete.

Structural lightweight concrete has a unit weight that ranges from 90 to 115 1b/fc®, com-
pared with 1451b/ft> for normal-weight concrete. It is used in the design of floor slabs in
buildings and other structural members where high-strength concrete is not required. Struc-
tural lightweight concrete can be produced with a compressive strength of 2500 to 5000 psi for
practical applications.

2.18 FIBROUS CONCRETE

Fibrous concrete is made primarily of concrete constituents and discrete reinforcing fibers. The
brittle nature of concrete and its low flexural tensile strength are major reasons for the growing
interest in the performance of fibers in concrete technology. Various types of fibers—mainly
steel, glass, and organic polymers—have been used in fibrous concrete. Generally, the length
and diameter of the fibers do not exceed 3in. (75mm) and 0.04in. (1 mm), respectively. The
addition of fibers to concrete improves its mechanical properties, such as ductility, toughness,
shear, flexural strength, impact resistance, and crack control. A convenient numerical parameter
describing a fiber is its aspect ratio, which is the fiber length divided by an equivalent fiber
diameter. Typical aspect ratios range from about 30 to 150, with the most common ratio being
about 100. More details on fibrous concrete are given in [21].

2.19 STEEL REINFORCEMENT

Reinforcement, usually in the form of steel bars, is placed in the concrete member, mainly
in the tension zone, to resist the tensile forces resulting from external load on the member.
Reinforcement is also used to increase the member’s compression resistance. Steel costs more
than concrete, but it has a yield strength about 10 times the compressive strength of concrete. The
function and behavior of both steel and concrete in a reinforced concrete member are discussed
in Chapter 3.

Longitudinal bars taking either tensile or compression forces in a concrete member are
called main reinforcement. Additional reinforcement in slabs, in a direction perpendicular to the
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main reinforcement, is called secondary, or distribution, reinforcement. In reinforced concrete
beams, another type of steel reinforcement is used, transverse to the direction of the main steel
and bent in a box or U shape. These are called stirrups. Similar reinforcements are used in
columns, where they are called fies. Refer to Figure 8.8 and Figure 10.3.

2.19.1 Types of Steel Reinforcement

Different types of steel reinforcement are used in various reinforced concrete members. These
types can be classified as follows:

Round bars. Round bars are used most widely for reinforced concrete. Round bars are available
in a large range of diameters, from % (6 mm) to 1% (36 mm), plus two special types, 1% (45 mm)
and 2% (57 mm). Round bars, depending on their surfaces, are either plain or deformed bars.
Plain bars are used mainly for secondary reinforcement or in stirrups and ties. Deformed bars
have projections or deformations on the surface for the purpose of improving the bond with
concrete and reducing the width of cracks opening in the tension zone.

The diameter of a plain bar can be measured easily, but for a deformed bar, a nominal
diameter is used that is the diameter of a circular surface with the same area as the section of the
deformed bar. Requirements of surface projections on bars are specified by ASTM Specification
A 3035, or A 615. The bar sizes are designated by numbers 3 through 11, corresponding to the
diameter in one-eighths of an inch. For instance, a no. 7 bar has a nominal diameter of % in.

and a no. 4 bar has a nominal diameter of % in. The two largest sizes are designated no. 14
and no. 18, respectively. American standard bar marks are shown on the steel reinforcement to
indicate the initial of the producing mill, the bar size, and the type of steel (Fig. 2.6). The grade
of the reinforcement is indicated on the bars by either the continuous-line system or the number
system. In the first system, one longitudinal line is added to the bar, in addition to the main ribs,
to indicate the high-strength grade of 60 ksi (420 N/mm?), according to ASTM Specification A
617. If only the main ribs are shown on the bar, without any additional lines, the steel is of the
ordinary grade according to ASTM A 615 for the structural grade (f, = 40 ksi, or 280 N/mm?).
In the number system, the yield strength of the high-strength grades is marked clearly on every
bar. For ordinary grades, no strength marks are indicated. The two types are shown in Fig. 2.6.

Welded fabrics and mats. Welded fabrics and mats consist of a series of longitudinal and
transverse cold-drawn steel wires, generally at right angles and welded together at all points
of intersection. Steel reinforcement may be built up into three-dimensional cages before being
placed in the forms.

Prestressed concrete wires and strands. Prestressed concrete wires and strands use special
high-strength steel (see Chapter 20). High-tensile steel wires of diameters 0.192in. (5 mm) and
0.2761in. (7 mm) are used to form the prestressing cables by winding six steel wires around a
seventh wire of slightly larger diameter. The ultimate strength of prestressed strands is 250 ksi
or 270 ksi.

2.18.2 Grades and Strength

Different grades of steel are used in reinforced concrete. Limitations on the minimum yield
strength, ultimate strength, and elongation are explained in ASTM specifications for reinforcing
steel bars (Table 2.17). The properties and grades of metric reinforcing steel are shown in
Tables 2.18 and 2.19.
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Main rib
Initiat of )
B producing mill B | -Oneline | B
e Py
6 8ar size no. 6 6
SIS
N Steel type N Two lines N
Deformation
Ordinary grades High strength High strength
f, = 40 or 50 ksi fy = 60 ki f, = 75 ksi

f, = 40 or 50 ksi

Rolled welded fabric

Figure 2.6 Some types of deformed bars and American standard bar marks.

2.19.3 Stress=-Strain Curves

The most important factor affecting the mechanical properties and stress—strain curve of the steel
is its chemical composition. The introduction of carbon and alloying additives in steel increases
its strength but reduces its ductility. Commercial steel rarely contains more than 1.2% carbon;
the proportion of carbon used in structural steels varies between 0.2% and 0.3%.

Two other properties are of interest in the design of reinforced concrete structures; the first
is the modulus of elasticity, E,. It has been shown that the modulus of elasticity is constant for
all types of steel. The ACI Code has adopted a value of E; = 29 x 10%psi (2.0 x 10° MPa).
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Table 2.17 Grade of ASTM Reinforcing Steel Bars
Minimum Yield Strength f, Ultimate Strength fg,
Steel ksi MPa ksi MPa
Billet steel
Grade 40 40 276 70 483
60 60 414 90 621
75 75 518 100 690
Rail steel
Grade 50 50 345 80 551
60 60 414 90 621
Deformed wire
Reinforcing 75 518 85 586
Fabric 70 433 80 551
Cold-drawn wire
Reinforcing 70 483 80 551
Fabric 65 448 75 518
Fabric 56 386 70 483
Table 2,18 ASTM 615 M (Metric) for Reinforcing Steel Bars
Bar No. Diameter (mm) Area (mm?) Weight (kg/m)
10M 11.3 100 0.785
15M 16.0 200 1.570
20M 19.5 300 2355
25M 25.2 500 3.925
30M 299 700 5.495
3ISM 35.7 1000 7.850
45M 437 1500 11.770
55M 56.4 2500 19.600
Table 2.19 ASTM Metric Specifications
Grade
ASTM Bar size no. MPa ksi
A615M 10, 15, 20 300 435
Billet steel 10-55 400 58.0
35, 45, 55 500 72.5
A6l6 M 10-35 350 50.75
Rail steel 10-35 400 58.0
A617TM 10-35 300 435
Axle steel 10-35 400 58.0
AT706 10-55 400 58.0

Low alloy
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Figure 2.7 Typical stress-strain curves for some reinforcing steel bars of different
grades. Note that 60-ksi steel may or may not show a definite yield point.

The modulus of elasticity is the slope of the stress-strain curve in the elastic range up to the
proportional limit; E, == stress/strain. Second is the yield strength, fy. Typical stress—strain
curves for some steel bars are shown in Fig. 2.7. In high-tensile steel, a definite yield point may
not show on the stress-strain curve. In this case, ultimate strength is reached gradually under an
increase of stress (Fig. 2.7). The yield strength or proof stress is considered the stress that leaves
a residual strain of 0.2% on the release of load, or a total strain of 0.5% to 0.6% under load.

SUMMARY

Section 2.1

The main factors that affect the strength of concrete are the water—cement ratio, properties and
proportions of materials, age of concrete, loading conditions, and shape of tested specimen.

£ (cylinder) = 0.85 f; (cube) = 1.10f/ (prism)
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Sections 2.2-2.6

1. The usunal specimen used to determine the compressive strength of concrete at 28 days is a
6- by 12-in. (150- by 300-mm) cylinder. Compressive strength between 3000 and 6000 psi
is usually specified for reinforced concrete structures. Maximum stress, f7, is reached at
an estimated strain of 0.002, whereas rupture occurs at a strain of about 0.003.

2. Tensile strength of concrete is measured indirectly by a splitting test performed on a stan-
dard cylinder using formula f{, = 2P/ LD. Tensile strength of concrete is approximately

0.1f..

3. Flexural strength (modulus of rupture, f,) of concrete is calculated by testing a
6- by 6- by 28-in. plain concrete beam, f, = 7.51,/f] (psi), where A is a modification
factor related to unit weight of concrete.

4. Nominal shear stress is 2A./f7 (psi).

Sections 2.7-2.9

The modulus of elasticity of concrete, E, for unit weight w between 90 and 160 pcf, is E, =

33w! /£ (psi) = 0.043w!° /£ MPa.

For normal-weight concrete, w = 145 pcf.

E.=57.600/f or E.=57,000/f =4700,/f MPa
The shear modulus of concrete is G, = EJ/2(1 + ) = 0.43 E. for a Poisson’s ratio g = é—.
Poisson’s ratio, j, varies between 0.15 and 0.20, with an average value of 0.18.
Section 2.10
Modular ratio is n = E;/E. = 500/.,/f!, where f/ is in psi.

Section 2.11

1. Values of shrinkage for normal concrete fall between 200 x 10~% and 700 x 107¢. An
average value of 300 x 10~ may be used.

2. The coefficient of expansion of concrete falls between 4 x 10~® and 7 x 10~%/°F.

Section 2.12-2.13

The ultimate magnitude of creep varies between 0.2 x 107° and 2 x 10~° per unit stress per
unit length. An average value of 1 x 107% may be adopted in practical problems. Of the ultimate
(20-year) creep, 18% to 35% occurs in 2 weeks, 30% to 70% occurs in 3 months, and 64% to
83% occurs in 1 year.

Section 2.14

The unit weight of normal concrete is 145 pcf for plain concrete and 150 pcf for reinforced
concrete.

Section 2.15

Reinforced concrete is a much better fire-resistant material than steel. Concrete itself has a
low thermal conductivity. An increase in concrete cover in structural members such as walls,
columns, beams, and floor slabs will increase the fire resistance of these members.
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Sections 2.16-2.18

1. High-performance concrete implies that concrete exhibits properties of strength, toughness,
energy absorption, durability, stiffness, and ductility higher than normal concrete.

2. Concrete is made lighter than normal-weight concrete by inclusion of air in the concrete
composition. Types of lightweight concrete are no-fines concrete, lightweight aggregate
concrete, aerated concrete, and cellular concrete.

3. Fibrous concrete is made of concrete constituents and discrete reinforcing fibers such as
steel, glass, and organic polymers.

Section 2.19

The grade of steel mainly used is grade 60 (f, = 60 ksi). The modulus of elasticity of steel is
E; =29 x 10%psi (2 x 107> MPa).
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PROBLEMS

2.1 Explain the modulus of elasticity of concrete in compression and the shear modulus.

2.2 Determine the modulus of elasticity of concrete by the ACI formula for a concrete cylinder that has
a unit weight of 120 pcf (1920kg/m*) and a compressive strength of 3000 psi (21 MPa).

2.3 Estimate the modulus of elasticity and the shear modulus of a concrete specimen with a dry density
of 150 pcf (2400kg/m®) and compressive strength of 4500 psi (31 MPa) using Poisson’s ratio, j =
0.18.

2.4 What is meant by the modular ratio and Poisson’s ratio? Give approximate values for concrete.
2.5 What factors influence the shrinkage of concrete?

2.6 What factors influence the creep of concrete?

2.7 What are the types and grades of the steel reinforcement used in reinforced concrete?

2.8 On the stress-strain diagram of a steel bar, show and explain the following: proportional limit, yield
stress, ultimate stress, yield strain, and modulus of elasticity.

2.9 Calculate the modulus of elasticity of concrete, E., for the following types of concrete:
E. = 33W'S/f1 (fv),
E. = 0.043W"°/f7 (SD)

Density Strength f,,
160 pcf 5000 psi
145 pct 4000 psi
125 pcf 2500 psi
2400 kg/m® 35MPa
2300 kg/m? 30 MPa
2100 kg/m? 25MPa

2.10 Determine the modular ratio, n, and the modulus of rupture for each case of Problem 2.9. Tabulate
your results.

fr=T150/f! (psi) £, =0.624/f (MPa)
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2.11 A standard normal 6 x 12-in. concrete cylinder was tested to failure, and the following loads and
strains were recorded.

Load, kips Strain x 10~* Load, kips Strain x 104

0.0 0.0 72 10.0
12 1.2 84 13.6
24 20 96 18.0
36 3.2 108 30.0
48 52 95 3%.0
60 7.2 82 420

a. Draw the stress—strain diagram of concrete and determine the maximum stress and corresponding
strain.

b. Determine the initial modulus and secant modulus.

¢. Calculate the modulus of elasticity of concrete using the ACI formula for normal-weight concrete
and compare results.

E. = 57,000,/f psi
E. = 4730,/ f{ MPa



CHAPTER 3

FLEXURAL
ANALYSIS OF
REINFORCED ([l "= ==
CONCRETE st

BEAMS

3.1 INTRODUCTION

The analysis and design of a structural member may be regarded as the process of selecting
the proper materials and determining the member dimensions such that the design strength is
equal or greater than the required strength. The required strength is determined by multiplying
the actual applied loads, the dead load, the assumed live load, and other loads, such as wind,
seismic, earth pressure, fluid pressure, snow, and rain loads, by load factors. These loads develop
external forces such as bending moments, shear, torsion, or axial forces depending on how these
loads are applied to the structure.

In proportioning reinforced concrete structural members, three main items can be investi-

gated:

1.

2.

The safety of the structure, which is maintained by providing adequate internal design
strength.

Deflection of the structural member under service loads. The maximum value of deflection
must be limited and is usually specified as a factor of the span, to preserve the appearance
of the structure.

Control of cracking conditions under service loads. Visible cracks spoil the appearance of
the structure and also permit humidity to penetrate the concrete, causing corrosion of steel
and consequently weakening the reinforced concrete member. The ACI Code implicitly
limits crack widths to 0.016in. (0.40 mm) for interior members and 0.013 in. (0.33 mm) for
exterior members. Control of cracking is achieved by adopting and limiting the spacing of
the tension bars (see Chapter 6).

It is worth mentioning that the strength design approach was first permitted in the United

States in 1956 and in Britain in 1957. The latest ACI Code emphasizes the strength con-
cept based on specified strain limits on steel and concrete that develop tension-controlled,
compression-controlled, or transition conditions.
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3.2 ASSUMPTIONS

Reinforced concrete sections are heterogeneous (nonhomogeneous), because they are made of
two different materials, concrete and steel. Therefore, proportioning structural members by
ultimate-strength design is based on the following assumptions:

1. Strain in concrete is the same as in reinforcing bars at the same level, provided that the
bond between the steel and concrete is adequate.

2. Strain in concrete is linearly proportional to the distance from the neutral axis.

3. The modulus of elasticity of all grades of steel is taken as E; = 29 X 108 Ibfin.2 (200,000
MPa or N/mm?). The stress in the elastic range is equal to the strain multiplied by E;.

4, Plane cross-sections continue to be plane after bending.

5. Tensile strength of concrete is neglected because (1) concrete’s tensile strength is about
10% of its compressive strength, (2) cracked concrete is assumed to be not effective, and
(3) before cracking, the entire concrete section is effective in resisting the external moment.

6. The method of elastic analysis, assuming an ideal behavior at all levels of stress, is not
valid. At high stresses, nonelastic behavior is assumed, which is in close agreement with
the actual behavior of concrete and steel.

7. At failure the maximum strain at the exireme compression fibers is assumed equal to 0.003
by the ACI Code provision.
8. For design strength, the shape of the compressive concrete stress distribution may be

: assumed to be rectangular, parabolic, or trapezoidal. In this text, a rectangular shape will
be assumed (ACI Code, Section 10.2).

' 33 BEHMAVIOR OF A SIMPLY SUPPORTED REINFORCED CONCRETE BEAM LOADED
TO FAILURE

Concrete being weakest in tension, a concrete beam under an assumed working load will def-
initely crack at the tension side, and the beam will collapse if tensile reinforcement is not
provided. Concrete cracks occur at a loading stage when its maximum tensile stress reaches the
modulus of rupture of concrete. Therefore, steel bars are used to increase the moment capacity
of the beam; the steel bars resist the tensile force, and the concrete resists the compressive
force.

To study the behavior of a reinforced concrete beam under increasing load, let us examine
how two beams were tested to failure. Details of the beams are shown in Fig. 3.1. Both beams
had a section of 4.5in. by 8in. (110 mm by 200 mm), reinforced only on the tension side by two
no. 5 bars. They were made of the same concrete mix. Beam 1 had no stirrups, whereas beam 2
was provided with no. 3 stirrups spaced at 3 in. The loading system and testing procedure were
the same for both beams. To determine the compressive strength of the concrete and its modulus
of elasticity, E., a standard concrete cylinder was tested, and strain was measured at different
load increments. The following observations were noted at different distinguishable stages of
loading.

Stage 1. At zero external load, each beam carried its own weight in addition to that of the load-
ing system, which consisted of an I-beam and some plates. Both beams behaved similarly at this
stage. At any section, the entire concrete section, in addition to the steel reinforcement, resisted
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the bending moment and shearing forces. Maximum stress occurred at the section of maximum
bending moment—that is, at midspan. Maximum tension stress at the bottom fibers was much
less than the modulus of rupture of concrete. Compressive stress at the top fibers was much less
than the ultimate concrete compressive stress, f,. No cracks were observed at this stage.

Stage 2. This stage was reached when the external load, P, was increased from O to Py,
which produced tensile stresses at the bottom fibers equal to the modulus of rupture of concrete.
At this stage the entire concrete section was effective, with the steel bars at the tension side
sustaining a strain equal to that of the surrounding concrete.

Stress in the steel bars was equal to the stress in the adjacent concrete multiplied by the
modular ratio, #, the ratio of the modulus of elasticity of steel to that of concrete. The compressive
stress of concrete at the top fibers was still very small compared with the compressive strength,
f¢. The behavior of beams was elastic within this stage of loading,

Stage 3. When the load was increased beyond P, tensile stresses in concrete at the tension
zone increased until they were greater than the modulus of rupture, f,, and cracks developed.
The neutral axis shifted upward, and cracks extended close to the level of the shifted neutral
axis. Concrete in the tension zone lost its tensile strength, and the steel bars started to work
effectively and to resist the entire tensile force. Between cracks, the concrete bottom fibers had
tensile stresses, but they were of negligible value. It can be assumed that concrete below the
neutral axis did not participate in resisting external moments.

In general, the development of cracks and the spacing and maximum width of cracks
depend on many factors, such as the level of stress in the steel bars, distribution of steel bars in
the section, concrete cover, and grade of steel used.

At this stage, the deflection of the beams increased clearly, because the moment of inertia
of the cracked section was less than that of the uncracked section. Cracks started about the
midspan of the beam, but other parts along the length of the beam did not crack. When load
was again increased, new cracks developed, extending toward the supports. The spacing of these
cracks depends on the concrete cover and the level of steel stress. The width of cracks also
increased. One or two of the central cracks were most affected by the load, and their crack
widths increased appreciably, whereas the other crack widths increased much less. It is more
important to investigate those wide cracks than to consider the larger number of small cracks.

If the load were released within this stage of loading, it would be observed that permanent
fine cracks of no significant magnitude were left. On reloading, cracks would open quickly,
because the tensile strength of concrete had already been lost. Therefore, it can be stated that the
second stage, once passed, does not happen again in the life of the beam. When cracks develop
under working loads, the resistance of the entire concrete section and gross moment of inestia
are no longer valid.

At high compressive stresses, the strain of the concrete increased rapidly, and the stress
of concrete at any strain level was estimated from a stress—strain graph obtained by testing a
standard cylinder to failure for the same concrete. As for the steel, the stresses were still below
the yield stress, and the stress at any level of strain was obtained by multiplying the strain of
steel, &5, by the modulus of elasticity of steel, E;.

Stage 4. In beam 1, at a load value of 95001b (42.75 kN), shear stress at a distance of about
the depth of the beam from the support increased and caused diagonal cracks at approximately
45° from horizontal in the direction of principal stresses resulting from the combined action
of bending moment and shearing force. The diagonal crack extended downward to the level of
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the steel bars and then extended horizontally at that level toward the support. When the crack,
which had been widening gradually, reached the end of the beam, a concrete piece broke off
and failure occurred suddenly (Fig. 3.2). The failure load was 13,6001b (61.2 KN). Stresses in
concrete and steel at the midspan section did not reach their failure stresses. (The shear behavior
of beams is discussed in Chapter 8.)

In beam 2, at a load of 11,0001b (49.5 kN), a diagonal crack developed similar to that of
beam 1; then other parallel diagonal cracks appeared, and the stirrups started to take an effective
part in resisting the principal stresses. Cracks did not extend along the horizontal main steel bars,
as in beam 1. On increasing the load, diagonal cracks on the other end of the beam developed
at a load of 13,2501b (59.6 kN). Failure did not occur at this stage because of the presence of
stirrups.

Stage 5. When the load on beam 2 was further increased, strains increased rapidly until the
maximum carrying capacity of the beam was reached at ultimate load, P, = 16,2001b (72.9kN).

In beam 2, the amount of steel reinforcement used was relatively small. When reached, the
yield strain can be considered equal to yield stress divided by the modulus of elasticity of steel,
e, = fy/Es; the strain in the concrete, &, was less than the strain at maximum compressive
stress, f/. The steel bars yielded, and the strain in steel increased to about 12 times that of the
yield strain without increase in load. Cracks widened sharply, deflection of the beam increased
greatly, and the compressive strain on the concrete increased. After another very small increase
of load, steel strain hardening occurred, and concrete reached its maximum strain, &/, and it
started to crush under load; then the beam collapsed. Figure 3.2 shows the failure shapes of the
two beams.

3.4 TYPES OF FLEXURAL FAILURE AND STRAIN LIMITS

3.4.1 Flexural Failure

Three types of fiexural failure of a structural member can be expected depending on the per-
centage of steel used in the section.
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1. Steel may reach its yield strength before the concrete reaches its maximum strength, Fig. §
3.3a. In this case, the failure is due to the yielding of steel reaching a high strain equal to 3§
or greater than (.005. The section contains a relatively small amount of steel and is called
a tension-controlled section. .

2. Steel may reach its yield strength at the same time as concrete reaches its ultimate strength,
Fig. 3.3b. The section is called a balanced section. -
3. Concrete may fail before the yield of steel, Fig. 3.3c, due to the presence of a high §
percentage of steel in the section. In this case, the concrete strength and its maximum 3§
strain of 0.003 are reached, but the steel stress is less than the yield strength, that is, f; is §
less than f,. The strain in the steel is equal to or less than 0.002. This section is called a §
compression-controlled section. 5

It can be assumed that concrete fails in compression when the concrete strain reaches 0.003. 4
A range of 0.0025 to 0.004 has been obtained from tests and the ACI Code assumes a strain
of 0.003.

In beams designed as tension-controlled sections, steel yields before the crushing of con-
crete. Cracks widen extensively, giving waming before the concrete crushes and the struc-
ture collapses. The ACI Code adopts this type of design. In beams designed as balanced or
compression-controlled sections, the concrete fails suddenly, and the beam collapses immediately
without warning. The ACI Code does not allow this type of design.

3.4.2 Strain Limits for Tension and Tension-Controlled Sections

The design provisions for both reinforced and prestressed concrete members are based on the
concept of tension or compression-controlled sections, ACI Code, Section 10.3. Both are defined
in terms of net tensile strain (NTS), (¢;, in the extreme tension steel at nominal strength, exclusive
of prestress strain. Moreover, two other conditions may develop: (1) the balanced strain condition
and (2) the transition region condition. These four conditions are defined as follows:

1. Compression-controlled sections are those sections in which the net tensile strain, NTS,
in the extreme tension steel at nominal strength is equal to or less than the compression-
controlled strain limit at the time when concrete in compression reaches its assumed strain
limit of 0.003, (¢, = 0.003). For grade 60 steel, (f, = 60 ksi), the compression-controlled
strain limit may be taken as a net strain of 0.002, Fig. 3.4a. This case occurs mainly in
columns subjected to axial forces and moments.

2. Tension-controlled sections are those sections in which the NTS, ¢, is equal to or greater

than 0.005 just as the concrete in the compression reaches its assumed strain limit of 0.003,
Fig. 3.4c.

3. Sections in which the NTS in the extreme tension steel lies between the compression-
controlled strain limit (0.002 for f, = 60 ksi) and the tension-controlled strain limit of
0.005 constitute the transition region, Fig. 3.4b.

4. The balanced strain condition develops in the section when the tension steel, with the first
yield, reaches a strain corresponding to its yield strength, f, or &; = f,/E;, just as the
maximum strain in concrete at the extreme compression fibers reaches 0.003, Fig. 3.5.

In addition to the above four conditions, Section 10.3.5 of the ACI Code indicates that
the net tensile strain, &,, at nominal strength, within the transition region, shall not be less than
0.004 for reinforced concrete flexural members without or with an axial load less than 0.10
flAg, where A, = gross area of the concrete section.
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Note that d; in Fig. 3.4, is the distance from the extreme concrete compression fiber to
the extreme tension steel, while the effective depth, d, equals the distance from the extreme
concrete compression fiber to the centroid of the tension reinforcement, Fig. 3.5. These cases

are summarized in Table 3.1.

Table 3.1 Strain Limits of Fig. 3.4

Section Condition Concrete Strain Steel Strain Notes (f, = 60 ksi)
Compression-controlled 0.003 & < fil Es & < 0.002
Tenston-controlled 0.003 g, > 0.005 g, > 0.005
Transition region 0.003 H/Es <& <0005 0.002 < & < 0.005
Balanced strain 0.003 & = f/E; & = 0,002

Transition region (flexure) 0.003

0004 <& < 0.005

0.004 < g < 0.005
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3.5 LOAD FACTORS

The types of loads and the safety provisions were explained earlier in Sections 1.7 and 1.8.

For the design of structural members, the factored design load is obtained by multiplying
the dead load by a load factor and the specified live load by another load factor. The magnitude
of the load factor must be adequate to limit the probability of sudden failure and to permit
an economical structural design. The choice of a proper load factor or, in general, a proper
factor of safety depends mainly on the importance of the structure (whether a courthouse or a
warehouse), the degree of warning needed prior to collapse, the importance of each structural
member (whether a beam or column), the expectation of overload, the accuracy of artisanry, and
the accuracy of calculations.

Based on historical studies of various structures, experience, and the principles of proba-
bility, the ACT Code adopts a load factor of 1.2 for dead loads and 1.6 for live loads. The dead
load factor is smaller, because the dead load can be computed with a greater degree of certainty
than the live load. Moreover, the choice of factors reflects the degree of the economical design
as well as the degree of safety and serviceability of the structure. It is also based on the fact that
the performance of the structure under actual loads must be satisfactorily within specific limits.

If the required strength is denoted by U (ACI Code, Section 9.2), and those due to wind
and seismic forces are W and E, respectively, according to the ACI Code, the required strength
U, shall be the most critical of the following factors (based on the ASCE 7-05):

1. In the case of dead, live, and wind loads,

U =14D (3.1a)
U=12D+16L (3.15)
U=12D+10L + 1.6W (3.1¢)
U=09D+1.6W 3.1d)

2. In the case of dead, live, and seismic (earthquake) forces, E,

U=12D+1.0(L + E) (3.2a)
U = 09D +1.0E (3.25)

3. When the earth pressure load, H, is included,

U =12D+ 1.6(L + H) (3.3a)
U =09D+1.6(W + H) (3.3b)
U =09D + 1L.OE + 1.6H (3.30)

4, When pressure loads from fluids, F, are included,
U=14D+F) (3.4a)
U=12(D+ F)+ 1.6(L + H) (3.4b)

5. For load combination due to roof live load, L,, rain load, R, snow load, S, the effect
of temperature T (including the effect of creep, shrinkage, and differential settlement) in
addition to the above loads,
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U=12D+F+T)+1.6(L+H)+05(L, or S or R) (3.50)
U=12D+16(L, or S or R) + (L.OL or 0.8W) (3.55)
U=12D+1.6W+1.0L +05(L, or S or R) (3.50)
U= 12D+ 1.0E + 1.OL 4+ 028 3.5d)

It 15 to noted that

1. The load factor L in Egs. 3.1¢, 3.2a, and 3.5a, b, c, and 4 shall be permitted to be reduced
to 0.5L, except for garages, areas occupied as places of public assembly, and all areas !
where the live load, L, is greater than 100 pounds per square foot (psf). i

2. When the wind load, W, is not reduced by a directionality factor, it is permitted to use
1.3W in place of 1.6W in Eqs. 3.14 and 3.35.

3. If the service level of the seismic load E is used, 1.4E shall be used in place of 1.0E in
Eqs. 3.2a and b and 3.3c.

4. If the structural action due to H counteracts that due to W or E, the load factor of H shall
be set to 0.

5. In a flood zone area, the flood load or load combinations of ASCE shall be used.
6. Impact effects shall be included with the live load, L.

The ACI Code does not specify a value for impact, but AASHTO specifications give a
simple factor for impact, /, as a percentage of the live load, L, as follows:

I =50/(1254+ 8§) < 30% (3.6)

where I = percentage of impact, S = part of the span loaded, and live load including impact
= L1 + ).

When a better estimation is known from experiments or experience, the adjusted value
shall be used.

The above equations indicate that the dead load factor is 1.2, whereas the live load factor
is 1.6. These values are less than those specified by the 1999 ACI Code of 1.4 for the dead load
and 1.7 for the live load. The new factors are based on the ASCE specifications ASCE 7-05.

For applied concentrated dead and live loads, Pp, Py, the factored concentrated load Py
= 12Pp + 1.6P; also My = 1.2 Mp + 1.6 My, where Mp and M are the service dead-load
and live-load moments, respectively.

3.6 STRENGTH-REDUCTION FACTOR ¢

The nominal strength of a section, say M, for flexural members, calculated in accordance with
the requirements of the ACI Code provisions must be multiplied by the strength reduction factor,
¢, which is always less than 1. The strength reduction factor has several purposes:

1. To allow for the probability of under-strength sections due to variations in dimensions,
matertal properties, and inaccuracies in the design equations

2. To reflect the importance of the member in the structure
3. To reflect the degree of ductility and required reliability under the applied loads
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The ACI Code, Section 9.3, specifies the following values to be used:

For tension-controlled sections, ¢ = 090
For compression-controlled section

a. with spiral reinforcement, ¢ =075

b. other reinforced members, ¢ = 0.65
For plain concrete, ¢ = 0.60
For shear and torsion, ¢ =075
For bearing on concrete, ¢ = 0.65
For strut and tie models, ¢ =075

A higher ¢ factor is used for tension-controlled sections than for compression-controlled
sections, because the latter sections have less ductility and they are more sensitive to variations
in concrete strength. Also, spirally reinforced compression members have a ¢ value of 0.75
compared to 0.65 for tied compression members; this variation reflects the greater ductility
behavior of spirally reinforced concrete members under the applied loads. In the ACI Code
provisions, the ¢ factor is based on the behavior of the cross-section at nominal strength, (F,,
M,), defined in terms of the NTS, &, in the extreme tensile strains, as given in Table 3.1. For
tension-controlled members, ¢ = 0.9. For compression-controlled members, ¢ = 0.75 (with
spiral reinforcement) and ¢ = 0.65 for other members.

For the transition region, ¢ may be determined by linear interpolation between 0.65 (or
0.75) and 0.9. Figure 3.6a shows the variation of ¢ for grade 60 steel. The linear equations are
as follows:

¢ =0.75 + (¢, — 0.002)(50) (for spiral members) 3.7

¢ = 0.65 + (g, — 0.002) (_2:;_0) (for other members) (3.8)

Altesnatively, ¢ may be determined in the transition region, as a function of (c/d,) for
grade 60 steel as follows:

|
¢ =0.75+0.15 [— - i:| (for spiral members) (3.9)
c/d; 3
¢ = 0.65 + 0.25 [—1— - 2] (for other members) (3.10)
c/d; 3

where ¢ = the depth of the neutral axis at nominal strength (¢, in Fig. 3.4). At the limit strain
of 0.002 for grade 60 steel and from the triangles of Fig. 3.4a, ¢/d, = 0.003/(0.002 + 0.003)
= 0.6. Similarly, at a strain, &, = 0.005, ¢/d; = 0.003/(0.005 4 0.003) = 0.375. Both values
are shown in Fig. 3.6.

For reinforced concrete flexural members, the NTS, &,, should be equal to or greater than
0.004 (ACI Code, Section 10.3). In this case,

250
¢ = 0.65 + (&; — 0.002) (ﬁ?,—) =0.82 (3.11)

Figure 3.6b shows the range of ¢ for flexural members. For grade 60 steel, the range varies
between 0.9 for &, > 0.005 and 0.82 for &, = 0.004. Other values of ¢ can be obtained from
Eq. 3.11 or by interpolation.
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Figure 3.6 (a) Variation of ¢, with the net tensile strain for grade 60 steel and for
prestressed steel, [1]; (b) variation of ¢ and strain limit in flexural member with £, =
60ksi.

3.7 SIGNIFICANCE OF ANALYSIS AND DESIGN EXPRESSIONS

Two approaches for the investigations of a reinforced concrete member will be used in this book:

Analysis of a section implies that the dimensions and steel used in the section (in addition
to concrete strength and steel yield strength) are given, and it is required to calculate the internal
design moment capacity of the section so that it can be compared with the applied external
required moment. '
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Design of a section implies that the external required moment is known from structural
analysis, and it is required to compute the dimensions of an adequate concrete section and the
amount of steel reinforcement. Concrete strength and yield strength of steel used are given.

3.8 EQUIVALENT COMPRESSIVE STRESS DISTRIBUTION

The distribution of compressive concrete stresses at failure may be assumed to be a rectangle,
trapezoid, parabola, or any other shape that is in good agreement with test resuits.

When a beam is about to fail, the steel will yield first if the section is under-reinforced,
and in this case the steel is equal to the yield stress. If the section is over-reinforced, concrete
crushes first and the strain is assumed to be equal to 0.003, which agrees with many tests of
beams and columns. A compressive force, C, develops in the compression zone and a tension
force, T, develops in the tension zone at the level of the steel bars. The position of force T
is known, because its line of application coincides with the center of gravity of the steel bars.
The position of compressive force C is not known unless the compressive volume is known and
its center of gravity is located. If that is done, the moment arm, which is the vertical distance
between C and T, will consequently be known.

In Fig. 3.7, if concrete fails, &, = 0.003, and if steel yields, as in the case of a balanced
section, f; = fy.

The compression force, C, is represented by the volume of the stress block, which has
the nonuniform shape of stress over the rectangular hatched area of bc. This volume may be
considered equal to C = bc(a; £7), where a; f! is an assumed average stress of the nonuniform
stress block.

The position of compression force C is at a distance z from the top fibers, which can be
considered as a fraction of the distance ¢ (the distance from the top fibers to the neutral axis),
and z can be assumed to be equal to aac, where oy < 1. The values of & and o have been
estimated from many tests, and their values, as suggested by Mattock, Kriz, and Hognestad [3],
are as follows:

ht— £ —-
_ezom [l
1 7 “_1:I=azc
// i C_tlf'_-C-_
- &1ic
NA l
) G,k Y e B
Ag
4+t —_——— T A,
& = €y
Strain Stress
- D ——

Figure 3.7 Ultimate forces in a rectangular section.
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oy = 0.72 for f < 4000 psi (27.6 MPa); it decreases linearly by 0.04 for every 1000 psi
(6.9 MPa) greater than 4000 psi

ay = 0.425 for f! < 4000 psi (27.6 MPa); it decreases linearly by 0.025 for every 1000
psi greater than 4000 psi

The decrease in the value of &) and «; is related to the fact that high-strength concretes show
more brittleness than low-strength concretes [2).

To derive a simple rational approach for calculations of the internal forces of a section,
the ACI Code adopted an equivalent rectangular concrete stress distribution, which was first
proposed by C. S. Whitney and checked by Mattock and others [3]. A concrete stress of 0.85 f;
is assumed to be uniformly distributed over an equivalent compression zone bounded by the
edges of the cross-section and a line parallel to the neutral axis at a distance g = pic from the
fiber of maximum compressive strain, where ¢ is the distance between the top of the compressive
section and the neutral axis (Fig. 3.8). The fraction 8, is 0.85 for concrete strengths f] < 4000 psi
(27.6 MP32) and is reduced linearly at a rate of 0.05 for each 1000 psi (6.9 MPa) of stress greater
than 4000 psi (Fig. 3.9), with a minimum value of 0.65.

0.85¢,
s fé—b— -t -
7 . _ —— _ ":/z= af2
// // _c{, I— l T c=o8stab
L.
o | (d-2)
Aq T = Asfy
+—————tt— .t .
Actuai Equivalent
I 0.85¢;
/b
\{‘\ z2=qf2
a
\*\ C = 085¢.ab

T

Figure 3.8 Actual and equivalent stress distributions at failure.
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Figure 3.9 Values of 8¢ for different compressive strengths of concrete, f..

The preceding discussion applies in general to any section, and it is not confined to a
rectangular shape. In the rectangular section, the area of the compressive zone 1s equal to ba,
and every unit area is acted on by a uniform stress equal to 0.85 f;, giving a total stress volume
equal to 0.85 f/ab, which corresponds to the compressive force, C. For any other shape, the
force C is equal to the area of the compressive zone multiplied by a constant stress equal to
0.85f1..

f‘or example, in the section shown in Fig. 3.10, the force C is equal to the shaded area of
the cross-section multiplied by 0.85 f:

C=085f(6x34+10x2)=323f1b

The position of the force C is at a distance z from the top fibers, at the position of the resultant
force of all small-element forces of the section. As in the case when the stress is uniform and
equals 0.85 17, the resultant force C is located at the center of gravity of the compressive zone,
which has a depth of a.

In this example, z is calculated by taking moments about the top fibers:

3
(6x3x5)+10x2(1+3) 107

_ = _28in.
¢ 6x3+10x2 38 1n

3.9 SINGLY REINFORCED RECTANGULAR SECTION IN BENDING

We explained previously that a balanced condition is achieved when steel yields at the same
time as the concrete fails, and that failure usually happens suddenly. This implies that the yield
strain in the steel is reached (¢y = f,/E) and that the concrete has reached its maximum strain
of 0.003. The percentage of reinforcement used to produce a balanced condition is called the
balanced steel ratio, py. This value is equal to the area of steel, A, divided by the effective
cross-section, bd:

A;(balanced)

Op = bd
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Figure 3.10 Ultimate forces in a nonrectanguiar section.

where

b = width of the compression face of the member

d = distance from the extreme compression fiber to the centroid of the longitudinal
tension reinforcement

Two basic equations for the analysis and design of structural members are the two equations
of equilibrium that are valid for any load and any section:

1. The compression force should be equal to the tension force; otherwise, a section will have
linear displacement plus rotation:

C=T (3.12)
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2. The internal nominal bending moment, M,, is equal to ¢ither the compressive force, C,
multiplied by its arm or the tension force, 7, multiplied by the same arm:

M,=C(d-2)=T{d —2z)
(M, = ¢ M, afier reduction by the factor ¢) (3.13)

The use of these equations can be explained by considering the case of a rectangular section
with tension reinforcement (Fig. 3.8). The section may be balanced, under-reinforced, or
over-reinforced, depending on the percentage of steel reinforcement used.

3.9.1 The Balanced Section

Let us consider the case of a balanced section, which implies that at ultimate load the strain in
concrete equals 0.003 and that of steel equals the first yield stress at distance d; divided by the
modulus of elasticity of steel, f,/E;. This case is explained by the following steps.

Step 1. From the strain diagram of Fig. 3.11,
cs _ 0.003
d—cp f y/ E;

From triangular relationships (where is ¢; is ¢ for a balanced section) and by adding the
numerator to the denominator,

o 0.003
d 0003+ f,/E,
Substituting E; = 29 x 10 ksi,
87
Cp = d 3.14
’ (87 + fy) .
where f, is in ksi.
¢ = 0003 0.85f7, ‘_L
— — -
i: 1 ch of C=0485¢fcb
2 4 ___ |/ P4
d=d e - - ¥ P SEp—
~+& -0+ —— e —— e b T = A,
& = 1/E,
e ® De—_

Figure 3.11 Rectangular balanced section.
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Step 2. From the equilibrium equation,

C=T .
0.85f/ab = A, f, (3.15)
Asfy :
_ Ashy 3.1
= 085f .10

Here a is the depth of the compressive block, equal to 8ic, where 81 = 0.85 for £ < 4000 psi "
(27.6 MPa) and decreases linearly by 0.05 per 1000 psi (6.9 MPa) for higher concrete strengths
(Fig. 3.9). Because the balanced steel reinforcement ratio is used,

A;(balanced) _ Ag

and substituting the value of Ag, in Eq. 3.15,
0.85 f/ab = f,ppbd
Therefore,
0.85f, 0.85f!
op = d a= Fod (Bics)
Substituting the value of ¢, from Eq. 3.14, the general equation of the balanced steel ratio
becomes
1! 87
o» =0.858;== ( ) (3.18)
Hy \87+ 1y

Step 3.  The internal nominal moment, M,, is calculated by multiplying either C or T by the
distance between them:

My=Cld-—2)=Td—-2) (3.13)

For a rectangular section, the distance z = a/2 as the line of application of the force C lies at
the center of gravity of the area ab, where

Lo Ak
0.85f/b
a a
Mi=C(d—3)=T(d-3)
For a balanced or an under-reinforced section, T = A; f). Then
a
M, = Ay f, (d - 5) (3.19)

To get the usable design moment ¢M,, the previously calcutated M, must be reduced by the
capacity reduction factor, ¢,

A,
M, = PA; fy (d - 62_1) = QA fy (d 1 7f{b) (3.19)
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Equation 3.19a can be written in terms of the steel percentage p:

As
p=0 A; = pbd
pbdf, ) 2 ( Py )
M, = bd - = ] — ——— 2

¢ Pfyo (d 17115 dpfybd 77 (3.20)

Equation 3.20 can be written as
oM, = R,bd* (3.21)

where
Pfy
n — 1 - .

Ry = ¢ofy ( = fc,) (3.22)

The ratio of the equivalent compressive stress block depth, a, to the effective depth of the
section, d, can be found from Eq. 3.15:

0.85 flab = pbdf, (3.23)
a_ Pfy
d~ 085f)

3.9.2 Upper Limit of Steel Percentage

The upper limit or the maximum steel percentage, Pmax, that can be used in a singly reinforced
concrete section in bending is based on the net tensile strain in the tension steel, the balanced
steel ratio, and the grade of steel used. The relationship between the steel percentage, p, in the
section, and the net tensile strain, &,, is as follows:

6 = (0'003 + 5/ E) — 0.003 (3.24)
p/Po
For f, = 60 ksi, and assuming f,/E; = 0.002,
005
g = (0 00 ) - 0.003 (3.25)
o/op

These expressions are obtained by referring to Fig. 3.12. For a balanced section,

a __ Asfy _ _pefyd
B 085fbp  0.85f/B

Cp =

Similarly, for any steel ratio, p,

d
Y R

C =
0.85f(B1 T )

3 = (%) (%’) (3.26)

Divide both sides by 4 to get
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0.85f

0.003 0.003

2 o ,
¢ Cp / AF— Cb = 0.85fcabb
———
o———
A T=
N A / Ab

< 5 y’, E:
b Tension-controlled Balanced

Figure 3.12 Strains in tension-controlled and balanced conditions.

From the triangles of the strain diagrams,
¢ 0.003
d~ 0003 +¢
_0.003
 (e/d)

(3.27)
—0.003

&

Similarly,
0.003

Cp
& _ 32
d ~ 0.003+ f,/E, (3.28)

From Egs. 3.26 and 3.28,

i=(2)6)-(2) (i)
d \pp/\d/ " \p ) \0.003 + f,/E,

Substitute this value in Eq. 3.27 to get
_0.003 0.003 + f,/E;
(c/d) o/ ps
For grade 60 steel, f, = 60 ksi, E; = 29,000 ksi, and f,/E; = 0.00207, then
(0.00507
& =
Pl oo

&

- 0.003 = [ ] —0.003 (3.24)

) —0.003 (3.25)

To determine the upper limit or the maximum steel percentage, p, in a singly reinforced
concrete section, refer to Fig. 3.6. It can be seen that concrete sections subjected to flexure or axial
load and bending moment may lie in compression-controlled, transition, or tension-controlled
zones. When ¢, < 0.002 (or ¢/d, > 0.6), compression controls, whereas when &, > 0.005 {or
c/d; < 0.375), tension controls. The transition zone occurs when 0.002 < &, < 0.005 or 0.6 >
c/d, > 0.375.

For members subjected to flexure, the relationship between the steel ratio, p, was given in
Eq. 3.24:

0.003 + £,/E,

& +0.003 =
0/ 0p

(3.24)



3.9 Singly Reinforced Rectangular Section in Bending 85

or

p 0003+ f,/E,
Db - 0.003 + & (3.29)

For f, = 60 ksi and E; = 29,000 ksi, f,/E; may be assumed to be 0.00207.
P 0.00507
op  0.003 + g
The limit for tension to control is & > 0.005. For s; = 0.005, Eq. 3.30 becomes

p 0005 5
00088 0.625 (3.30a)
or p < 0.63375p, for tension-controlled sections if &, = 0.00507 = f,/E;. Both values can be
used for practical analysis and design. The small increase in p will slightly increase the moment
capacity of the section. For example, if f; =4 ksi and f, = 60 ksi, pp = 0.0285 and p <
0.01806 for tension to control (as in the case of flexural members). The ¢ factor in this case
is 0.9. This value is less than pmax = 0.7505 = 0.0214 allowed by the ACI Code for flexural
members when ¢ = 0.9 can be used.
Design of beams and other flexural members can be simplified using the limit of & =

(3.30)

0.003.
0.003 E
P _ + fy/Es (331)
b 0.008
In this case, 0 = pmax = upper limit for tension-controlled sections.
0.003 + f,/E;
= 3.31
Pmax ( 0.008 POb ( a)

Note that when p used < pmax, tension controls and ¢ = 0.9. When o > pmax, section will be
in the transition region with ¢ < 0.9.
And for f, = 60 ksi and f,/E; = 0.00207,

Pmax — 0.63375 (3.32)
Pb
This steel ratio will provide adequate ductility before beam failure.
Similarly,
for f, =40 ksi, pmax = 0.5474p (3.32a)
for fy =50 ksi, pmax = 0.5905 05 (3.32b)
for fy =75 ksi, Pmax = 0.69830 (3.32¢)

It was established that ¢M, = R,bd% (Eq. 3.21), where R, = ¢pfy(1 — pofy/1.7£))
(Eq. 3.22). Once f/ and f, are known, then o3, 0, Ry, and bd? can be calculated. For example,
for f7 =4 ksi, fy = 60 ksi, ¢ = 0.9, & = 0.005, and one row of bars in the section,

pp = 0.0285 p=0.01806 R, =820 psi

Note that for one row of bars in the section, it can be assumed that d = d; = h — 2.51n,,
whereas for two rows of bars, d = # — 3.5in,, and d, = 2 — 2.5in. = d + 1.0in. (Refer to
Figs. 3.4 and 3.5 and Section 4.3.3.)
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Table 3.2 Values of pmax and R, = M, /bd? for Flexural Tension-Controlled Sections with One Row of
Bars, ¢ = 0.005

. (ksl) f, (ksi) b omax = 0.63375 op Ry (psi} (Eq. 3.22) 1
3 60 0.0214 0.01356 615
4 60 0.0285 0.01806 820
5 60 0.0335 0.02123 975
6 60 0.0377 0.02389 1109

Table 3.2 gives the values of p, pp, and R, = M, /bd? for flexural tension-controlled
sections with one row of bars.

For reinforced concrete flexural members with o > pmax. € Will be less than 0.005.
Section 10.3 of the ACI Code specifies that &, should not be less than 0.004 in the transition '
region to maintain adequate ductility and warning before failure.

For this limitation of & = 0.004, the general equation (3.29) becomes

o 0003+ f,/E;

(333)

b 0.007
For f, = 60 ksi,
0.003 4 0.002
L _ +0.00207 _ 704 (3.34)
oy 0.007
and the limit in the transition region is
Omaxr = 0.724 Pb (334‘1)
Note that the ¢ here refers to the transition region. In this case, limit of ¢ is
250
¢ = 0.65 + (g, — 0.002) T =0.817 <09 (3.35)

For f, = 60 ksi and f] = 4 ksi, pp = 0.0285, pnax; = 0.02063, R, = 1012 psi (from Eq.3.22,
and R, = ¢R, = 0.817(1012) = 826 psi.

This steel ratio in Eq. 3.33 is the upper limit (oax ;) for a singly reinforced concrete section
in the transition region with ¢ < 0.9,

It can be noticed that the aforementioned R, = 826 psi calculated for &, = 0.004, is very
close to R, = 820psi for pmax = 0.63375p;, and ¢ = 0.9. Therefore, adding reinforcement
beyond pomax (for &, = 0.005, Table 3.2) reduces ¢ because of the reduced ductility resulting in
little or nonsubstantial gain in design strength. Adding compression reinforcement in the section
is a better solution to increase the design moment, keeping the section in the tension-controlled
region with ¢ = 0.9. (Refer to Section 3.14.)

Table 3.3 gives the values of p,(limit), pp, and R, for flexural members in the transition
region for f, = 60 ksi and &, = 0.004 and one row of bars. In this case ¢ = 0.817 (Eq. 3.35)
and p/pp = 0.724. It is clear that for f, = 60 ksi, the design R, in both cases, when &; = 0.005
with ¢ = 0.9 and when £, = 0.004 with ¢ = 0.816, are quite close.
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Table 3.3 Values of p; and R, for Sections in the Transition Region with ¢; = 0.004, f, = 60 ksi, and
One Row of Bars (¢ = 0.817)

f. (ksi) Pb p¢ (limit) Ry (psi)
3 0.0214 0.0155 617
4 0.0285 0.0206 822
5 0.0335 0.0243 980
6 0.0377 0.0273 1116
Example 3.1

For the section shown in Fig. 3.13, calculate

a. The balanced steel reinforcement

b. The maximum reinforcement area allowed by the ACI Code for tension-controlled section and
in the transition region

c. The position of the neutral axis and the depth of the equivalent compressive stress block for
the tension-controlled section in b.

Given: f =4 ksi and f, = 60 ksi.

Solution

a. pp=085p1 5 (87+f )
Because f = 4000 psi, i?. = 0.85:

4 87
— 2 _
oy = (0.85) ( 60) ( & ) = 0.0285

NI

Figure 3.13 Example 3.1.
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The area of steel reinforcement to provide a balanced condition is

A = ppbd = 0.0285 x 16 x 25.5 = 11.63 in.?

b. For a tension-controlled section, omax = 0.63375 o, = 0.63375 x 0.0285 = 0.01806 or, from

Eq. 3.32,
Ay max = Pmaxbd = 0.01806 x 16 x 25.5 = 7.37 in.2 for ¢ = 0.9.

For the transition region, pmax, = 0.724 pp = 0.0206. For the case of &, = 0.004, Asmaxs =
0.0206(16 x 25.5) = 8.41in.?2 for ¢ = 0.817

¢. The depth of the equivalent compressive block using Asmax is
Asmaxfy _ 737 x 60
Amax =
0.85f/b T 0.85x4x 16

= §.13 in.

The distance from the top fibers to the neutral axis is ¢ = «/8;. Because f! = 4000 psi, 8| =

0.85; thus,

8.13
L‘—a*g's— = 9.56 in.

or ¢/d = 0.375 and ¢ = 0.375(25.5) = 9.56in.

Example 3.2

Determine the design moment strength and the position of the neutral axis of the rectangular section
shown in Fig. 3.14 if the reinforcement used is three no. 9 bars. Given: f/ =3 ksi and f, =
60 ksi,

Solution

1. The area of three no. 9 bars is 3.0in.

2
_ A 30
P = bd

Lo e Lk JL_

7 : —- —
. = 0.85f.ab
%/l
21" T 1706"
3#9
1 o o o} —— —_—— + T=Af, =180k
£,=0.0061
bt} O e

Figure 3.14 Example 3.2.
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2. pmax = 0.01356 > p, tension-controlled section, ¢ = 0.9 or check &;:

As fy 3(60) .
4= 085/ 085x3x12 "
a
=% —692in
¢ 0.85 92 in
dy=d=21in
21 - 6.92
= {==2")o.
& = ) 003

= 0.0061 > 0.005, ¢ =09

or di =033 <0375 (ok)

!

3. oMy = 04 fy (4~ 3)

a= Asfy 3.0 x 60
T 085fb  0.85x3x12

oM, = 0.9 x 3.0 x 60 (2[ - ?) = 2926 K-in. = 243.8 K-ft

= 5.88 in.

Discussion
In this example, the section is tension-controlled, which implies that the steel will yield before the

concrete reaches its ultimate strain. A simple check can be made from the strain diagram (Fig. 3.14).
From similar triangles,

& C fy 60
= = de, = = = ——— = 0.00207
e, @d—o O TE T 29000
6.92
¢ = ————— x (.00207 = 0.00102
T 2r-692)
which is much less than 0.003. Therefore, steel yields before concrete reaches its limiting strain of
0.003.
Example 3.3
Repeat Example 3.2 using three no. 10 bars as the tension steel (Fig. 3.15).
Solution
1. Check g,
Asfy 3.81(60) .
= = = 7.47 in.
= 085fb  085x3x12 .
a ) ) c
c= 055 =879in. d, =d =21 1in. d_r =0.419 > 0.375
d; — —8.7
o ={ %Y 0003 = (2227 0.003 = 0.004168
¢ 8.79
This value is less than 0.005 but greater than 0.004 (transition region), ¢ < 0.9.

¢ = 0.65 + (¢, — 0.002) (E;g) = 0.831
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—

€c

2.55 ksi l

3.735"
C =0.85f.ab

T

747" ==

=2286k.

T 17.2657

21" e 1 —_— —_———
‘l— 3#10
~—o-o- —*——Z—*—

£4=0.04168

- T=Af, =22864%

Figure 3.15 Example 3.3.

2, Caiculate ¢M,,;

4
oM, = 0.831(3.81)(60) [21 - 22—7] = 3278 K-in. = 273 K ft

Discussion
For a tension-controlled section, &, = 0.005 and p = 0.63375 pp = 0.01356 (Table 3.2), ¢ = 0.9,

A; max = 0.01356(12 x 21) = 3.417 in2 < 3.81 in.2

3.417 x 60

4= O8sx3x 12 07

oM, = 0.9 x 3417 x 60 (21 - _6:21) =271.4 K-ft

which is close to the above ¢M,,. This is a somewhat conservative approach.

3.10 LOWER LIMIT OR MINIMUM PERCENTAGE OF STEEL

If the factored moment applied on a beam is very small and the dimensions of the section
are specified (as is sometimes required architecturally) and are larger than needed to resist the
factored moment, the calculation may show that very small or no steel reinforcement is required.
In this case, the maximum tensile stress due to bending moment may be equal 10 or less than the
modulus of rupture of concrete: f, = A?.S/T; . If no reinforcement is provided, sudden failure
will be expected when the first crack occurs, thus giving no warning. The ACI Code, 10.5,
specifies a minimum steel area, A;,

o (B o ()
Asmm—( 7, )bwdz 7, b

or the minimum steel ratio, pin = (3,/7//fy) > 200/f,, where the units of 1 and fy are in psi.
This p ratio represents the lower limit. The first term of the preceding equation was specified
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to accommodate a concrete strength higher than 5 ksi. The two minimum ratios are equal when
f! = 4440 psi. This indicates that

Omin = 2;)—0 when f < 4500 psi
}

37

Pmin = when f, > 4500 psi
Iy

For example, if f, = 60 ksi, pyin = 0.00333 when f] < 4500 psi, whereas pyn = 0.00353
when f! = 5000 psi and 0.00387 when f = 6000 psi.

In the case of a rectangular section, use b = b,, in the preceding expressions. For statically
determinate T-sections with the flange in tension, as in the case of cantilever beams, the value
of A, min should be equal to or greater than the smaller of (a) and (b):

(a) Agmin = (nyfé) bwd

(b) Agin = (3 ,f) bud = (22) bud

where b,, and b are the width of the beam web and flange, respectively, and f. and f, are
in psi. For example, if b = 48in., b, = 16in., f = 4000 psi, and f, = 60,000 psi, than As min
= 2.02in.2 in (a) controls, which is smaller than the value of Agmis in (b) (3.2 in.2).

3.11 ADEQUACY OF SECTIONS

A given section is said to be adequate if the internal moment strength of the section is equal
to or greater than the externally applied factored moment, M,, or $M, > M,. The procedure
can be summarized as follows:

1. Calculate the external applied factored moment, M.
M, =12Mp + 1.6M,

2. Calculate ¢ M, for the basic singly reinforced section:
a. Check that pmin < £ < Pmax-
b. Calculate a = A; f,/(0.85f/b) and check ¢, for ¢.
c. Calculate ¢ M, = ¢ A, fy(d — al2).
3. If M, > M, then the section is adequate; Fig. 3.16 shows a typical tension-controlled
section.

Example 3.4

An 8-ft-span cantilever beam has a rectangular section and reinforcement as shown in Fig. 3.17. The
beam camies a dead load, including its own weight, of 1.5 K/ft and a live load of 0.9 K/ft. Using
f! =4 ksi and f, = 60 ksi, check if the beam is safe to carry the above loads.



92 Chapter 3 Flexural Analysis of Reinforced Concrete Beams

&.=90.003 0.85f
A
// // ﬁ C=0.85f,ab
7R
d —_
i A'f
+tT——& - —————— . T=Af
£,20.005 '
——— fy ]

Figure 3.16 Tension-controlled rectangular section.

2.5" "
— < —0- @ -9
t I#7 /

Y ]
Z

15.5 - g0 _l

Y
re—— g —=
Figure 3.17 Example 3.4.
Solution

1. Calculate the external factored moment;
W, =12D +1.6L = 1.2(1.5) + 1.6(0.9) = 3.24 K/ft

2 82
M, = Wu% = 3.24? = 103.68 K-ft = 1244 K-in.

2. Check &,:
Asfy 1.8 x 60 .
= = =3.97 in.
TT 085/ 085x4x8 "
a ¢
= — =4, ', :d:l. '. -— = .3 0.375
c 0.5 4.67 in. d, 5.5 in d 03 <
Also,

e, = (dt - C) 0.003 = (1554_6_74'67) 0.003 = 0.007 > 0_005, ¢ =09
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or check

bd 8 x 155
(from Table 3.2). Therefore, it is a tension-controlled section and ¢ = 0.9.
3. Calculate ¢pM,:

A 1.8
p=— = 0.0145 < ppax = 0.01806

oMy =91 (4 - 5)

= 0.9(1.8)(60) (15.5 - g) = 1312 K-in. > M,

Then section is adequate.

Example 3.5

A simply supported beam has a span of 20 ft. If the cross section of the beam is as shown in Fig. 3.18,
fi =3 ksi, and f, = 60 ksi, determine the allowable uniformly distributed service live load on the
beam assuming the dead load is that due to beam weight. Given: b = 12in., d = 17in,, total depth
h = 20in., and reinforced with three no. § bars (A; = 2.37in.2).

Solution

1. Determine the design moment strength:
A;  3x079
Tbd T 12x17
Pmax = 0.01356 (Table 3.2)

£ < Pmax
Therefore it is a tezng(i)on-comrolled section and ¢ = 0.9
Also, p > puin = — = 0.00333.
¥y A f
2. M, =oA; fi | d— Sy
PMy = $As Sy ( 1.7f!b
2.37 x 60

———— } = 1878 K-in. = 156.5 K-
l.7><3><12) K-in 56.5 K-t

=09 x 237 x 60(17—

17"

>
.

I

20'0"

3#8

D

Figure 3.18 Example 3.5.
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. The dead load acting on the beam is self-weight (assumed):
12 x 20
144
where 150 is the weight of reinforced concrete in pcf.
. The external factored moment is

M, =12Mp + 1.6M,

wp = x 150 = 250 Ib/ft = 0.25 K/ft

= 1.2(—8-— x 20 ) + 1.6(? X 202) = 15.0 + 80w,

where w; = uniform service live load on the beam in K/ft.
. Internal design moment equals the external factored moment:
156.5=15.0+80w; and w; = 1.77 K/ft

The allowable uniform service live load on the beam is 1,77 K/ft.

Example 3.6: Minimum Steel Reinforcement

Check the desigh adequacy of the section shown in Fig. 3.19 to resist a factored moment M, = 30
K-ft, using f] = 3 ksi and f, = 40 ksi.

Solution

1. Check p provided in the section:

_ 4 3x0.2

P=5d T 10x18

= 0.00333

2. Check pmin required according to the ACI Code:

Proin = zfﬂ = 0.005 > p = 0.00333
¥y

18°
3#4
T -0 -
25"
T ft—— 10—

Figure 3.19 Example 3.6.
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Bundled Bars a5

Therefore, use p = pmin = 0.005.
Aqmin = Pminbd = 0.005 x 10 x 18 = 0.90 in.?

Use three no. 5 bars (4; = 0.91in.2), because three no. 4 bars are less than the minimum
specified by the code.

. Check moment strength: ¢ M, = QA fi(d — al2).

A 0.91 x 40
T 085f%h  0.85x3x10

1.43
oM, = 0.9 x 0.91 x 40 (18 - T) = 566 K.in. = 47.2 K-ft

a = 143 in.

. An alternative solution, according to the ACI Code, Section 10.5, for three no. 4 bars, A; =

0.6in.2 is

_ Asf:y _ 0.6 X 40 _ R
4= 58s/b T 085 x3x 10 Ot

0.9 .
oM, = i x 0.6 x 40 (18 - 0—;—4) = 31.55 Kt

Aj; required for 30 K-ft = % x 0.6 = 0.57 in.2

The minimum A, required according to the ACI Code, Section 10.5, is at least one-third greater
than 0.57 in.”:
Minimum A, required = 1.33 x 0.57 = 0.76 in.2

which exceeds the 0.6in.> provided by the no. 4 bars. Use three no. 5 bars, because A; =
0.91in.? is greater than the 0.76in.? required.

3.12 BUNDLED BARS

When the design of a section requires the use of a large amount of steel—for example, when
Pmax 18 used—it may be difficult to fit all bars within the cross-section. The ACI Code, 7.6,
allows the use of parallel bars placed in a bundled form of two, three, or four bars, as shown
in Fig. 3.20. Up to four bars (no. 11 or smaller) can be bundled when they are enclosed by

The same bundled bars can be used in columas, provided that they are enclosed by ties.
All bundled bars may be treated as a single bar for checking the spacing and concrete cover
requirements. The single bar diameter shall be derived from the equivalent total area of the
bundied bars.

8 * 1
$ o 3

Figure 3.20 Bundled bar arrangement.
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Summary: Singly Reinforced Rectangular Section

The procedure for determining the design moment of a singly reinforced rectangular section
according to the ACI Code limitations can be summarized as follows:

L. Calculate the steel ratio in the section, p = A;/bd.

2. Calculate the balanced and maximum steel ratios, Eqs. 3.18 and 3.31 or Table 3.2, for
tension-controlled section. Also, calculate pnin = 200/, when f! < 4500 psi (f and 5
are in psi units) and ppin = 3,/7//f, when £/ > 4500 psi.

3. If pmin < £ < Pmax. then the section meets the ACI Code limitations for tension-controlled
section. If p < ppq, the section is not acceptable (unless a steel ratio p > Pmin is used).
If p > pmax. ¢ = 0.9.

A fy
4, Calculate a = W'

5. Calculate §M, = $A, f, (d - 3).

c, &, and ¢.

Flow charts representing this section and other sections are given on www.wiley.com/
college/hassoun.

3.13 SECTIONS IN THE TRANSITION REGION (¢ < 0.9)

In the case when the NTS, &, in the extreme tension steel lies between the compression-controlled
strain limit (0.002 for f, = 60 ksi) and the tension-controlled strain limit of 0.003, the strength
reduction factor, ¢, will be less than 0.9. Consequently, the design moment strength of the section
¢ M, will be smaller than ¢ M,, with ¢ = 0.9 (refer to Fig. 3.6). In the transition region, &, should
not be less than 0.004 for flexural members (ACI Code, Section 10.3). (See Example 3.8.)

Example 3.7

Determine the design moment strength of a rectangular concrete section reinforced with four no. 9
bars in one row (Fig. 3.21).
Given: b = 12in.,, d = 16.5in., k = 19in., f! =4 ksi, and £, = 60 ksi.

Solution

1. By the ACI Code provisions, for f/ =4 ksi, f, = 60 ksi, and tension-controlled conditions
(op = 0.0285 and ppay = 0.01806), check p = A/bd = 4/(12 x 6) = 0.02083 > pmax. This
indicates that the section is in the transition region and ¢ < 0.9.

16.5"

d-c
449

| Bl
25" £

12"

Figure 3.21 Example 3.7 (d = dy).
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2. Calculate a, c., and &,:
Asfy  4x60

- - = 5.882 in.
0.85 f'b 0Ss xdx 12 - o osin

(d

& = 0.65 + (5, — 0.002) (250) = 0.829

) 0.003 = (1—6—%) 0.003 = 0.004153 > 0.004

3. Calculate:
oM, = ¢Asfy(d —a/2)

165_5882

) = 224.9 K-ft

= (0.829(4)(60) ( 3

Discussion

A slightly conservative approach can be used assuming tensmn controlled section, p = Ppax =
0.01806 and ¢ = 0.9. A;max = 0.01806(12 x 16.5) = 3.576in.%, a = 5.259in,, and ¢M, = 223.2
K ft (almost equal to the above ¢M,).

Example 3.8: Two Rows of Bars
Determine the design moment strength of a rectangular concrete section reinforced with six no. 9

bars in two rows (Fig. 3.22).
Given: b = 12in., d = 23.5in., # = 27in,, d; = 24.5in., f/ =4 ksi, and f; = 60 ksi.

Solution
1. For tension-controlled condition, £, = 0.005, ppax = 0.01806 (Table 3.2) and p, = 0.0285.
Check
A _ 8 =0.02128 >
P=%d " 12x235 e

Section is in the transition region.

0.003

€ <

d=235"
/ 6#9
9 e o @

35”3]? ¢ * hd _32.5" &

2"

d,=27-25=245"

Figure 3.22 Example 3.8.
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2. Calculate a, ¢, and &,:
Afy = 6x60

A= ORSfb OB xaxiz osHin
a .
€= 555 = 1038in. &, =h—-25=27-25=245
£ = 042450375
d;
d, — 5 —10.
g = ( d C) 0.003 = (M 0.003 = 0.00408 > 0.004
c 10.38
¢ = 0.65 + (&; — 0.002) (22—0) =0.823
3. Calculate
oM, = ¢Asfy(d —aj2)
(23.5 - —_—8'8224)
= 0.823(6)(60) = =471 KAt
Discussion
For a tension-controlled section limitation, ppe = 0.01806 and R, = 820 psi,
2
&M, = R,bd* = 0.82(12) (231'25 ). — 4528 Kt

This is a conservative value: It is advisable to choose adequate reinforcement to produce
tension-controlled condition with ¢ = 0.9.

3.14 RECTANGULAR SECTIONS WITH COMPRESSION REINFORCEMENT

In concrete sections proportioned to resist the bending moments resulting from external loading
on a structural member, the internal moment is equal to or greater than the external moment,
but a concrete section of a given width and effective depth has a minimum capacity when
Pmax is used. If the external factored moment is greater than the design moment strength, more
compressive and tensile reinforcement must be added.

Compression reinforcement is used when a section is limited to specific dimensions due
to architectural reasons, such as a need for limited headroom in multistory buildings. Another
advantage of compression reinforcement is that long-time deflection is reduced, as is explained
in Chapter 6. A third use of bars in the compression zone is to hold stirrups, which are used to
resist shear forces.

Two cases of doubly reinforced concrete sections will be considered, depending on whether
compression steel yields or does not yield.

3.14.1 When Compression Steel Yields

Internal moment can be divided into two moments, as shown in Fig. 3.23. M, is the moment
produced by the concrete compressive force and an equivalent tension force in steel, A, , acting as

!

S
i
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} | ossr: |

d, dn 4
o — o1 T T e c, {92

| Al ° a ' C.

1 _— |
d _ ____l_ﬂ______..”i*__ﬂ
As
—4o- oo — -
T=Af,

——— ) ———=|

= ~
k) + |
! A
>
Ag l i Ag
+—————1 e ——— —l—r
Ty = Aaly T, = Apf,
My = dAaT(d~ af2) M2 = ¢Auf(d - d)

Figure 3.23 Rectangular section with compression reinforcement.

a basic section. M,, is the additional moment produced by the compressive force in compression
steel A’ and the tension force in the additional tensile steel, A, acting as a steel section.
The moment M,,, is that of a singly reinforced concrete basic section,

T =C; (3.36)
A, fy = Cc = 0.85flab (3.37)
_ Asl f,V
T 085S (3.38)
[7
My, = @A fy ( - '2”) (3.39)

The restriction for M,, is that p) < Ag /bd shall be equal to or less than ppm,x for singly
reinforced tension-controlled sections, as given in Eq. 3.31a.

Considering the moment M,, and assuming that the compression steel designated as A
yields,

Mug = ¢Aszfy(d - d’) (3.40a)
My, = ¢A.f,(d —d) (3.40b)
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In this case A;, = Aj, producing equal and opposite forces, as shown in Fig. 3.23. The
total resisting moment, My, is then the sum of the two moments M,, and M,

OM, = My, +M,, = ¢ [As, £y (d - g) + ALfy(d — d’)] (3.41)

The total steel reinforcement used in tension is the sum of the two steel amounts Ag and Ag,.
Therefore,

Ag = Ag + Ag, = A; + AL (3.42)

and
Ag = A; — A

Then, substituting (As — A)) for A,, in Eqs. 3.38, 3.39, and 3.41,
= (As - A;)fy

0.8577b (3.43)
' a ' ’
My = [(A; — )£, (4= 5) + A fyd - )] (3.44)
and
- (0,003 + fy/Es)
(0 — P} < Pmax = Pp ( 0.008 (3.45)

For f, = 60 ksi, (0 — p’) < 0.63375 pp, ¢ = 0.9, and &, = 0.005. Equation 3.45 must
be fulfilled in doubly reinforced concrete sections, which indicates that the difference between
total tension steel and the compression steel should not exceed the maximum steel for singly
reinforced concrete tension-controlled sections. Failure due to yielding of the total tensile steel
will then be expected, and sudden failure of concrete is avoided.

If p1 = (p — 0') > Puax, the section will be in the transition region with a limit of
(0 — P’} < pPmaxs (Eq. 3.34a). In this case, ¢ < 0.9 for M,, and ¢ = 0.9 for M,,,. Equation 3.44
becomes

oMy =6 (A — AN S, (d - 2] +o09a s - (3.44a)

Note that (A; — A%) < Pmax¢ (bd).
In the compression zone, the force in the compression steel is C; = AL(f, — 0.85f)), taking
into account the area of concrete displaced by A. In this case,

T =Asf, =C.+Cs =085fab+ AL(f, ~ 0.85f))
Asfy— A fy +0.85f A, = 0.85f/ab = C, = Ay, f, (for the basic section)
Dividing by bdf,,

! A
o—p (1 - 0.85;—;) = p1, where py = b_:i] < Pmax
Therefore,
J 0.003 + f,/E;
—o'{1-085/c) < = 3.46
p—p (1 085fy) < Prmax pb( 0,008 (3.46)
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Although Eq. 3.46 is more accurate than Eq. 345, it is quite practical to use both equations
to check the condition for maximum steel ratio in rectangular sections when compression sieel
yields.

For example, if f/ =3 ksi and f, = 60 ksi, Eq. 3.46 becomes (p — 0.9575p") < 0.016;
if f/ =4 ksiand fy = 60 ksi, then (o0 — 0.9575p") < 0.02138.

The maximum total tensile steel ratio, p, that can be used in a rectangular section when
compression steel yields is as follows:

Max p = (Omax + 0') (3.47)

where ppax is maximum tensile steel ratio for the basic singly reinforced tension-controlled con-
crete section. This means that maximum total tensile steel area that can be used in a rectangular
section when compression steel yield is as follows:

Max AS = bd(pmax + p’) (3.470)

In the preceding equations, it is assumed that compression steel yields. To investigate this
condition, refer to the strain diagram in Fig. 3.24. If compression steel yields, then

/ i

g > g, =
s ="y
E;

From the two triangles above the neutral axis, substitute £; = 29,000 ksi and let f) be in
ksi. Then

c 0003 &
&7 0003+L 8- 4
= ( ill )d' (3.48)
87— f,
From Eq. 3.37,
Ag fy =0.85flab (347

but
Ay, = A;— A, and py = (p—p)

s

I
et LT

w
A

d i
—to-0o o o

Figure 3.24 Strain diagram in doubly reinforced section.

€5 2 fy/Es
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Therefore, Eq. 3.37 becomes (A; — A}) f, = 0.85flab:
(0 — pYbdfy = 0.85 flab

/ /e
(p—p)=&%(zj(3)

87
a=510=ﬁ1(87_f )d'
y

=08 (7) () (#77)
- p) =085 = =K 3.49
(o —p) B (fy i I\e—7, (3.49)

The quantity (o — 0') is the steel ratio, or (A; — AL)/bd = A, /bd = p, for the singly reinforced
basic section.

If (p — p') is greater than the value of the right-hand side in Eq. 3.49, then compression
steel will also yield. In Fig. 3.25 we can see that if A, is increased, T'; and, consequently, C

Also,

Therefore,

ec = 0,003 0851, ¢ = 0,003

— L
| ...y-\ I N
o

e o} T T —

oA o E— ¢, A
C / l __L/' —¢
- _l._“ /62— F—— Nna I/
4
A, 7
+&- - 0—& 01— — - — —
€ &
(@) (b) (©)

Figure 3.25 Yielding and nonyielding cases of compression reinforcement. Diagram
(d), a close-up of {a), shows how the neutral axis responds to an increase in Ag;.
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Table 3.4 Values of K for Different f{ and f,,

£ (ksi) f, (ksi) K K {for d’ = 2.5in.)
3 40 0.1003d"/d 0.251/d
3 60 0.1164d"/d 0.291/d
4 60 0.1552d'/d 0.388/d
5 60 0.1826d'/d 0.456/d

will be greater and the neutral axis will shift downward, increasing the strain in the compression
steel and ensuring its yield condition. If the tension steel used (Ay ) is less than the right-hand
side of Eq. 3.49, then T and C; will consequently be smaller, and the strain in compression
steel, &;, will be less than or equal to &y, because the neutral axis will shift upward, as shown
in Fig. 3.25¢, and compression steel will not yield.
Therefore, Eq. 3.49 can be written
fod 87
(p—0)=0858=F x — x
_f“ y d 87 - f)v
where f, is in ksi, and this is the condition for compression steel to yield.
For example, the values of X for different values of f/ and f, are as shown in Table 3.4,

=K (3.4%9a)

Example 3.9

A rectangular beam has a width of 12in. and an effective depth of d = 22.5in. to the centroid
of tension steel bars. Tension reinforcement consists of six no. 9 bars in two rows; compression
reinforcement consists of two no. 7 bars placed as shown in Fig. 3.26. Calculate the design moment
strength of the beam if f] =4 ksi and f, = 60 ksi.

Solution

1. Check if compression steel yields:

A 6.0
A =60in? p= —=—"——=002222
s=00m" o= = %225
Al 1.2
'=12in? p= ==—_—_—"__=
A;=12in° p = d 13 %355 0.00444

A, — AL =48in® p—p =001778
For compression steel to yield,

, ff i‘/ 87
0o—p)> 08385 x — =
( = ]fy dx87"fy

B1 is 0.85 because f! = 4000 psi; therefore,

o ee2 3,_)(2.5) 87 )_
K = (0.85) (60 ) 5= ) = 0017

(p — ) =0.01778 > 0.0175

Therefore, compression steel yields.

2. Check that (p - p') < pmax (Eq. 3.45): For f] =4 ksi and f, = 60 ksi, p, = 0.0285 and
Pmax = 0.01806 (Table 3.2). (p - p'}) < 0.01778 < ppyax, and ¢ = 0.9 (a tension-controlled
condition).
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Figure 3.26 Example 3.9.

3. $M, can be calculated by Eq. 3.44:
4 a 4 ?

oMy =0 [(h — )1, (4= 5) + AL fyta - )]
_ (A —ADS,  48x60

T 085fb T 085x4x12

PM, = (0.9) [4.8 x 60 (22.5 - 7—;)-9) + 1.2 x 60(22.5 - 2.5)]

= 6213 K-in. = 517.8 K ft

4. An alternative approach for checking if compression steel yields can be made as follows:

=2 -0 _g3;
0.85  0.85 ‘“
, 58 i 60
6= g5 X0003=00021 &, =% 0020

Because ¢, exceeds &,, compression steel yields.
5. Check £;:c = 8.3in, d, = 26 - 2.5 = 23.5in.

_ (23.5 ~83

g = 53 ) 0.003 = 0.0055 > 0.005
or S =0353 <0375  (ok)

6. The maximum total tension steel for this section, max Aq, is equal to
Max A; = bd(pmax + 0"} = 12 x 22.5(0.01806 + 0.00444)

=6.08 in% > A, = 6.0in2 (used in the section)




3.14 Rectangular Sections with Compression Reinforcement 105

3.14.2 When Compression Steel Does Not Yield

As was explained eatlier, if

(p p’)<(085ﬂ X C’xdlx 87 ) K (3.50)
— 858 x =X x — = _
then compression steel does not yield. This indicates that if (o - p') < K, the tension steel will
yield before concrete can reach its maximum sirain of 0.003, and the strain in compression steel,
¢/, will not reach ¢, at failure (Fig. 3.25). Yielding of compression steel will also depend on its
position relative to the extreme compressive fibers d’. A higher ratio of d'/c will decrease the
strain in the compressive steel, ¢, as it places compression steel A{ nearer to the neutral axis.

If compression steel does not yield, a general solution can be performed by analysis based
on statics. Also, a solution can be made as follows: Referring to Figs. 3.23 and 3.24,

!

_d — ! — !
¢ = 0.003 (C ) ! = Eq&, = 29,000(0.003) (C cd ) =87 (c d )

c C

Let C. = 0.85f/Bicb:
(c~d)
¢

C, = Al(f] —0.85f) = A [87 0.85 f;]

Because T = A;fy, = C¢ + Cj, then

A, f, = (085 f.Bicb) + A [87 (C _cd’) — 0385 fg]
Rearranging terms yields
(0.85F.816)c? + [(87AL) — (0.85f(A}) — Asfyle — 87ALd =0
This is similar to A ¢ + Azc + Az = 0, where
Ay =085fp1b
Ay = AL(87—0.85f) — A, f,
Az = —87Ald'

|
=——|-4 1/Az—zm X
C 2A; [ g:i: 2 |A3] (3 51)

Once c¢ is determined, then calculate f;,a, C; and Cs;.
f! = 87[(c —dV/c);a = Bic; C. = 0.85 flab; and Cs = A(f; —0.85f).

Solve for c:

oM, = ¢ [cc (d - %) +Co(d - d’)] (3.52)

When compression steel does not yield, f{ < fy, and the maximum total tensile steel
reinforcement needed for a rectangular section is

 fs ol
Max A; = pmaxbd + AL 25 = bd | pmax + (3.53)
fy fy
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Using steel ratios and dividing by bd:

max A; 4
M = < L 4
ax p bd = Pmax + 2 A
or
7
(p - p’_;‘s;) = Pmax

(3.54)

(3.55)

where pmax is the maximum steel ratio for the tension-controlled singly reinforced rectanguiar

section (Eq. 3.31).
In this case,

= Asfy — A;f;
T 085f%

oMy =0 [(Acfy = A1) (A= 5) + AL fid — )]

2

(3.56)

(3.57)

In summary, the procedure for analyzing sections with compression steel is as follows:

1. Calculate p, o/, and (p — p’). Also calculate ppay and L.

2. Calculate

_ Iﬂf 87
k=084 (fy) (87—13)(

Use ksi units.

3. If (p — p’) = K, then compression steel yields, and fi=hHif (p — p)) < K, then

compression steel does not yield, and f] < f,.
4. If compression steel yields, then

a. Check that pmax > (0 — p’) = Pmin (t0 use @ = 0.9) or check ¢, > 0.005.

b. Calculate

_ (As - A;)fy
T 085fh

¢. Calculate

oMy = ¢ (A= ADf, (4= 5) + AL fkd - ).

2

d. The maximum A that can be used in the section is Max A; = bd(omax + 0) > As

(used).
5. If compression steel does not yield, then

a. Calculate the distance to the neutral axis ¢ by using analysis (Example 3.10) or by using

the quadratic equation (3.51).

b. Calculate

c—d'
¢

£l =87 ( ) (ksi).
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¢. Check that (o — p' f//f,) < Pmax Or max A; that can be used in the section is greater
than or equal to the A; used.

o1

y

Max A = bd (pmax + ) > A; (used)

d. Calculate s
— (A-“f)' — Asfs)

0.857'b

or a = fic.

e. Calculate a
oM = b [(Afy - ALF) (4= 5) + ALl - D).
For flow charts, refer to Chapter 21.

Example 3.10

Determine the design moment strength of the section shown in Fig. 3.27 using f/ =35 ksi, f, =
60 ksi, A, = 2.37 in.? (three no. 8 bars), and A, = 7.62in.* (six no. 10 bars).

Solution

1. Calculate p and p”:

A & / 37
so 782 oo p=R o 2T 00753
bd = 14%225

(p — o) =0.01667
2. Apply Eq. 3.50, assuming $; = 0.8 for f/ = 5000 psi.

a8 ( 5\ (25 ) ( 87
~0. fo 4 — 085 %08 [ = = 0.020
K =088 x5 x 3 x g7 =08x08{ G )\ 25 ) \F—e0 ’

(or from Table 3.3, K = 0.456/d = 0.0203).
(p — p)) = 0.01667 < 0.0203

Therefore, compression steel does not yield, and f; < 60 ksi.

0.85¢. }
—
— - 28 -
3#8 Con Cs=1224K
333.2
25 1 ] ___f'é: — 7
6#10
® & ¢ | o 3 N
3%« . . . ¢y = V/Es T1 - As1fy=333.2x T2 = Aszfy Al ]22.4K
r o | 4! ———=

Figure 3.27 Example 3.10 analysis solution.
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For f/ =5 ksi and f, = 60 ksi, p, = 0.0335 and ppax = 0.02123 [Table 3.2 (p — 0")
< Pmax, fOr the basic section], ¢ = 0.9, so this is a tension-controlled condition.

3. Calculate ¢ M, by analysis. Internal forces:
C. =085flab a = Bic=08¢
C.=0.85x50.8c) x 14 =477¢
C; = the force in compression steel
= A f; — the force in displaced concrete
= A (f; —0.85/0)

From strain triangles,

fi = Eg¢. (since steel is in the elastic range)

. 7 (e —d'
=29’000|:0003(c d)]= 87 —d o
c C
Therefore,
c, = 237187 - 9 _ (0.85 x 5)](kips) = [w] ~ 10.07

T=T+T:=(Aa + A) fy = S; fy = 7.62(60) = 457.2 kips
4. Equate internal forces to determine the position of the neutral axis (the distance ¢):

T=C=C(+Cs

206.2(c -~ 2.
457.2 = 47.6c + # — 10.07
¢ —5.48c —10.83 =0
¢c=7.01In. a=10.8c=5.61n.
Equation 3.51 can also be used to calculate ¢ and a.
5, Calculate f;, C,, and C;:
T(c—2.5 87(7.0-25
f;=8(c ) 5T ) 559 ksi

c 7.0

which confirms that compression steel does not yield.

C. = 47.6¢ = 47.6(7.0) = 333.2 kips
Cs = (AL f; — 10.07) = 2.37(55.90) — 10.07 = 122.40 Kips

6. To calculate ¢M,, take moments about the tension steel A,:
oM, = [Cc (d - %) +Cytd — d”)] = 0.9[333.2(22.5 — 2.8) + 122.40(22.5 — 2.5)]

= 8110.8 K.in. = 675.9 K-ft
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7. Check that (p — 0’ f;/fy) < pmax (Eq. 3.55):
559
0.0242 — 0.00754 (a) =0.0171 < ppax = 0.02123
The maximum total tension steel that can be used in this section is calculated by Eq. 3.50

max A; = bd (pmax + it f’)
fy

= 14(22.5) (0.02123 +

0.00753 x 55.9
60
8. &, can be checked as follows: ¢ = 7.0in., d; = 23.51n.

di =03 <0375 or

!

) —=8.9in% > 7.62 in.2 (ok.)

o = ("f - ") 0.003 — (23'57" 7) 0.003 = 0.0071 > 0.005

Tension-controlled section.

3.15 ANALYSIS OF T- AND I-SECTIONS

3.15.1 Description

It is normal to cast concrete slabs and beams together, producing a monolithic structure. Slabs
have smaller thicknesses than beams. Under bending stresses, those parts of the slab on either
side of the beam will be subjected to compressive stresses, depending on the position of these
parts relative to the top fibers and relative to their distances from the beam. The part of the slab
acting with the beam is called the flange, and it is indicated in Fig. 3.28a by area br. The rest
of the section confining the area (h - 1)b,, is called the stem, or web.

In an I-section there are two flanges, a compression flange, which is actually effective, and
a tension flange, which is ineffective, because it lies below the neutral axis and is thus neglected
completely. Therefore, the analysis and design of an I-beam is similar to that of a T-beam.

3.15.2 Effective Width

In a T-section, if the flange is very wide, the compressive stresses are at a maximum value at
points adjacent to the beam and decrease approximately in a parabolic form to almost O at a
distance x from the face of the beam. Stresses also vary vertically from a maximum at the top
fibers of the flange to a minimum at the lower fibers of the flange. This variation depends on
the position of the neutral axis and the change from elastic to inelastic deformation of the flange
along its vertical axis.

An equivalent stress area can be assumed to represent the stress distribution on the width
b of the flange, producing an equivalent flange width, b, of uniform stress (Fig. 3.28¢).

Analysis of equivalent flange widths for actual T-beams indicate that b, is a function of
span length of the beam [7]. Other variables that affect the effective width b, are (Fig. 3.29).

» Spacing of beams
« Width of stem (web) of beam b,
« Relative thickness of slab with respect to the total beam depth
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Figure 3.28 (a) T-section and (b) i-section, with (¢) illustration of effective flange
width be.

+ End conditions of the beam (simply supported or continuous)

+ The way in which the load is applied (distributed load or point load)

» The ratio of the length of the beam between points of zero moment to the width of the
web and the distance between webs

The ACI Code, Section 8.10.2, prescribes the following limitations on the effective flange
width b,, considering that the span of the beam is equal to L:

1. b, = L/4

2. b, = 16t + b,
3. b, = b, where b is the distance between centerlines of adjacent slabs

The smallest of the aforementioned three values must be used.
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Figure 3.29 Effective flange width of T-beams.

These values are conservative for some cases of loading and are adequate for other cases.
A similar effective width of flange can be adopted for I-beam sections. Investigations indicate
that the effective compression flange increases as load is increased toward the ultimate value [6].
Under working loads, stress in the flange is within the elastic range.

A T-shaped or I-shaped section may behave as a rectangular section or a T-section. The
two cases are investigated as follows.

3.15.3 T-Sections Behaving as Rectangular Sections

In this case, the depth of the equivalent stress block a lies within the flange, with extreme
position at the level of the bottom fibers of the compression flange (a < ¢). When the neutral
axis lies within the flange (Fig. 3.30a), the depth of the equivalent compressive distribution
stress lies within the flange, producing a compressed area equal to b.a. The concrete below the
neutral axis is assumed ineffective, and the section is considered singly reinforced, as explained
earlier, with b, replaced by b. Therefore,

_Asly
4= 085/b, (3.58)
and
oM, = QA fy (d - %) (3.59)

If the depth a is increased such that a = 7, then the factored moment capacity is that of a singly
reinforced concrete section:

oM, = QA f, (d - %) (3.60)
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Figure 3.30 Rectangular section behavior (@) when the neutral axis lies within the
flange and (b} when the stress distribution depth equals the slab thickness.

In this case
A 0.85('h
- -~————~Sff or A; = _ 085/t (3.61)
0.85f'b, £

In this analysis, the limit of the steel area in the section should apply: As < A;max, and &, >
0.005.

3.15.4 Analysis of a T-Section

In this case the depth of the equivalent compressive distribution stress lies below the flange;
consequently, the neutral axis also lies in the web. This is due to an amount of tension steel A,
more than that calculated by Eq. 3.61. Part of the concrete in the web will now be effective in
resisting the external moment. In Fig. 3.31, the compressive force C is equal to the compression
area of the flange and web multiplied by the uniform stress of 0.85 f:

C = 0.85f[bet + by(a — )]

The position of C is at the centroid of the T-shaped compressive area at a distance z from top
fibers.
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Figure 3.31 T-section behavior.

The analysis of a T-section is similar to that of a doubly reinforced concrete section,
considering an area of concrete (b, — b))t as equivalent to the compression steel area A,. The
analysis is divided into two parts, as shown in Fig. 3.32:

1. A singly reinforced rectangular basic section, b,,d, and steel reinforcement Ay;. The com-
pressive force, C, is equal to (0.85 flab), the tensile force, Ty, is equal to A fy, and
the moment arm is equal to (d — a/2).

2. A section that consists of the concrete overhanging flange sides 2 x [(b, — by,)t]/2 devel-

oping the additional compressive force (when multiplied by 0.85 f) and a moment arm
equal to {(d — ¢/2). If Ay is the area of tension steel that will develop a force equal to the
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Figure 3.32 T-section analysis.



114 Chapter 3 Flexural Analysis of Reinforced Concrete Beams

compressive strength of the overhanging flanges, then
At fy = 0.85f/(b, — by)t
0.85 f/t (b, — by)

Ag = (3.62)
Iy
The total steel used in the T-section A; is equal to Ay + Ay, or
Asl = As - Asf (363)

The T-section is in equilibrium, s0 C; =71, C2 =T2, and C; =C1+ G =T+ T»
= T. Considering equation C; = Ty for the basic section, then Aj, fy = 0.85 flab, or
(A; — As) fy = 0.85 flab,,; therefore,

_ A —ADf
0.851by

Note that b, is used to calculate a. The factored moment capacity of the section is the
sum of the two moments M, and M.

oM, = M, +M“2
Mo = pAnf, (4 3) = ¢4 — a0 f, (4 - %)

(3.64)

where
(As — Asf)fy
0.85 flby

Me = dAsf, (d _ %) (3.65)

A =(A; —Ay) and a=

oM, =¢ [(As - Asf)fy (d - %) + Asff)‘ (d - %)]

Considering the web section b,,d, the net tensile strain (NTS), &,, can be calculated from
a,c, and d, as follows:

If ¢ = a/B, (from Eq. 3.64) and d; = h — 2.5in., then & = 0.003 (¢ — 4,)c. For
tension-controlled section in the web, &, > 0.005.

The design moment strength of a T-section or I-section can be calculated from the preceding
equation(3.65). It is necessary to check the following:

1. The total tension steel ratio relative to the web effective area is equal to or greater than
Pmin-

Ly = As/bwd 2 Pmin
Pmin = B/ F)/ £ = 200/, (3.66)

2. Also, check that the NTS is equal to or greater than 0.005 for tension-controlled sections.

3. The maximum tension steel (Max A;), in a T-section must be equal to or greater than the
steel ratio used, Ay, for tension-controlled sections, with ¢ = 0.9,

Max A; = Ay (flange) + pmax(bpd) (web) (3.67)
Max A = (1/£,)[0.85 £/ (b — b)] + Pmax (bud) (3.68)
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In steel ratios, relative to the web only, divide Eq. 3.67 by b,,d:
Pw = As/bypd < (Pmax + Ay /buwd) (3.69)
Or
(0w — £f) < Pmax (Web) (3.70)

where pmax 18 the maximum steel ratio for the basic singly reinforced web section
(Table 3.2), and ps = Asp/bud.
A general equation for calculating (Max A;) in a T-section when a > ¢ can be
developed as follows:
C = 0.85f/[(b. — by)t + aby)

For £, = 0.003 and &; = 0.005, then c¢/d = 0.003/(0.003 + 0.005) = 0.375 (for the web).
Hence, ¢ = B1c = 0.3758:4.
The maximum steel area is equal to C/fy and therefore

Max A,c = (0'85fc{/fv)[(be - bw)t + 0375ﬁlbwd] (371)

where Max A; is the maximum tension steel area that can be used in a T-section when
a > t. For example for f! =3 ksi and f, = 60 ksi, the preceding equation is reduced to:

Max A = 0.0425[(b, — byt + 0.319b,,d] (3.72)
For f; =4 ksi and f, = 60 Kksi,
Max A; = 0.0567[(b, — by}t + 0.319b,,d] (3.73)

In summary, the procedure to analyze a T-section or inverted L-section is as follows:

Determine the effective width of the flange b, (refer to Section 3.15.3). Calculate ppax and
Pmin (Or take from tables).

Check if a < t as follows: a’ = A, f,,/(0.85 fb.)

If @’ < t,itis a rectangular section analysis.

a. Calculate M, = ¢pA;fy(d — al2),a =4a'
Note that ¢ = a/8; and &; = 0.003 (d; — c)/¢ > 0.005 for tension-controlled section
and ¢ = 0.9

b. Check that p,, = As/byd = Onin-
¢. Max A, can be calculated from Eq. 3.68 and should be > A, used. When a < 1,
normally this condition is met.

If @ > t, it is a T-section analysis:
a. Calculate Ay = 0.85f/¢t(b, — by)/fy
b. Check that (0, — ) < Pmax (relative to the web area), where

pw = A¢/byd and  p; = Ag/byd

Or check that Max A; > A used in the section, for ¢ = 0.9, (Eq. 3.71).
c. Check that py, = As/byd = Pmin. This condition is normally met when a > r.
d. Calculate a = (A; — Ag)/0.85 f/by, (for the web section).
e. Calculate pM,, from Eq. 3.65.
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Example 3.11

A series of reinforced concrete beams spaced at 7ft, 10in. on centers have a simply supported
span of 15ft. The beams support a reinforced concrete floor slab 4in. thick. The dimensions and
reinforcement of the beams are shown in Fig. 3.33. Using f! = 3 ksi and f, = 60 ksi, determine the
design moment strength of a typical interior beam.

Solution
1. Determine the effective flange width .. The effective flange width is the smallest of

16 + by, = (16 x 4) + 10 = 74 in.
Span/4 = 15 x 12/4 = 45 in.
Center to center of beams = (7 x 12) + 10 = 94 in.

Therefore, b, = 45in. controls.

2, Check the depth of the stress block. If the section behaves as a rectangular one, then the stress
block lies within the flange (Fig. 3.30). In this case, the width of beam used is equal to 45in.

a' = A, fy/(0.85fh) =237 x 60/(0.85 x 3 x45) =124 in. < ¢

Therefore, it is a rectangular section with ¢ = @’ = 1.241in.

» . $ .-
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Figure 3.33 Example 3.11: (3) plan of slab-beam roof and (b) section A-A.
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3. Check that

A
Ow = bu;! > Pmin = 0.00333
2.37
= %16 = 0.0148 > 0.00333

4. Check ¢, : @ = 1.24in., ¢ = 1.24/0.85 = 1.46in,,d, =d = 16in.
& = 0.003(d, — ¢)/c = 0.003(16 — 1.46)/1.46 = 0.0299 > 0.005, ¢ = 0.9
5. Calculate §M, = ¢A; fy(d — af2) = 0.9(2.37)60)(16 — 1.24/2)
= 1968 K-in. = 164 K-ft.
6. You may check that A; used is less than or equal to A; (Eq. 3.72), which is not needed when

a <t
Max A, = 0.0425[(45 — 10) +0.31 x 10 x 16] = 8.11 in.? > 2.37 in?
Example 3.12
Calculate the design moment strength of the T-section shown in Fig. 3.34 using fl=35ksiand f,
= 60 ksi.
Solution

1. Given b = b, = 36in., by = 10in., d = 17in., and A, = 6.0in.%, check if a < 1:
a' = As f,/(0.85f/b) = 6 x 60/(0.85 x 3.5 x 36) = 3.36 in.

Since @’ > t, it is a T-section analysis.

2. Ay =085ft(b— by)/fy =0.85 x 3.5 x 3(36 — 10)/60 = 3.87 in2.(A; — Ag) = Ag
(web) = 6 — 3.87 = 2.13 in.2

3, Check £;:a (web) = Aj f,/(0.85f/b,) = 2.13 x 60/(0.85 x 3.5 x 10) = 4.3in. ¢ = 4.3/0.85
= 5.06in., d, = 20.5 — 2.5 = 18in., and ¢/d; = 0.281 < 0.375 Or, &, = 0.003(d,; — c)ic =
0.0077 > 0.005, then ¢ = 0.9

4. Check that A, > A;min» Pmin = 0.00333
Asmin = 0.00333 x 10 x 17 = 0.57 in.2

4.3"
_}_f"?w =|J_ i ossr; |

3” W 506" E——Cﬂ]iﬁfé
f | 1 s S ,,“__—1— (36x8+10x1.3)
" NA =360 K
17" y=
I 1.3°
649
35" B I N > T=Af, = 360K
T !——10"—-

Figure 3.34 Example 3.12.
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5. Calculate ¢ M, using Eq. 3.65:

oM, = ¢ [(As — A0S, (d-3) +Aus; (d - %)]

=09 [2.13 x 60 (17 - 4—23) +3.87 x 60 (17 —~ %)]

= 4947 K-in. = 412.3 K-ft

Another approach to check whether a < ¢ is to calculate the tension force, T = A, f,, and
compare it to the compressive force in the total flange (Fig. 3.34).

T=A;f, =60x60=360K
C=085fth, =085%x35x3x36=3213K

Since T exceeds C, then a < ¢, and the section acts as a T-section.

An additional area of concrete should be used to provide the difference of (360 — 321.3)
= 38.7 K. This area has a width of 10 in. and a depth of y. Therefore,

by y(0.85f7) =38.7 K or 10(y)(0.85 x 3.5) = 38.7 K
y=13in,anda =y + 1 = 1.3 + 3 = 4.3 1n,, as calculated earlier.

3.16 DIMENSIONS OF ISOLATED T-SHAPED SECTIONS

In some cases, isolated beams with the shape of a T-section are used in which additional
compression area is provided to increase the compression force capacity of sections. These
sections are commonly used as prefabricated units.

The ACI Code, Section 8.10.4, specifies the size of isolated T-shaped sections as follows:

1. Flange thickness, ¢, shall be equal to or greater than one-half of the width of the web, b,,.

2. Total flange width b shall be equal to or less than four times the width of the web, b,
(Fig. 3.35).

1
o
-

—i = lef—
Y
!

b<dab,
t=0b,/2

A
—— -4 —
b,

—_—

Figure 3.35 Isolated T-shaped sections.
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3.17 INVERTED L-SHAPED SECTIONS

In slab-beam girder floors, the end beam is called a spandrel beam. This type of floor has part
of the slab on one side of the beam and is cast monolithically with the beam. The section
is unsymmeirical under vertical loading (Fig. 3.36a). The loads on slab §; cause torsional
moment uniformly distributed on the spandrel beam B). Design for torsion is explained later.
The over-hanging flange width (b — by,) of a beam with the flange on one side only is limited
by the ACI Code, Section 8.10.2, to the smallest of the following:

1. One-twelfth of the span of the beam
2. Less than or equal to six times the thickness of the slab
3. Less than or equal to one-half the clear distance to the next beam.

If this is applied to the spandrel beam in Fig. 3.36b, then

1. (b — 12) < (20 x 12)/12 = 20in. (controls)
2. (b—12) <6 x 6 =36In
3.(b—12) <35 x 12=42in.

Therefore, the effective flange width is b = 20 + 12 = 32in., and the effective dimensions of
the spandrel beam are as shown in Fig. 3.36d.

3.18 SECTIONS OF OTHER SHAPES

Sometimes a section different from the previously defined sections is needed for special require-
ments of structural members. For instance, sections such as those shown in Fig. 3.37 may be used
in the precast concrete industry. The analysis of such sections is similar to that of a rectangular
section, taking into consideration the area of the removed or added concrete. The next example
explains the analysis of such sections.

Example 3.13

The section shown in Fig. 3.38 represents a beam in a structure containing prefabricated elements.
The total width and total depth are limited to 14 and 21 in., respectively. Tension reinforcement used
is four no. 9 bars. Using f; =4 ksi and f, = 60 ksi., determine the design moment strength of the
section.

Solution

1. Determine the position of the neutral axis based on T = 4 x 60 = 240 K.
240 = 0.85f/[2(4 x 5) + 14(a — 4)]

where a = depth of the equivalent compressive block needed to produce a total compressive

force of 240 K.
If 240 = (0.85 x 4) (40 + 14a — 56), then @ = 6.18in. and ¢ = 4/0.85 = 7.28in.
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Figure 3.36 Slab-beam-girder floor, showing (a) plan, (b) section including spandrel
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Figure 3.37 Sections of other shapes.
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Figure 3.38 Example 3.13: (a) balanced and (b) under-reinforced sections.

2. Calculate M, by taking moments of the two parts of the compressive forces (each by its arm),
about the tension steel.

C| = compressive force on the two small areas, 4 x 5 in.
=085 x4(2x4x5) =136K.
C| = compressive force on area,14 x 2.185
=085x4x 14 x 2.185 =104 K.
M, = Ci(d —2) + C{(d — 5.10)
= 136 x 16.5 + 104 x 13.4 = 3637.6 K-in. = 303.1 K-ft
3. Caiculate &; = 0.003(d, — c)/c, where d, = 18.5in.
& = 0.003(18.5 — 7.28)/7.28 = 0.004624 < 0.005 but > 0.004
Section is in the transition region and ¢ < 0.9.
é = 0.48 + 83¢, = 0.864
oM, = 0.864(303.1) = 261.9 K-ft
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3.19 ANALYSIS OF SECTIONS USING TABLES

Reinforced concrete sections can be analyzed and designed using tables shown in Appendix A
(for U.S. customary units) and Appendix B (for SI units). The tables give the value of R, as
related to the steel ratio, p, in addition to the maximum and minimum values for p and R,.
When the section dimensions are known, R, is calculated; then p and A, are determined from
tables. The values in the tables are calculated based on tension-controlled sections with ¢ =09
If ¢ is less than 0.9 (transition region), the values of R, should be multiplied by the ratio ¢/0.9.

oM, = Rubdz R, = Mu/bdz = ¢pfv[l - pfv/l-,f;,]
A;=pbd and p = A;/bd

For any given value of p, R, can be determined from tables. Then ¢M,, can be calculated. The
values of o and R, range between a minimum value of R, (min) when £ minimum is used, to a
maximum value as limited by the ACI Code, when p is equal to o (max), for tension controlled
sections with ¢ = 0.9,

The use of tables will reduce the manual calculation time. The next example explains the
use of tables.

Example 3.14

Calculate the design moment strength of the section shown in Example 3.2, Fig. 3.14 using tables.
Use b = 12in,, d = 2lin,, f! =3 ksi, Sy = 60 ksi and three no. 9 bars.

Solution
1. Using three no. 9 bars, 4; = 3.0in.2, p = A,/bd = 3.0/(12 x 21) = 0.0119. From Table 3.2,
Pmax = 0.01356 > p used. Therefore, ¢ = 0.9, and it is a tension-controlled section.
From Table Al, for p = 0.0119, f'. = 3 ksi and f, = 60 ksi, get R, = 553 psi (by interpo-
lation).
2. Calculate oM, = R, bd* = 0.553 (12)21) = 2926 K-in. = 243.8 Kt

3.20 ADDITIONAL EXAMPLES

The following examples are introduced to enhance the understanding of the analysis and design
applications.

Example 3.15

Calculate the design moment strength of the precast concrete section shown in Fig. 3.39 using
fi=4ksiand f, = 60 ksi.

Solution
1. The section behaves as a rectangular section with & = 14in., and 4 = 21.5in. Note that the
width b is that of the section on the compression side.
2, Check that p = A/bd = 5/(14 x 21.5) = 0.01661, which is less than the maximum steel
ratio of 0.018 for tension-controlled sections. Therefore, ¢ = 0.9. Also p > ppmin = 0.00333,
Therefore, p is within the limits of a tension-controlled section.

3. Calculate a : a = A, £, /(0.85f/b) = 5 x 60/(0.85 x 4 x 14) = 6.3 in.
OM, = dA, f(d —aj2) = 0.9 x 5 x 60(21.5 — 6.3/2) = 4954.5 K.in = 412.9 K ft.
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Figure 3.38 Example 3.15.

Example 3.16

A reinforced concrete beam was tested to failure and had a rectangular section, b = 14in., and d =
18.5in. At ultimate moment (failure), the strain in the tension steel was recorded and was equal to
0.004106. The strain in the concrete at failure may be assumed to be 0.003. If f] =3 ksi and fy =
60 ksi, it is required to:

1.
2.

3.

Check if the tension steel has yielded.

Calculate the steel area provided in the section to develop the above strains. Then calculate the
applied moment.

Calculate the design moment strength based on the ACI Code provisions. (Refer to Fig. 3.40.)

Solation

1.

2.

Check the strain in the tension steel relative to the yield strain. The yield strain &, = f,/E; =
60/29,000 = 0.00207. The measured strain in the tension steel is equal to 0.004106, which is
much greater than 0.00207, indicating that the steel bars have yielded and in the elastoplastic
range. The concrete strain was 0.003 indicating that the concrete has failed and started to crush.
Therefore, the tension steel has yielded.

Calculate the depth of the neutral axis ¢ from the strain diagram. (Fig. 3.40). From the triangles
of the strain diagram,

3
c/d = 0.003/(0.003 +0.004106) and c=18.5 (m) =781 in.

a=pFc=0.85x78] =664 in.
The compression force in the concrete, Cc = 0.85 flab = 0.85 x 3 x 6.64 x 14 =237 K. The
tension steel A, = C./f, = 237/60 = 3.95in.? (section has five no. 8 bars).
M, = Af, (d - “5) =3.95 x 60(18.5 — 6.64/2) = 3597.6 K-in = 299.8 K-ft
Check ¢, = 0.003(d, — c)/e.
¢c=78lin,d,=h—25in.=22—-25=195in.

g, = 0.003(19.5 — 7.81)/7.81 = 0.0049, which is less than 0.005 for tension-controlled sections,
but greater than 0.004. Section is in the transition region, and ¢ < 0.9.

¢ = 0.48 + 83¢, = 0.853
The allowable design moment = ¢M, = 0.863 x 299.8 = 255.6 K-ft.
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Figure 3.40 Example 3.16.
Discussion

From Table 3.2, pp = 0.0214 and pga, = 0.01356. For comparison, A, (max) = 0.01356(14 x 18.5)
= 3.51in.2 for ¢ = 0.9, and A, (balanced) = 5.54in.2. The ratio of A,/A; max = 3.95/3.51 = 1.125
and Ag/Ag = 0.713. If A, = Amax = 3.51in.% is used with ¢ = 0.9, then

a=3.51x60/(0.85 x3x14) =5.9 in.

and
¢M, = 0.9 x 3.51 x 60(18.5 — 5.9/2) = 2947.2 K.in. = 245.6 K-ft.

which is equal to 96% of the moment caiculated above. Figure 3.40 shows the behavior of the tested
beam.

3.21 EXAMPLES USING SI UNITS

The following equations are some of those mentioned in this chapter but converted to SI units.
The other equations, which are not listed here, can be used for both U.S. Customary and SI
units. Note that f/ and f, are in MPa (N/mm?).

Py = 0.8581(f1/£,)[600/(600 + f,)] (3.18)
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For tension-controlled condition,

Pwax = (0.003 + fy/E;)p,/0.008 (3.31)

(p — p') = 0.8581(f/f,)(d' /d)[600/ (600 — f,)] = K (3.49)

Example 3.17

Determine the design moment strength and the position of the neutral axis of a rectangular section that
has & = 300 mm, d = 500 mm, and is reinforced with five 20-mm-diameter bars. Given f! =20 MPa
and f, = 400 MPa.

Solution
1. Area of five 20-mm bars is 1570 mm?.

p = Ag/bd = 1570/(300 x 500) = 0.01047  pmin = 1.4/f, = 0.0035
For f'=20 MPa and f, = 400MPa, pp = 0.0217 and pmsx = 0.01356. Note that E; =

C

200,000 MPa and f,/E; = 0.002. Because p < pmax, it is @ tension-controlled section with
¢ =009. Alse p > Pmin.
2. Calculate the design moment strength:

oMy = 9 f, (4 - )

2
a = A, f,/(0.85 £1b) = 1570 x 400/(0.85 x 20 x 300) = 123 mm
dM, = 0.9 x 1570 x 400 (500 - l—?) x 107% = 247.8 KN-m

Note that the moment was multiplied by 10~¢ to get the answer in KN-m. The distance to
the neutral axis from the compression fibers (¢) = a/8,, where g, = 0.85 for f/ < 30 MPa.
Therefote, ¢ = 123/0.85 = 145 mm.

Example 3.18

A 2.4-m-span cantilever beam has a rectangular section with » = 300mm, d = 490 mm, and is
reinforced with three bars, 25 mm in diameter. The beam carries a uniform dead load (including its
own weight) of 25.5 KN/m and a uniform live load of 32 KN/m. Check the adequacy of the section
if f/ =30 MPa and f, = 400MPa.

Solution
1. U=12D +16L =12 x 255 + 1.6 x 32 = 81.8 KN/m. External factored moment = M,
= UL%Y2 = 81.8(2.4%)/2 = 235.6 KN-m.

2. Calculate the design moment strength:
A; = 1470 mm®  p = Ag/bd = 1470/(300 x 490) = 0.01

o5 = 0.858,(£2/£,)[600/(600 + £,)] = 0.0325

5 1.4
Pmax = (0.005/0.008) pp = (E) (0.0325) = 0.0203, pmin = 300 = 0.0035
Since g < Pmax PUt > Pmin it is a tension-controlied section and ¢ = 0.9. a = A, f,/(0.85 fib)
= 1470 x 400/(0.85 x 30 x 300) = 77 mm, ¢ = 90mm. ¢M, = ¢A;fy(d — a/2) = 0.9 x
1470 x 400(490 — 77/2) x 107° = 238.9 KN-m. ¢, = 0.003(d, — ¢)/c = 0.003 (490 — 90)/90
= 0.01333 > 0.005, ¢ = 0.9 as assumed.
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3. The internal design moment strength is greater than the external factored moment. Therefore,
the section is adequate.

Example 3.19

Calculate the design moment strength of a rectangular section with the following details: 4 = 250 mm,
d = 440mm, d' = 60mm, tension steel is six bars 25mm in diameter (in two rows), compression
steel is three bars 20 mm in diameter, f; = 20 MPa and f, = 350 MPa,

Solution
1. Check if compression steel yields:

As =490 X 6 =2940 mm®, A} =314 x3 =942 mm® A, — A, = 1998 mm’
p = 2940/(250 x 440) = 0.0267 p’ = 942/(250 x 440) = 0.00856
p—p =0.01814.
For compression steel 1o yield:
(p— p') = 0.85 x 0.85 x (20/350)(60/440)(600/600 — 350) = 0.01351
(p — p') = 0.01814 > 0.01351. Therefore, compression steel yields.
2, Calculate M,:
a = (A; — As")/0.85 f/b = 1998/(0.85 x 20 x 250) = 164 mm

M, =[1998 x 350 (440— %) + 942 x 350(440 — 60)] x 107 = 417.3 KN-m

3. Check ¢ based on & > 0.005.
g =0.003(d; —o)/c a=164 mm ¢ =164/0.85 =193 mm
dy = h — 65 mm = d + 25 mm for two rows of tension bars.
dr =440 + 25 = 465 mm

g = 0.003(465 — 193)/193 = 0.04228, which is less than 0.005, but greater than the 0.004
limit. ¢ = 0.48 4 83 x &, = 0.831, and ¢ M, = 0.831 (417.3) = 346.8 KN-m.

SUMMARY

Flow charts for the analysis of sections are given on www.wiley.com/college/hassoun.

Section 3.1-3.8
1. The type of failure in a reinforced concrete flexural member is based on the amount of
tension steel used, Ag.

2. Load factors for dead and live loads are U = 1.2D + 1.6L. Other values are given in the
text.

3. The reduction strength factor for beams {¢) = 0.9 for tension controlled sections with &,
> 0.005.

4. An equivalent rectangular stress block can be assumed to calculate the design moment
strength of the beam section, ¢M,,.

5. Design provisions are based on four conditions, Section 3.5
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Section 3.9-3.13: Analysis of a Singly Reinforced Rectangular Section
Given: f!, fy, b, d, and A. Required: the design moment strength, oM.

To determine the design moment strength of a singly reinforced concrete rectangular
section,

1. Calculate the compressive force, C = 0.85 f/ab and the tensile force, T = A; f,. Calculate
a= A, f,/(0.85f.b). Calculate ¢M, = ¢C(d — af2) = ¢T(d ~ al2) = ¢Af,(d —
al?). Check g, = 0.003(d; — c)lc = 0.005 for ¢ = 0.9 (tension-controlled section). (See
Section 3.6.)

2. Calculate the balanced, maximum, and minimum steel ratios:
ob = 0.8581(fL/f)87/BT + £,)  Pmax = (0.003 + f,/E;)p,/0.008
Omin = 0.2/ fy for f < 4.5 ksi
(where f! and f, are in ksi. (See Section 3.9.2.) The steel ratio in the section is o0 = A;/bd.

Check that pmin < 0 < Pmax-
3. Another form of the design moment strength is

M, = pfy(bd*)(1 — pfy/1.7f,) = Rpbd’
Ry =pfl1 = (ofy/1.7f)]1 and R, =¢R,
4, For f, = 60 ksi and f/ =3 ksi (Table 3.2), pmax = 0.01356, pmin = 0.00333, R, =
686 psi, and R, = 615 psi.
For f, = 60 ksi and f.' = 4 ksi, pmex = 0.01806, pmin = 0.00333, R, = 911psi, and R,
= 820 psi.
Section 3.14: Analysis of Rectangular Section with Compression Steel
Given: b, d, d', A;, A, f., and f,. Required: the deign moment strength, ¢pM,,.

1. Calculate p = A,/bd, p' = As/bd, and (p — p').
2. Calculate 0p, Pmax> and Pmiq as given above (or see Section 3.10)
3. Calculate K = 0.858,(f./fy)(d'/d)[87/(87 — fy)). (f, and f, are in ksi.)
4. When compression steel yields,
a. Check that p > omin.
b. Check that (0 — p”) > K for compression steel to yield. If not, then compression steel
i does not yield.
¢. If compression steel yields, then f; = f,.
: d. Check that p < (Pmax + p") o (0 — 0') < Pmax-
e. Calculate a = (A; — A}) f,/(0.85 f.b).
f. Calculate §M, = ¢(A; — A)) fy(d —a/2) + QA fy(d — d").
g If (p — p') > Pmax bUt < Prax, (for the transition region), then ¢ < 0.9 for M, and
¢ = 0.9 for M,» (Eq. 3.44 a).
5. When compression steel does not yield,
’ a. Compression steel does not yield when (o — p') < K. The value of f’; is not known.
b. Calculate ¢ = the distance to the neutral axis from the compression fibers as follows:

A]C2 + AQC + A3 =0,
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where
A =085f81b
Ay = A (87 —0.85f,) — As fy
A; = —87Ad’.
Solve for c.
An alternative solution to calculate ¢ is as follows:
C+C'=T
C =085f(Bickb — A)) C'= A[87(c —d')/c] — 0.85f. A,
and
T =Asf,
Solve for c.

c. Calculate f/ = 87(c —d')/c < f,(in ksi).

d. Check that p < [ppax + P’(f;/fs)] or A; < [pmax(bd) + A:(f{'/f})]
e. Calculate a:
a=(Asfy — AL f)/(0.85fby or a=Bic

f. Calculate ¢M,:
OM, = [(Asfy — ALfO(d —a/2) + AL flid — d))

Note that (A fy, — ALfy) = A;1 = A; — A = Ay — (A fi/fy) and Apnf, = ALf].
Also, a = A £,/(0.85 f/b)

Sections 3.15-3.17: Analysis of T-Sections

Given: f/, fy. As, and section dimensions. Required: design moment strength, ¢M,,. Two pos-
sible cases may develop. (Determine the effective flange width, b,, first.)

Case 1
1. If @ < ¢ (the slab thickness), then it is a T-section shape but acts as a singly reinforced
rectangular section using b = b, (the flange effective width) to calculate pM,,.
a = A; [, /(0.85fbe) <t

Or, check that A, (the area of concrete in compression) = A, f,/(0.85f)) < br. If A, >
bt, then it is a T-section analysis. :

2. Ifa’ <tor A, < bt thena =a and ¢M, = ¢pA; fu(d — al2).

3. Check that p,, (steel ratio in web) = Ay/b,d > Puin.

4. Check that A; < A;nax from Eq. 3.71. (Normally, this is o.k. for this case.)

Agmax = 0.6375(f./f)[t(b — by) + (0.375)b,, $1d]

3. Check that &, > 0.005 for ¢ = 0.9. (Normally this is o.k. for this case.)
6. The effective flange width b = b, is the smallest of
a. Span/4
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b. Center to center of adjacent slabs
¢. (b, + 16t), where ¢ = slab thickness

Case 2

1. When g > ¢ or A, > bt, it is a T-section analysis.
2. For the flange, Cy = 0.85 f/t(b — by) = Ax fy, calculate Ay = C £ fy.
3. For the web,

Agw = tension steel in the web = A; — Ay

a = (A; — Ass) f/(0.85f/by)
Cw(web) = 0.85 flab,, = Aw fy

4. PM, = ¢p[M, (web) + M s(flange)] = S[Cw(d — a/2) + Cy(d — 1/2)]
= ¢[0.85f ab,(d —a/2) + 0.85f/1(b — by,)(d —1/2)]
= ¢[(As — A fy(d — a/2) + Asc fy(d — 1/2)]

5. Check that £, > 0.005 for tension-controlled section and ¢ = 0.9. (See Example 3.12).
6. Check that Ay min < As < Agmax. (See case 1.)

Sections 3.18-3.21

1. Analysis of nonuniform sections is explained in Example 3.13.
2. Tables in Appendix A may be used for the analysis of rectangular sections.
3. Examples in SI units are introduced.
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PROBLEMS

3.1 Singly reinforced rectangular sections. Determine the design moment strength of the sections given
in the following table, knowing that f! =4 ksi and f, = 60 ksi. (Answers are given in the right

column.)

b d ¢Mp

No. {in.) (in.) A (in2) K-1t)

a 14 22.5 5.08 441.2
(4 no. 10)

b 18 28.5 7.62 849.1
(6 no. 10)

c 12 235 400 370.1
(4 no. 9)

d 12 18.5 3.16 230.0
(4 no. 8)

e 16 24.5 6.35 600

. (5 no. 10)

f 14 26.5 5.00 5253
(S no.9)

g 10 17.5 3.00 200.5
(3 no. 9)

h 20 31.5 4.00 5352
(4 no. 9)

For problems in SI units, 1in. = 25.4mm, 1in? = 645mm?, 1 ksi = 6.9MPa (N/mm?), and 1 M, (Kft) =
1.356 kN-m.

3.2 Rectangular section with compression steel. Determine the design moment strength of the sections
given in the following table, knowing that f/4 ksi, f, = 60 ksi, and 4’ = 2.5in. (Answers are given
in the right column. In the first four problems, f; = f,)

b d oM,

No. (in.) (in.) A (in?) Alfin?) {K-ft)

a 15 22.5 8.0 20 692.2
(8 no. 9) (2 no.9)

b 17 24.5 10.08 2.54 950

(8 no. 10) (2 no. 10)

¢ 13 22 7.00 1.8 590.2
{7 no. 9) B no. 7)

d 10 21.5 5.08 1.2 464.7
(4 no. 10) {2 n0. 7)

e 14 20.5 7.62 2.54 597.9
(6 no. 10) (2 no. 10)

f 16 20.5 9.0 40 716.3
(9 no. 9) (4 no. 9)

g 20 18.0 12.0 6.0 8203
(12 no. 9) {6 no. 9)

h 18 20.5 10.16 5.08 813.7
(8 no. 10) (4 no. 10)

For problems in SI units: lin. = 25.4mm, 1in? = 645mm2, 1 ksi = 6.9MPa (N/mm?), and 1 M (Kf) =
1.356 kN-m.
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3.3 T-sections. Determine the design moment strength of the T-sections given in the following table,
knowing that f! =3 ksi and f, = 60 ksi. (Answers are given in the right column. In the first three
problems, a < t.)

b by, t d oM,

No. (in.) (in.) {in.) (in.) A; (in.2) {K-ft)

a 54 14 3 17.5 5.08 374.8
(4 no. 10)

b 48 14 4 16.5 4.0 279.4
(4 no. 9)

c 72 16 4 18.5 10.16 769.9
(8 no. 10)

*d 32 16 3 15.5 6.0 N.G.
(6 no. 9)

e 44 12 4 20.5 8.0 660.1
(8 no. 9)

f 50 14 3 16.5 7.0 466.8
(7 no. 9)

g 40 16 3 16.5 6.35 415.0
{5 no. 10)

h 42 12 3 17.5 6.0 425.8
{6 no. 9)

For problems in SI units: lin. = 25.4mm, lin2 = 645mm?, | ksi = 6.9MPa (N/mm?), and 1| M, (Kft) =
1.356 kN-m.
*Answer = 325.5 K-ft if ppyax 15 used.

3.4 Calculate pp, Pinax, Ru(max), Ry, a/d, and max (a/d) for a rectangular section that has a width of b
= 12in. (300 mm) and an effective depth of d = 20in. (500 mm) for the following cases:
a. f/ =3ksi, fy =40 ksi, A; = four no. 8 bars
b. f/ =4ksi, fy = 60 ksi, A; = four no. 7 bars
c. fl=4ksi, fy =75 ksi, A; = four no. 9 bars
d. f/ =5 ksi, fy = 60 ksi, A; = four no. 9 bars
e. f/=30MPa, f, = 400MPa, A, =3 x 30mm
f. f/ =20MPa, f, = 300MPa, A; =3 x 25mm
g. f! =30 MPa, f, = 500MPa, A; =4 x 25mm
h. f. =25 MPa, f, = 300MPa, A; = 4 x 20mm
3.5 Using the ACI Code requirements, calculate the design moment strength of a rectangular section
that has a width of & = 250mm (10in.) and an effective depth of 4 = 550mm (22in.) when
Sl =20 MPa (3 ksi}, fy = 420 MPa (60 ksi), and the steel used is as follows:

a, 4 x 20 mm b. 3 x 25 mm c. 4 x 30 mm
d. 2 no. 9 bars ¢. 6 no. 9 bars

3.6 A reinforced concrete simple beam has a rectangular section with a width of # = 8in. (200mm)
and effective depth of d = 18in. (450 mm). At design moment (failure), the strain in the steel was
recorded and was equal to 0.0015. (The strain in concrete at failure may be assumed to be 0.003.)
Use f! =3 ksi (20 MPa) and f, = 50 ksi (350 MPa) for all parts.
a. Check if the section is balanced, under-reinforced, or over-reinforced.
b. Determine the steel area that will make the section balanced.

¢. Calculate the steel area provided in the section to produce the aforementioned strains, and then
calculate its moment. Compare this value with the design moment strength allowed by the ACI
Code using pmax-

d. Calculate the design moment strength of the section if the steel percentage used is p = 1.4%.
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3.7 A 10-ft.- (3-m-)span cantilever beam has an effective cross-section (bd) of 12in. by 24in. (300 by

38

3.9

600 mm) and is reinforced with five no. 8 (5 x 25 mm) bars. If the uniform load due 1o its own weight
and the dead load are equal to 685 1b/ft (10 KN/m), determine the allowable uniform live load on the
beam using the ACI load factors. Given: f! =3 ksi (20MPa) and Jv = 60 ksi (400 MPa).

The cross-section of a 17-ft- (5-m-) span simply supported beam is 10 by 28 in. (250 by 700 mm), and
it is reinforced symmetrically with eight no. 6 bars (8 x 20 mm) in two rows. Determine the allowable

concentrated live load at midspan considering the total acting dead load {(including seif-weight) is equal

to 2.55 K/t (37 kN/m). Given: f/ = 3 ksi (20 MPa) and fy = 40 ksi (300 MPa).

Determine the design moment strength of the sections shown in Fig. 3.41. Neglect the lack of symmetry
in (b). Given: f! = 4 ksi (30 MPa) and fy = 60 ksi (400 MPa).

3.10 A rectangular concrete section has a width of & = 12in. (300 mm), an effective depth of d = 18in.

3.11

312

313

(450 mm), and d' = 2.5in. (60 mm). If compression steel consisting of two no. 7 bars (2 x 20 mm) is
used, calculate the allowable moment strength that can be applied on the section if the tensile steel,
Ag, is as follows:

a. Four no. 7 (4 x 20mm) bars b. Eight no. 7 (8 x 20 mm) bars

Given: f! = 3 ksi (20MPa) and fy = 40 ksi (300 MPa).

A 16-ft- (4.8-m-) span simply supported beam has a width of b = 12in. (300 mm), d = 22in.
(500 mm), &’ = 2.5in. (60 mm), and A’ = three no. 6 bars (3 x 20mm). The beam carries a uniform
dead load of 2 K/ft (30 kN/m), including its own weight. Calculate the allowable uniform live load
that can be safely applied on the beam. Given: f{=4ksi (20MPa) and f, = 60 ksi (400 MPa).
(Hint: Use pmax for the basic section to calculate M,,.)

Check the adequacy of a 10-ft- (3-m-)span cantilever beam, assuming a concrete strength of f; = 4 ksi
(30 MPa) and a steel yield strength of f, = 60 ksi (400 MPa) are used. The dimensions of the beam
section are & = 10in. (250mm), d = 20in. (500mm), d' = 2.5in. (60mm), A, = six no. 7 bars
(6 x 20mm), A, =twono. S bars (2 x 15mm). The dead load on the beam, excluding its own
weight, is equal to 2 K/ft (30 kN/m), and the live load equals 1.25 K/ft (20 kN/m). (Compare the
internal M, with the external factored moment.)

A series of reinforced concrete beams spaced at 9 ft (2.7 m) on centers are acting on a simply supported

span of 18ft (5.4m). The beam supports a reinforced concrete floor slab 4 in. (100 mm) thick. If the
width of the web is b,, = 10in. (250 mm), d = 18in. (450 mmy), and the beam is reinforced with three

6" 7" &
3 (150 mm) ¥ W5 mm (125 mm)
N T L1
4” ot ot - ot ot—L o
(100 mm} ]
\ 4"
1 N (100 )
r \
Jr l N
3 = 4
& : £ 3 -
2 E s E
1 g. 2 g e § N E
= 4#8 = | § 5#8
4 x 25 mm) 5 x 25 mm)
*-0—0- - 1-0-90991
Y
:!” 12" —e] 2 12—
(50 mm) (300 mmy} (50 mm) (300 mm)
(@) (b)

Figure 3.41

Problem 3.9.
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no. 9 bars (3 x 30 mm), determine the moment strength of a typical interior beam. Given: fl=4ksi
(30MPa) and f, = 60 ksi (400 MPa).

3.14 Calculate the design moment strength of a T-section that has the following dimensions:
« Flange width = 30in. (750 mm)

Flange thickness = 3in. (75 mm)

Web width = 10in. {250 mm)

Effective depth (d) = 18in. (450 mm)
« Tension reinforcement: six no. 8 bars (6 x 25 mm)
o fI=13ksi (20MPa)
* fy = 60 ksi (400 MPa)

3.15 Repeat Problem 3.14 if 4 = 24in. (600 mm).

3.16 Repeat Problem 3.14 if the flange is an inverted L shape with the same flange width projecting from
one side only. {Neglect lack of symmetry.)



CHAPTER 4

FLEXURAL
DESIGN OF
REINFORCED
CONCRETE
BEAMS

Reinforced conrete office building, Amman, Jordan.

4.1 INTRODUCTION

In the previous chapter, the analysis of different reinforced concrete sections was explained:
Details of the section were given, and we had to determine the design moment of the section.
In this chapter, the process is reversed: The external moment is given, and we must find safe,
economic, and practical dimensions of the concrete section and the area of reinforcing steel that
provide adequate internal moment strength.

4.2 RECTANGULAR SECTIONS WITH REINFORCEMENT ONLY

From the analysis of rectangular singly reinforced sections (Section 3.9), the following equations
were derived for tension-controlled sections, where f/ and f, are in ksi:

i ( 87 )
=0.85 B == - (3.18)
Pb Bi 1 \&+7
0.003 + L
L __Ey (3.31)
Pmax Pb 0.008 :
For f, = 60 ksi,
Pmax = 0.63375p; (or 0.6340) (3.32)

134



4.2 Rectangular Sections With Reinforcement Only 135

Also,
for fy = 40 ksi, pmax = 0.5474 pp
for fy = 50 ksi, pmax = 0.5905 p3
for fy =75 ksi, pmax = 0.6983 pp

The value of 8; in pp is 0.85 when f < 4000 psi (30 N/mm?) and decreases by 0.05 for
every increase of 1000psi (7 N/mm?) in concrete strength. The steel percentage of balanced
section, pp, and the maximum allowable steel percentage, pmax, can be calculated for different
values of f/ and fy, as shown in Table 4.1 or Table A.4 in Appendix A.

It should be clarified that the designer has a wide range of choice between a large concrete
section and relatively small percentage of steel, p, producing high ductility and a small section
with a high percentage of steel with low ductility. A high value of the net tensile strain, &,
indicates a high ductility and a relatively low percentage of steel. The limit of the net tensile
strain for tension-controlled sections is 0.005, with ¢ = 0.9. The strain limit of 0.004 can be
used with a reduction in ¢. If the ductility index is represented by the ratio of the net tensile
strain, &, to the yield strain, &, = f,/E;, the relationship between &, olpy, ¢, and g./¢, is
shown in Table 4.2 for f), = 60 ksi. Also, the ACI Code, Section 8.4, indicates that &; should be
> 0.0075 for the redistribution of moments in continuous flexural members producing a ductility
index of 3.75. It can be seen that adopting &, = 0.005 is preferable to the use of a higher steel
ratio, p/pp, with &, = 0.004, because the increase in M, is offset by a lower ¢. The value of
g; = 0.004 represents the use of minimum steel percentage of 0.00333 for f/ =4 ksi and f,
= 60 ksi. This case should be avoided. The value of ¢ between &, = 0.005 and 0.004 can be
calculated from Eq. 3.8: ¢ = 0.65 + (&, — 0.002) (52).

Table 4.1 Suggested Design Steel Ratios, ps

f. fy Ratio Ratio Rys Ry max
(ksi) {ksi) % po Y Pmax % ps pslpy ps! Pmax (psi) (psi)
3 40 371 2.031 14 0.38 0.69 450 614
60 2.14 1.356 1.2 0.56 0.89 556 615
4 60 2.85 1.806 1.4 049 0.78 662 820
75 2.07 1.445 12 0.58 0.83 702 320
5 60 3.35 2,123 1.6 0.48 0.75 766 975
75 243 1.700 14 0.58 0.82 830 975

Table 4.2 Relation Between &, p/pp, ¢, and gi/sy (f, = 60 ksi)

£ 0.004 0.005 0.006 0.007 0.0075 0.008 0.009 0.010 0.040

pﬁ 0714 0625 0555 0500 0476 0454 0417 0385 0.117
b

:—‘ 2.0 25 3.0 35 375 40 45 50 20
¥y

¢ 0.82 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
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The design moment equations were derived in the previous chapter in the following forms:

oM, = M, = R, bd*? (3.21)
where
_ _Ph Y

where ¢ = 0.9, for tension-controlled sections and less than 0.9 for sections in the transition
region.

_ _ _ Asfy
Also,
- _ 2 _ /Ofy
OM, = M, = $pf,bd (1 = fé) (3.20)

We can see that for a given factored moment and known f’ and Jy, there are three
unknowns in these equations: the width, b, the effective depth of the section, d, and the steel
ratio, p. A unique solution is not possible unless values of two of these three unknowns are
assumed. Usually p is assumed (using .y, for instance), and & can also be assumed.

Based on the preceding discussion, the following cases may develop for a given M,, I
and fy:

L If p is assumed, then R, can be calculated from Eq. 3.22, giving bd®> = M,/R,. The
ratio of d/b usually varies between 1 and 3, with a practical ratio of 2. Consequently, b
and d can be determined, and A; = pbd. The ratio p for a singly reinforced rectangular
section must be equal to or less than pmgy, as given in Eq. 3.31. It is a common practice
to assume a value of p that ranges between 3pmax and %pb. Table 4.1 gives suggested
values of the steel ratio o to be used in singly reinforced sections when p is not assigned.
For example, if f, = 60 ksi, the value p; = 1.4% is suggested for fi =4 ksi 1.6% for
S{=>5ksi and 1.2% for f! =3 ksi. The designer may use p up t0 Pmax, Which produces
the minimum size of the singly reinforced concrete section. Using 0y, will produce the
maximum concrete section. If & is assumed in addition to p, then d can be determined as
follows:

M,
R.b

Ifd/b =2, then d = /2ZM,/R, and b = d/f2, rounded to the nearest higher inch.

2. If b and d are given, then the required reinforcement ratio p can be determined by rear-
ranging Eq. 3.20 to obtain

_ossi [ [ am,
FE7 [1 \/ ! 1.7¢f;bdq @2

d = 4.1)
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_ossp [ 2R,
=== |:1 1= 5857 (4.2a)
or ,
o= —JJZL[O.SS — 4/ (0.85)2 - Q]
where |
1.7\ M, 1.7
= = R, 4.3
© («m) ba? (¢f;) R

Ay = pbd = (j:—"f) bd[0.85 — /(0.85)2 — Q] (4.4)

y

where all units are in kips (or pounds) and inches, and Q is dimensionless. For example, if

M, = 2440 K-in., b = 12in., d = 18in., f/ = 3 ksi, and f, = 60 ksi, then p = 0.01389

(from Eq. 4.2) and A, = pbd = 0.01389(12)(18) = 3.0in2, or directly from Eq. 4.4,

0 = 0.395 and A; = 3.0 in?. When b and 4 are given, it is better to check if compression

steel is or is not required because of a small d. This can be achieved as follows:

a. Calculate ppy and R,(max) = ¢pmax fy[l — (Pmax Sy /1.7 f)].

b. Calculate ¢M,(max) = R,bd* = the design moment strength of a singly reinforced
concrete section.

c. If M, < ¢Mymax. then no compression reinforcement is needed. Calculate p and A,
from the preceding equations.

d. M, > @My, max, then compression steel is needed. In this case, the design procedure is
explained in Section 4.4.

If p and b are given, calculate R,:

— _Afy
Re=o (1 1.7f;)

Then calculate d from Eq. 4.1:

M,
d= b and A; = pbd

33

4.3 SPACING OF REINFORCEMENT AND CONCRETE COVER

4.3.1 Specifications

Figure 4.1 shows two reinforced concrete sections. The bars are placed such that the clear
spacings shall be at least equal to nominal bar diameter D but not less than lin. (25 mm}).
Vertical clear spacings between bars in more than one layer shall not be less than 1in. (25 mm),
according to the ACI Code, Section 7.6.

The width of the section depends on the number, #, and diameter of bars used. Stirrups are

placed at intervals; their diameters and spacings depend on shear requirements, to be explained
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A4 Stimups N N

SD
Stinup diometer Min. 1 in.

OsPspP D m.ﬁi
1 ¢ !-ll - ={=J\£S Te o°e ¢ :%’

Concrete cover

Stimup diometer

n—b2-—9—

Concrete cover

)y —————

@ . B

Figure 4.1 Spacing of steel bars (a) in one row or (b) two rows.

later. At this stage, stirrups of % in. (10 mm} diameter can be assumed to calculate the width of
the section. There is no need to adjust the width, b, if different diameters of stirrups are used.
The specified concrete cover for cast-in-place and precast concrete is given in the ACI Code,
Section 7.7. Concrete cover for beams and girders is equal to % in. (38 mm), and that for slabs

is equal to % in. (20 mm), when concrete is not exposed to weather or in contact with ground.

4.3.2 Minimum Width of Concrete Sections

The general equation for the minimum width of a concrete section can be written in the following
form:

bymin = nD + (n = 1)s + 2(stirrup’s diameter) + 2(concrete cover) (4.5a)
where

»n = number of bars
D = diameter of the largest bar used
§ = spacing between bars (equal to D or lin., whichever is larger)

If the stirrup’s diameter is taken equal to % in. (10 mm) and concrete cover equals % in.
(38 mm), then

bmin =nD + (n — 1)s 4+ 3.75 in. (95 mm) (4.5b)

This equation, if applied to the concrete sections in Fig. 4.1, becomes
by =3D+285 +3.75 in. (95 mm)
b =4D + 35 4+ 3.75 in. (95 mm)
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To clarify the use of Eq. 4.5, let the bars used in sections of Fig. 4.1 be no. 10 (32-mm) bars.

Then
by =5x127+3.75=10.101in. (s = D) say, 1l in.
b =5 x32+95 =225 mm say, 250 mm
by =7 x1.274+3.75=12.64 in. say, 13 in.
by =7 %x2324+95 =319 mm say, 320 mm

If the bars used are no. 6 (20 mm), the minimum widths become

by =3x075+2x1+3.75=280Iin. s=1in.

by =3 x20+2 x25+95 =205 mm say, 210 mm
by =4x075+3x1+375=9.795in.  say, 10 in.
by =4 x 20+ 3 x 25 4+ 95 = 250 mm

The width of the concrete section shall be increased to the nearest inch. Table A.7 in
Appendix A gives the minimum beam width for different numbers of bars in the section.

4.3.3 Minimum Overall Depth of Concrete Sections

The effective depth, d, is the distance between the extreme compressive fibers of the concrete
section and the centroid of the tension reinforcement. The minimum total depth is equal to d
plus the distance from the centroid of the tension reinforcement to the extreme tension concrete
fibers, which depends on the number of layers of the steel bars. In application to the sections
shown in Fig. 4.1,

D 3
hi=d + 5 + 3 in. 4 concrete cover (4.6a)

D
=d; + > + 1.857 in. (50 mm)
for one row of steel bars and

3
hy=dr=05+D+ 3 in. + concrete cover {4.6b)

=dy + D + 2.375 in. (60 mm)

for two layers of steel bars. The overall depth, &, shall be increased to the nearest half inch
(10 mm) or, better, to the nearest inch (20 mm in SI). For example, if D= 1lin. (25mm), d| =
18.9in. (475 mm), and d; = 20.1in. (502 mm),

Minimum A4, = 18.9 +0.5 + 1.875 = 21.275 in.

say, 21.5in. or 22in.,
hy =475+ 13 + 50 = 538 mm

say, 540 mm or 550 mm, and

Minimum #; = 20.1 + 1.0 + 2.375 = 23.475 in.
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say, 23.5in. or 24 in.,
hy =502+ 25 + 60 = 587 mm

say, 590 mm or 600 mm.

If no. 9 or smaller bars are used, a practical estimate of the total depth, A, can be made as
follows:

h=d+ 2.5 in. (65 mm), for one layer of steel bars
h=d+3.5in. (90 mm), for two layers of steel bars

For more than two layers of steel bars, a similar approach may be used.

It should be mentioned that the minimum spacing between bars depends on the maxi-
mum size of the coarse aggregate used in concrete. The nominal maximum size of the coarse
aggregate shall not be larger than one-fifth of the narrowest dimension between sides of forms,
nor one-third of the depth of slabs, nor three-fourths of the minimum clear spacing between
individual reinforcing bars or bundles of bars (ACI Code, Section 3.3).

Example 4.1

Design a simply reinforced rectangular section to resist a factored moment of 361 K-ft using the
maximum steel percentage pmax for tension-controlled sections. Given: f! =3 ksi and f, = 60 ksi.

Solution

For f! =3 ksi, Sy = 60 ksi, and B = 0.85, pnay for a tension-controlled section is calculated as
follows (¢ = 0.9):

B FN[ 87
e = (0.85)8 (fy) [(87 + f}-)] ’

o» = (0.85)* (%) (%) =0.0214

0.003 + £
pmax = pp | ————= | =0.633750, = 0.01356  (Table 4.1)

0.008
Omax Sy
Rumax = ¢pmaxfy (l - :;xé )
01356
—0.9%0.01356 x 60 x {1 — ug) = 0615 ksi
1.7 x 3

(Or, use the tables in Appendix A or Table 4.1.)

Since M, = R, bd?,
M, 361 x 12 4332
2 it -3
ba = o ( 0.615 ) 0615 — o043 m
Thus, for the following assumed b, calculate d and A, = pbd:

b=10in. d=265in. A, =424 in.?

b=12in. d=242in. A;=465in> 6 no. 8 bars (4, = 4.71 in.})
b=14in. d=224in. A,=501in2 5 no.9 bars (4, = 5.0 in.%)
b=16in. d=210in. A, =537 in?



4.3 Spacing of Reinforcement and Concrete Cover 14t

The choice of the effective depth d depends on three factors:

1. The width b required. A small width will result in a deep beam that decreases the headroom
available. Furthermore, a deep narrow beam may lower the design moment strength of the
structural member due to possible lateral deformation.

2. The amount and distribution of reinforcing steel. A narrow beam may need more than one row
of steel bars, thus increasing the total depth of the section.

3. The wall thickness. If cement block walls are used, the width b is chosen to be equal to the
wall thickness. Exterior walls in buildings in most cases are thicker than interior walls. The
architectural plan of the structure will show the different thicknesses.

A reasonable choice of d/b varies between 1 and 3, with practical value about 2. It can be
seen from the previous calculations that the deeper the section, the more economical it is, as far as
the quantity of concrete used, expressed by the area bd of a 1-ft length of the beam. Alternatively,
calculate bd? = M, /R, and then choose adequate b and d.

The area of the steel reinforcement, A, is equal to pbd. The area of steel needed for the
different choices of b and d for this example was shown earlier. Because the steel percentage required
is constant (0max = 0.01356), A; is proportional to bd. For a choice of a 12 x 24.2-in. section, the
required A, is 4.65in.2 Choose six no. 8 bars in two rows (actual A, = 4.71in.2). The minimum
b required for three no. 8 bars in one row is 8.9in. < 12in,, and total & = 24.2 + 3.5 = 27.71n,,
say, 28in. (actual d = 24.6in.). Another choice is a section with a 14 x 22.4-in. section with a total
depth (k) of 25in. and five no. 9 bars in one row. The choice of bars depends on

1. Adequate placement of bars in the section, normally in one or two rows, fulfilling the restrictions
of the ACI Code for minimum spacing between bars

2. The area of steel bars chosen closest to the required calculated steel area

The final section is shown in Fig. 4.2.

Example 4.2
Solve Example 4.1 using a steel percentage p of about 1% and b = 14 in.

N N

246"

.
[ e alt

, Tt

e——12"—

Figure 4.2 Example 4.1.
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Solution
1. For f/ =3 ksi and fy = 60 ksi, pmex = 0.01356 for a tension-controlled section:

_ _Phy
Re= 0, (1 mf;)

= 0.9 x 0.01 xﬁo(l— M
1.7x3
{From the tables in Appendix A, for p = 0.01, R, = 476psi.)
2. bd? = M,/R, = 4332/0.476 = 9100 in.>. Choosing b = 14in. and d = 25.5in.,

A, = pbd = 0.01 x 14 x 25.5 = 3.57 in.2

) = 0.476 ksi

Choose four no. 9 bars in one layer; A, = 4.00in.?
boin =nD + (n — s +3.75
=7x 1.1284+3.75 =11.7 in. < 14 in.

D
hmin =d + ‘5‘ + 1.875

1.138
=255+ > + 1.875 = 27.94 in. say, 28 in. (d =255 in)

3. Because the actual A; used is greater than the calculated A;, a smaller depth can be adopted.
Therefore, take 2 = 26in. Then d = 26 — 1.138/2 — 1.875 = 23.5in.

For small variation in depth, A; = 3.57(25.5/23.5) = 3.87in.2, which is less than the

4.00in.2 used (Fig. 4.3). A check of the design moment strength of the section can be made:

4
tual p = ———wm = 0,012
actial p = 555 = 0012
Since p < pmax = 0.01356 for a tension-controlled section (¢ = 0.9),
Asfy  40x60

_ = =672 in.
“= 085/ 085 x3x1d_ CI4Im

b 4
M\ N

23.5"

26"
4#9

1 eee o

Y
Bad— 14”—-——.-

Figure 4.3 Example 4.2.
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a
oM, =9A.f, (4 - 3)
6.72 ) .
=09x4x60{235- — = 4350 K.in. > 4332 K-in.
which is acceptable.
4. Check the net tensile strain, &,. For f, = 60 ksi,
0.0
g = __pos —0.003 (3.25)
P
op = 0.0214 (Table 4.1)
p 00121 _
o = 00214 =0.5654
0.005

& = 53e5d 0.003 = 0.00584 > 0.005 (tension-controlled section)

Or, alternatively, ¢ = a/0.85 = 7.9in., d; = 26 — 2.5 = 23.5in,, ¢/d, = 0.336 < 0.375, which
is o.k.

Example 4.3

Find the necessary reinforcement for a given section that has a width of 10in. and a total depth of

20in. (Fig. 4.4) if it is subjected to an external factored moment of 163 K-ft. Given: f, =4 ksi and
fy = 60 ksi.

17.6"

Lo
<

348
-

e n S 5 g o
¢ 24

r et ) (i

Figure 4.4 Example 4.3.
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Solution
1. Assuming one layer of no. 8 steel bars (to be checked later), d = 20 — 0.5 — 1.875 = 17.6251n.
(ord =20 — 25in. = 17.5in.).
2. Check if the section is adequate without compression reinforcement. Compare the moment

strength of the section (using pma, for tension-controlled condition). For f) =4 ksi and f, =
60 ksi, pmax = 0.01806.

Prmax f: y
171,

The moment strength of a singly reinforced basic section is

Ry max = PPmax fy (1 - ) = 820 psi (from Table 4.1)

OMp, max = Rumaxbd? = 0.82(10)(17.5)°
= 2511 K-in. > 163 x 12 = 1956 K-in.

Therefore, o0 < pmax and the section is singly reinforced, and tension controls (¢ = 0.9).
3. Calculate p from Eq 4.2 or 4.3:

17\ M, 1.7 1956
€= (¢—f5) “ bz " (0.9x4) x (m) = 0.302

f ({) 85 — /(0.85)2 — Q) = 0.0134 < pax (tension-controlled condition)
y

A; = pbd = 0.0134(10)(17.5) = 2.345in.?2 Use three no. 8 bars (4; = 2.35in.2) in one row,
bmin < 10in. The final section is shown in Fig. 4.4.

Example 4.4

Find the necessary reinforcement for a given section, & = 15in., if it is subjected to a factored
moment of 313 K-ft. Use f/ =4 ksi and f, = 60 ksi.

Solution
L. For f! =4 ksi and f, = 60 ksi, and from Table 4.1: p;, = 0.0285, pmax = 0.01806 (tension-
controlled section), Ry max = 820 psi.
2. Using pmax = 0.01806 and R, = 820 psi,
M, 313(12)

bd* = —* =

— a3
R, ~ 0820 = 4581 in

For b = 15in. and d = 17.50,
As = pbd = 0.01806(15)(17.5) = 4.74 in.?

Choose four no. 10 bars, A; = 5.08in.? > 4.74in.%. Bars can be placed in one row, byj, =
12.7in. in Table A.7. Total depth (h) = 17.5 + 2.5 = 20in.

Discussion

1. Since a steel area of 5.08in.2 used is greater than 4.74in.% required (the limit for a tension-
controlled section with ¢ = 0.9), the section is in the transition zone. Actually, the section
is under-reinforced and the nominal moment = M, = A fi(d — af2) = 368.6 K-ft. (A; =
5.08in.% and @ = 5.976in.). If ¢ = 0.9 is used then ¢M, = 331.7 K-ft.
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2. The ACI Code indicates that for sections in the transition zone, ¢ < 0.9, and & > 0.004.
0.005

Checking &, = 5 — 0.003,
P
5.08 P
= ——"=~0 — =0
P=Ts2175 01935 o 0.679
0.00507
& = (W) —0.003 = 0.004467 > 0.004

Or, alternatively, calculate @ = 5.08 x 60/(0.85 x 4 x 15) = 5976, ¢ = a/85 = 7.03,
d, = d = 17.5in. Then &, = 0.003(d, — c)lc = 0.004467. Calculate

250
3
oM, = 0.856(368.6) = 315.4 K-ft

¢ = 0.65 + (¢, ~ 0.002) ( ) = 0.856

3. It can be noticed that despite an additional amount of steel, 5.08 — 4.67 = 0.41in.? (or about
9%), the design moment strength remained the same. This is because the strength reduction
factor, ¢, was decreased. Therefore, the design of sections within the tension-controlled zone
with ¢ = 0.9 gives a more economical design based on the ACI Code limitations.

4,4 RECTANGULAR SECTIONS WITH COMPRESSION REINFORCEMENT

A singly reinforced section has its moment strength when ppax of steel is used. If the applied
factored moment is greater than the internal moment strength, as in the case of a limited
cross-section, a doubly reinforced section may be used, adding steel bars in both the com-
pression and the tension zones. Compression steel will provide compressive force in addition to
the compressive force in the concrete area.

4.4.1 Assuming One Row of Tension Bars

The procedure for designing a rectangular section with compression steel when M., fi. b, d,
and 4’ are given can be summarized as follows:

1. Calculate the balanced and the maximum steel ratio, pmax, using Egs. 3.18 and 3.31.
,_1 87
pp = 0.85p, 22 ( )
H A8+ £
Calculate A; max = As| = PmaxPd (maximum steel area as singly reinforced).

2. Calculate R max USINg Pmax (¢ = 0.9):
pmaxfy)

(Rumax can be obtained from the tables in Appendix A or Table 4.1.)
3. Calculate the moment strength of the section, M, as singly reinforced, using pmax and
Ru max-

Mul = Ru maxbd2
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If M) < M, (the applied moment), then compression steel is needed. Go to the next step.
If M,y > M,, then compression steel is not needed. Use Eq. 4.2 to calculate p and A; =
pbd, as explained earlier.
Calculate M,, = M, — M, = the moment to be resisted by compression steel.
Calculate Ay, from M, = ¢pAg fy(d — d').

Then calculate the total tension reinforcement, A,:

As = Asl + ASZ

Calculate the stress in the compression steel as follows:

a. Calculate f] =87[(c —d')/c] ksi < fy. (f] cannot exceed f,.)

b. Or, & can be calculated from the strain diagram, and f] = (s - E;). If &} > &,, then
compression steel yields and f; = f,.

c¢. Calculate A] from M, = @A, f/(d —d'). If f] = f,, then A, = Apn. If f] < f,, then
A, > Ag, and A, = An(f,/f)).

Choose bars for A, and A to fit within the section width, ». In most cases, A; bars will

be placed in two rows, whereas A bars are placed in one row.

Calculate # = d + 2.5in. for one row of tension bars and » = 4 + 3.5in. for two rows

of tension steel. Round % to the next higher inch. Now check that (o — o/(f,/fy)} < Pmax

using the new d, or check that Asmax = bd | pmax + 0 (f./ 1)) = A; (used).

f =
(bd (bd)
This check may not be needed if pmax 15 used in the basic section.
If desired, the design moment strength of the final section, ¢ M, can be calculated and
compared with the applied moment, M,: ¢M, > M,,. Note that a steel ratio p smaller than

Pmax can be assumed in step 1, say p = 0.6pp or o = 0.9pmax, s0 that the final tension
bars can be chosen t0 meet the given o, limitation.

The strain at the bars level can be checked as follows:

p:

g = (d' C_ C) 0.003 > 0.005

4.4.2 Assuming Two Rows of Tension Bars

In the case of two rows of bars, it can be assumed thatd = 4 — 3.5in. and d, = h — 2.5in. =
d + 1.0in.

1.

Two approaches may be used to design the section.

One approach is to assume a strain at the level of the centroid of the tension steel equal
to 0.005 or ¢ = 0.005 (at 4 level). In this case, the strain in the lower row of bars
is greater than 0.005. &, = (d; — ¢/¢)0.003 > 0.005, which still meets the ACI Code
limitation. For this case, follow the above steps 1 to 9. Example 4.6, solution 1 explains
this approach.

A second approach is to assume a strain & = 0.005 at the level of the lower row of
bars, d,. In this case, the stain at the level of the centroid of bars is less than 0.005: &; =
[(d; — ¢)/c]0.003 < 0.005, which is still acceptable. Example 4.6, solution 2 explains this
approach. The solution can be summarized as follows:
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a. Calculate d, = £ — 2.5in., and then form the strain diagram and calculate ¢, the depth

of the neutral axis
oo ( 0.003 i
~\0003+¢/)

3
c= (§) dyand a = Bic
b. Calculate the compression force in the concrete.
C = 085f;ab =T = Aslf).

Determine Ay;. Calculate M, = ¢As fy(d — al2). p1 = Anlbd, ¢ = 09.
¢. Calculate M, = M, — M,y; assume 4’ = 2.5in.
d. Calculate A;: M, = ¢An fu(d — d), fi=f,,¢ =09 Total A; = A5 + Ag.
e. Check if compression steel yields similar to step 6 above in section 4.4.1.

For &, = 0.005,

Example 4.5

A beam section is limited to a width of »# = 10in. and a total depth of # = 22in. and has (0 resist
a factored moment of 226.5 K-ft. Calculate the required reinforcement. Given: f; = 3 ksi and f, =
50 ksi.

Solution

1. Determine the design moment strength that is allowed for the section as singly reinforced based
on tension-control conditions. This is done by starting with pmax. For f] =3 ksi and f, = 50
ksi, and from Egs. 3.18, 3.22, and 3.31,

op = 0.0275  pmax = 0.01624 R, =614 psi
M,=Rbd> b=10in. d=22-35=185in
M, = 226.5 x 12 = 2718 K-in.

(This calculation assumes two rows of steel, to be checked later.) M) = 0.614 x 10 x (18.5)
= 2101 K-in. = max ¢M,, as singly reinforced. Design M, = 2718 K-in. > 2101 K.in.
Therefore, compression steel is needed to carry the difference.

2. Compute Ay, My, and M,:

Al = Pmaxbd = 0.01624 x 10 x 18.5 = 3.0 in.”
M, = 2101 K-in.
My =M, — M, =2718 — 2102 = 617 K-in.
3. Calculate A ; and A’, the additional tension and compression steel due to M. Assume d =
2.5in; My = ¢ A fy (d — d').

_ MuZ _ 617
T @fyd —d) 0.9 x50(18.5 —2.5)

Total tension steel is equal to A;.

As = Agl + Ap2 = 3.0 4 0.86 = 3.86 in.”

As2 = 0.86 in.?

The compression steel has A, = 0.86 in.2 (in A} yields).



148

Chapter 4 Flexural Design of Reinforced Concrete Beams

4. Check if compression steel yields:

5y 50

— = = » 1 2

&= 35,000 ~ 29,000 00

Let @ = (A5 fy)/(0.85f/b) = (3.0 X 50)/(0.85 x 3 x 10) = 5.88 in.
c(distance to neutral axis) = % = % =692 in

£, = strain in compression steel (from strain triangles)

= 0.003 x (M) =0.00173 > &, = 0.001724
5.88
5. Check &
3
= — =().01621

o= Toxigs - olezte
Pl _05897  f,=50
Pb

From Eq. 3.24, &, = 0.005 is assumed at the centroid of the tension steel for pymax and R,
used. Calculate ¢, (at the lower row of bars):

d =22-25=195 in.
¢ = (d’ - C) 0.003
Fod

_{195-692
- 6.92
= 0.00545 > 0.005

) 0.003

as expected.
6. Choose steel bars as follows: 4; = 3.86in.2 Choose five no. 8 bars (A, = 3.95in.%) in two
rows, as assumed. A’ = 0.86 in.?> Choose two no. 6 bars (A, = 0.88 in.?).

7. Check actal ¢: Actual d = 22 — (1.5 4+ 0.375 4 1.5) = 18.6251n. It is equal approximately
to the assumed depth. The final section is shown in Fig. 4.5.

Example 4.6

A beam section is limited to & = 12in. and to a total depth of & = 20in. and is subjected to a
factored moment M, = 298.4 K-ft. Determine the necessary reinforcement using f/ = 4 ksi and
fy = 60 ksi. (Refer to Fig. 4.6.)

Solution 1: Two Solutions Are Presented

1. Determine the maximum moment capacity of the section as singly reinforced based on tension-
controlled conditions. For f/ =4 ksi and f, = 60 ksi, ppa = 0.01806 and R, = 820psi
(Table 4.1). Assuming two rows of bars, d = 20 — 3.5 = 16.5in.

Max My = Rymaxbd® = 0.82(12)(16.5)% = 2679 K-in. = 223.25 K-ft.

The design moment is M, = 298.4 x 12 = 3581 K-in. > M,;; therefore, compression steel
is needed.
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Figure 4.5 Example 4.5: doubly reinforced concrete section.

0.003 0.003

- — — & — (9] c
248 | | z

[
(] C

—
—_—

= 16.5"

e >
Z

>

I

I

— e — —— — —

-
S5%9 0.005 0.004546
1 e e &
- T e e o ——-
3 0.00548 0.005
T Solution 1 Solution 2
e | 2 ——— >

Figure 4.6 Example 4.6.

2. Calculate Ay, M2, Ao, and A;.
As1 = Pmacbd = 0.01806(12)(16.5) = 3.576 in.2
Mo =M, — M, = 3581 —2679 =902 K-in.
My = ¢Ax fy(d —d'), assume d = 2.5 in.
902 = 0.9A4,,(60)(16.5 — 2.5), Az = 1.19 in.?
Total A, = Ay + As2 = 3.576 + 1.19=4.77 in?2  (five no. 9 bars)
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3. Check if compression steel yields by Eq. 3.46. Compression steel yields if
7 ! 7
o=z K =0ssp 22 () (5 )

— 08 (AN (2N () 2
e —0s97 () (25) (2) —oums

, A 3.576

P—p = g7 = oo

bd  (12)(16.5)

Therefore, compression steel does not yield: f] < f,

4. Calculate f;: f/ = 87[(c — d")/c] < f,. Determine ¢ from A;j: A5 = 3.576in.%,
o Agfy  3.576x 60

T 085fb 085x4x12

= 0.01806 < K

= 5.26 in.

5. Calculate A{ from M, = pA, f/(d ~ d'):
902 = 0.94.(51.8)(16.5 — 2.5)

Thus, A, =1.38 in.2, or calculate A from A, = A, (f,/f)) = 1.38 in.2 (two no. 8 bars). Note
that the condition [0 — 0"(f//fy)] = (9 — £") < Pmax is already met.

FAYEE 3.576
—p' =) = —(A; — Ap) = ———— =10.01806
(" g fy) b’ )= 1163

as assumed in the solution.

6. These calculations using pmax and R, are based on a strain of 0.005 at the centroid of the
tension steel.

dr—C

&; (at bottom row) = ( ) 0.003

17.5-6.19
d =20-25=175in. g = (—“”6*16——) 0.003 = 0.00548 > 0.005
as expected.
Solution 2
Assuming two rows of tension bars and a strain at the lower row, &, = 0.003, the solution will be as
follows:

1. Calculate d; = 20 — 2.5 = 17.5in. From the strain diagram:
< 0.003  0.003
d, 0003+s 0008
¢ = 0.375(17.5) = 6.5625 in. a =0.85¢ =5.578 in.

= 0.375
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2. The compression force in the concrete = Cy = 0.85 flab
C; = 0.85(4)(5.578)(12) = 227.6 K = T; (as singly reinforced)
c, T\ 2276

Ag = =2 =L =227 =3793 in2

A f 6

d=20-35=165 in.

578
My = A5 fo (d - ‘%) = 0.9(3.793)(60) (16.5 - 3-52—) = 2808 K-in.
— 234K fi
M, 28083 L .

R = bde — 13(16.5)2 = 0.86 ksi = 860 psi

A.rl
= — =0.01916
21 bd 0.019

3. Since M, = 3581 K.in. > M, compression steel is needed.
M,, = 3581 — 2808 = 773 K-in.
My, =094, f,(d —d"
773 = 0.9A4,(60)(16.5 —2.5)  Ap = 1.022in”?
Total A; = Agt + Ag2 = 3.793 + 1.022 = 4.815 in.?

Use five no. 9 bars.
4. Check if compression steel yields as in step 3 in the first solution.

K =0.0235(p — p') = p. = 0.01916 < K

Compression steel does not yield.

. c—d’\ _(656-125 _ ,
fs_.87( " )“(_6.56 87 = 53.84 ksi

Calculate Ajs:
My = ¢A, fi(d —d)
773 = 0.9A(53.84)(16.5 - 2.5) A, =1.14in?

Use two no. 7 bars (4, = 1.2 in.%).
5. Check the design moment strength.

A;=50in2 A =12in? Ay =(A,—A4)=38in?
a 7 14 s
oMy =6 {4 s, (4-3) + Aifid -]
= 0.9[3.8(60)(16.5 — 5.578/2) + 1.2(53.84)(16.5 — 2.5)]
= 3627.6 K.in. = 302.3 K-ft.

which is adequate. Note that the strain £, at the centroid level of the tension steel is less than

0.005. d 16.5 — 6.56
& = ( _ C) 0.003 = (—— > )0.003 = 0.004546
c 6.56

Both solutions are adequate.
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Discussion

1. In the first solution, the net tensile strain, £, = 0.005, was assumed at the centroid of the tension
steel. In this case omax and R, max can be determined from Table 4.1 or tables in Appendix A,
The strain in the lower row of bars will be always greater than 0.005, which meets the ACI
Code requirement.

2. In the second solution, the strain limit, &, = 0.005, is assumed at the lower row. In this case,
the strain at the centroid of the two rows of bars will be less than 0.005 and its value depends
on the depth of the section. Moreover, p and R, for this case are not known and their values
depend on the effective depth d.

3. Comparing the two solutions, the neutral axis depth, ¢|, in solution 1 is slightly smaller than
¢y for the second solution because of the strain limitations, producing a smaller A and then
higher A;,. Total A; will normally be very close. It is clear that solution 1 is easier to use
because of the use of tables.

4. Note that solution 1 can have the same results as solution 2 by calculating A;; as follows:
Asl = Pmax bdy = 0.01806 (12 x 17.5) = 3.793 in?, which is the same A, calculated in
solution 2, producing £, = 0.005 at the lower row of bars.

4.5 DESIGN OF T-SECTIONS

In slab-beam-girder construction, the slab dimensions as well as the spacing and position of
beams are established first. The next step is to design the supporting beams, namely, the dimen-
stons of the web and the steel reinforcement. Referring to the analysis of T-section in the previous
chapter, we can see that a large area of the compression flange, forming a part of the slab, is
effective in resisting a great part or all of the compression force due to bending. If the section
is designed on this basis, the depth of the web will be small; consequently, the moment arm is
small, resulting in a large amount of tension steel, which is not favorable. Shear requirements
should be met, and this usually requires quite a deep section.

In many cases web dimensions can be known based on the flexural design of the section at
the support in a continucus beam. The section at the support is subjected to a negative moment,
the slab being under tension and considered not effective, and the beam width is that of the web.

In the design of a T-section for a given factored moment, My, the flange thickness, ¢, and
width, b, would have been already established from the design of the slab and the ACI Code
limitations for the effective flange width, b, as given in Section 3.15. The web thickness, b,
can be assumed to vary between 8in. and 201n., with a practical width of 12 to 16 in. Two more
unknowns still need to be determined, d and A;. Knowing that M,,, f/, and f, are always given,
two cases may develop as follows:

1. When d is given and we must calculate Aj,

a. Check if the section acts as a rectangular or T-section by assuming a = ¢ and calculating
the moment strength of the whole flange:

& Ma(flange) = $(0.85 f))bt (d - %) 4.7)

M, > oMy thena > ¢ If M, < ¢My, then a < ¢, and the section behaves as a
rectangular section.

b. If a < ¢, then calculate p using Eq. 4.2, and A; = pbd. Check that p,, > Pmin.



4.5 Design of T-sections 153
¢. If a > ¢, determine Ay for the overhanging portions of the flange, as explained in
Section 3.15.4.

A = 0.85f.(b — by)t/fy (4.8)

My = bAxfy (d - %) 4.9)

The moment resisted by the web is
My =M, — M,
Calculate p; using My, by, and d in Eq. 4.2 and determine A;) = po1byd.
Total A; = Ag + Ags
Then check that A; < Asmax, a5 €xplained in Section 3.15. Also check that o, =
Agl(bypd) 2 Prin.
d. If a = 1, then A; = ¢(0.857)bt/f,.

2. When d and A are not known, the design may proceed as follows:

a. Assume a = ¢ and calculate the amount of total steel, Ay, needed to resist the com-
pression force in the whole flange, bt.

(0.85 f!)br

Ag = 4.10)
t fy
b. Calculate d based on A, and a = ¢ from the following equation:
i
M, = ¢Asflfy (d - E) (4~11)

If the depth, d, is acceptable, then A; = Ag and # = d + 2.5in. for one row of bars
or h =d + 3.5in. for two rows of bars.

c. If a new d; is adopted greater than the calculated d, then the section behaves as a
rectangular section, and p can be calculated using Eq. 4.2; A; = obd < Agt.

d. If a new d is adopted that is smalier than the calculated 4, then the section will act as
a T-section, and the final A; will be greater then Ag. In this case, proceed as in step
1(c) to calculate A;.

Example 4.7

The T-beam section shown in Fig. 4.7 has a web width, b, of 10in., a flange width, &, of 40 in., a
flange thickness of 4 in., and an effective depth, d, of 14.5in. Determine the necessary reinforcement
if the applied factored moment is 3350 K-in. Given: f/ = 3 ksi and fy = 60 ksi.

Solution
1. Check the position of the neutral axis; the section may be rectangular. Assume the depth of
compression block a is 4 in.; that is, 2 = ¢ = 4 in. Then

oM, = $(0.85 )bt (d = %) = 4590 K-in. > M, = 3350 K-in.

The design moment that the concrete flange can resist is greater than the factored applied
moment. Therefore, the section behaves as a rectangular section.



154

Chapter 4 Flexural Design of Reinforced Concrete Beams

2ﬂ
_4_ - 40 »- —1 2.55Ksi [-—
4” — — —
~rC
T Qi
] - N
18" 145 P&
5#8 ol
* o 0 ______1 —_—
e & @ T o

Ls— ] ()" —=d

Figure 4.7 Example 4.7: T-section.

2. Determine the area of tension steel, considering a rectangular section, b = 40in.

3,350,000

_ 2 _
Ry = oM, /(bd*) 20 <1452

= 398 psi

From Eq. 4.2 or from tables in Appendix A, for R, = 398 psi, and p = 0.00817,
A; = pbd = 0.00817 x 40 x 14.5 = 4.74 in.?

Use six no. 8 bars, 4, = 4.74 in.2 (in two rows).

3. Check that p,, = As/byd > pmins pw = 47410 x 14.5) = 0.0327 > pmin = 0.00333. Note
that A, used is less than A; e of 7.06in.%2 Calculated by Eq. 3.72.

Also, a = 2.788in., ¢ = 3.281in., d; = 14.5in., and &, = 0.003(d, — c¢)/c = 0.01 > 0.005, which is
o.k.

Example 4.8

The floor system shown in Fig. 4.8 consists of 3-in. slabs supported by 14-ft-span beams spaced at
101t on centers. The beams have a web width, b, of 14in. and an effective depth, 4, of 18.51n.
Calculate the necessary reinforcement for a typical interior beam if the factored applied moment is
5080 K:in. Use f =3 ksi and f, = 60 ksi.

Solution
1. Find the beam flange width: Flange width is the smallest of

b=16t+b,=3x16+12=60in,
b_span_ 14 x 12
4 4
Center-to-center of adjacent slabs is 10 x 12 = 120in. Use & = 42in.
2. Check the position of the neutral axis, assuming ¢ = ¢,

=42 in.

&M, (based on flange) = ¢ x 0.85 f/bt (d - %)

=0.9 x 0.85 x 3 x 42 % 3(18.5 — 1.5) = 4916 K-in.

The applied moment is M, = 5080 K-in. > 4916 K-in.; the beam acts as a T-section, so
a>1i.
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Figure 4.8 Example 4.8; effective flange width.

3. Find the portion of the design moment taken by the overhanging portions of the flange (Fig. 4.9).
First calculate the area of steel required to develop a tension force balancing the compressive
force in the projecting portions of the flange:

0.85f/(b—by,)t 0.8 42 — 14
Ay = 85 (b — by) _ Sx3Ix( )X3=3.57in.
fy 60
&M, = M, + M2, that is, the sum of the design moment of the web and the design moment
of the flanges.

My = ¢Asffy (d - %)

=0.9 x 3.57 x 60 (18.5 - %) = 3272 K-in.

4. Calculate the design moment of the web (as a singly reinforced rectangular section):
M, =M, — M, = 5080 — 3272 = 1808 K-in.

Mg 1,808,000
(bpd?) 14 x (18.5)?
From Eq. 4.2 or the tables in Appendix A, for R, = 377 psi, p1 = 0.0077.

Agt = prbyd = 0.0077(14)(18.5) = 1.99 in.
Total A; = A+ A1 = 3.57 +1.99 =5.56 in.2 (Use six no. 9 bars in two rows.)

R, = =377 psi

0.85f;

3” 3lf

| [ . “$w4| b
IILIIIIT] rss1777777: B v/ Xy IR —
185" T " in2 % C T G

s As‘l"“”*%_
—_——t -t ——— e ————
T 7, Ag=357in2 T,
] 14 e | 18 |

Figure 4.9 Analysis of Example 4.8.
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5. Total 2 = 18.5 + 3.5 = 22 in. Calculate A; . for T-sections using Eq. 3.72:
Max A; = 7.02 in% > 5.56 in.2

6. Check g,: a = 1.99 x 60/(0.85 x 3 x 14) = 3.34in., ¢ = 3.93in., d, = 19.5in. Then &, =
0.003(d, — ¢)c = 0.0119 > 0.005, tension-controlled section (¢ = 0.9).

Example 4.9

In a slab-beam system, the flange width was determined to be 48 in., the web width was b, = 16in,,
and the slab thickness was ¢ = 4in. (Fig. 4.10). Design a T-section to resist an external factored
moment of M, = 812 K-ft. Use f! =3 ksi and f, = 60 ksi.

Solution
1. Because the effective depth is not given, let @ = ¢ and calculate A for the whole flange.
0.85fbt  0.85(3)(48)(4)
fy 60
Let M, = ¢pAsii fy(d — 1/2) and calculate d:

= 8.16 in.?2

A =

4
812 x 12 = 0.9(8.16)(60) (d -~ 5) d =24.] in,

Now, if an effective d = 24.11in. is chosen, then A, = A = 8.16 in.”

2. If a depth 4 > 24.11n. is chosen, say 26.51n., then @ < ¢ and it is a rectangular analysis. The
steel ratio can be calculated from Eq. 4.2 with p = 0.00574 and A; = pbd = 0.00574 x 48 x
26.5 = 7.31in.2 (six no. 10 bars in two rows, 4, = 7.62in.%).

3. If a depth d < 24.lin. is chosen, say, 23.5in., then @ > ¢, and the section behaves as a
T-section. Calculate

Ag = 0.85£1(b — by)/f, = 0.85(3)(4)(48 — 16)/60 = 5.44 in 2

M,y = PAs fy (d - %) = 0.9(5.44)(60) (23.5 - %) = 6316 K-in.

My =812 x 12 — 6316 = 3428 K-in.

e 48” ‘l
4 |
26.5" T
1 .
______ ..o
rat= 16 "

Figure 4.10 Example 4.9,
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4. For the basic singly reinforced section, b,, = 16in., 4 = 23.5in,, and M,; = 3428 K-in,
R, = 387 psi. Calculate p) from Eq. 4.2 to get py = 0.0079.
Agy = pybyd = 0.0079(16)(23.5) = 2.97 in.
Total A; = Ag + Ag) = 5.44 +2.97 = 8.41 in.2(seven no. 10 bars in two rows,
As = 8.89 in.%)

5. Check &;: a = 2.97 x 60/(.85 x 3 x 16) = 4.368in., c = a/0.85 = 5.14 in., d; = 24.5in,,
and &, = 0.003 (d, = c)/c = 0.0113 > 0.005, a tension-controlled section.

6. Calculate the total max A; that can be used for the T-section by Eq. 3.72:
Max A; =
= 0.0425[(b — bw)t + 0.319bwd] = 10.54 in
A, (used) < max A;
7. Note : If there are no restrictions on the total depth of the beam, it is a common practice to

adopt the case when a < ¢ (step 2). This is because an increase in d produces a small increase
in concrete in the web only while decreasing the quantity of A; required.

4.6 ADDITIONAL EXAMPLES

The following design examples give some practical applications and combine structural analysis
with concrete design of beams and frames.

Example 4.10

For the precast concrete I-section shown in Fig. 4.11, calculate the reinforcement needed to support
a factored moment of 360 K-ft. Use f! =4 ksi and f) = 60 ksi.

< 14” > l
5"
A
—» 4” —— |6M
3#10 ‘2’5”
[ [ ] L ] 257
- 14" » T

Figure 4.11 Example 4.10.
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Solution

Determine if the force in the flange area 14 x 5in. will be sufficient to resist a factored moment of
360 K-ft. Let d = 23.5in. Force in flange (C,.) = 0.85 x f! (flange area) = 0.85 x 4 x (14 x §) =
238 K, located at 2.5 in. from the top fibers, and ¢ = 5in.

(23.5 — 2.5)

oM, = 0.9C, (d - %) = (0.9 x 238 =374.9 K1t

which is greater than the applied moment of 360 K-ft. Therefore, a is less than 5in.

B a _ Asf)'
oM, = DA, f, (d 2) Whete & = s TH)
23.5 — 604,
360 x 12 = 0.94,(60) (m)

Solve to get A; = 3.79in.2 Or use Eq. 4.2 to get p = 0.01152 and A; = 0.01152 x 14 x 23.5 =
3.79in.2 Use three no. 10 bars in one row, as shown in Fig. 4.11.

For similar T-sections or I-sections, it is better to adopt a section with a flange size to accom-
modate the compression force, C.. In this case, ¢ is less than or equal to the flange depth. The bottom
flange is in tension and not effective.

Example 4.11

The simply supported beam shown in Fig. 4.12 carries a uniform service load of 2.8 K/ft (including
self-weight) in addition to a service load of 1.6 K/ft. Also, the beam supports a concentrated dead
load of 16 K and a concentrated live load of 7 K at C, 10ft from support A.

lPL=7K

wp =28 K/t r—w, = 1.6 KAt
lPD=16K / /

e e e e s o et s e g e

AN ¢ .

e L1 -|l: 20 »
108.9
Shearing 49 82
force .
diagram 19.42 PEENREE I I  § L—— 26.5"
8#9 |
200809
- 13.29' > - (XX X X AN
| -« 20" —>» T
93.78 section at D
Bending
monteni
diagram 7937 825.5
l +

Figure 4.12 Example 4.11.
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a. Determine the maximum factored moment and its location on the beam.
b. Design a rectangular section to carry the loads safely using a steel percentage of about 1.5%,
b = 20in., f{ =4 ksi, and f, = 60 ksi.

Solution
a. Calculate the uniform factored load: w, = 1.2(2.8) + 1.6(1.6) = 5.91 K/it. Calculate the
concentrated factored load: P, = 1.2(16) + 1.6(7) = 30.4 K. Calculate the reaction at A by
taking moments about B:
(30/2) + 30.4(20)
30 30
Ry =591(30) +30.4 — 10892 =98.78 K

Maximum moment in the beam occurs at zero shear. Starting from B,

V=0=98.78—591x and x = 16.7] ft from B at D

16.71
M, (at D) = 98.72(16.71) — 5.91(16.71) (T) = 825.5 K-ft (design moment)

R4 =591030) = 10892 K

20
2
b. Design of the section at D: For f/ =4 ksi, and f, = 60 ksi, pmax = 0.01806 and pmin =

0.00333, and the design steel ratio of 1.5% is within the limits. For p = 0.015, R, = 700 psi
(from Table A.2) or from Eq. 3.22.

M, = R.bd> or 825.5 x 12 = 0.7(20)d?
Solve to get d = 26.6in.

M, (at C) =98.78(20) — 5.91(20) ( ) = 793.6 K-ft

A, =0.015 x 20 x 26.6 = 7.98 in?

Choose eight no. 9 bars in two rows (area = 8in.2), five in the lower row plus three in
the upper row. Minimum & for five no. 9 bars in one row is 14in. (Table A.7). Total depth
(1} = 26.6 + 3.5 = 30.1in. Use & = 30in. Actual d = 30 — 3.5 = 26.5in. Check the moment
capacity of the section, ¢ = 8 x 60/(0.85 x 4 x 20) = 7.06in.

7.06
26.5 ~ =N

12
which is greater than 825.5 K-ft. Check that A; = 8 in.2 is less than A;max-

Asmax = 0.01806 x 20 x 26.5 = 9.57 in.

which exceeds 8in.2 The final section is shown in Fig. 4.12.

¢Mn=0.9x8x60( ) = 8269 K- fi

Example 4.12

The two-hinged frame shown in Fig. 4.13 carries a uniform service dead load (including estimated
self-weight) of 2.33 K/ft and a uniform service live load of 1.5 K/ft on frame beam BC. The moment
at the cormner B (or C) can be evaluated for this frame dimension, M, = M, = — wL?/18.4 and the
reaction at A or D = wL/2. A typical section of beam BC is shown, the column section is 16 x
21in. It is required to

a. Draw the bending moment and shear diagrams for the frame A BC D showing all critical values.

b. Design the beam BC for the factored moments, positive and negative, using f, = 4 ksi and
fy = 60 ksi. Show reinforcement details.
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Figure 4.13 Example 4.12.
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Solution

a. Calculate the forces acting on the frame using a computer program or the values mentioned
previousty. Factored load (w,) = 1.2(2.33) + 1.6(1.5) = 5.2 K/ft. Because of symmetry,
Mg = M¢c = — wL?18.4 = — 5.2(40)*/18.4 = —452.2 K ft. Positive moment at midspan (E)
= w, L8 + Mp = 5.2(40)%/8 — 452.2 = 587.8 K-ft. Vertical reaction at A = Ry = Rp =
w, L2 = 5.2(40)/2 = 104 K. Horizontal reaction at A = Hy = Mp/h = 452.2/16 = 28.26 K.
The moment and shear diagrams are shown in Fig. 4.13.

Determine the location of zero moment at section F on beam BC by taking moments
about F:

104(y) — 28.26(16) — 5.2(3)*/2 =0 y = 4.963 ft, say, 5 ft from joint B

b. Design of beam BC:

1. Design of section E at midspan: M, = + 587.8 K-ft. Assuming two rows of bars, d = 21
— 3.5 = 17.5in. Calculate the moment capacity of the flange using a = 5.0 in.

¢ M, (flange) = ¢(0.85 f))ab (d - %)

= 0.9(0.85 x 4) x (5 x 60) x @ =1147.5 K ft

which is greater than the applied moment; therefore, a is less than 5.0in.
Assume ¢ = 2.0in. and calculate A;.

[
Mo =oAf, (4-3)
587.8 x 12 =09 x 604,(17.5 - 1.0) and A =7.92in?

Check assumed a = A,f,/(0.85fb) =7.92 x 60/(0.85 x 4 x 60) = 233 in. Revised
A, = 587.8 x 12/(0.9 x 60 x 16.33) = 7.99in.? Check revised a: @ = 7.99 x 2.33/7.92
= 2.35in., which is very close to 2.33in.

Alternatively, Eq. 4.2 can be used to get o and A;. Choose eight no. 9 bars in two rows
(area = 8.0in.%), (bmin = 11.8in.). Extend four no. 9 bars on both sides to the columns.
The other four bars can terminate where they are not needed, beyond section F; see the
longitudinal section in Fig. 4.13.

2. Design of section at B: M, = —452.2 K-ft. The section acts as a rectangular section,
b = 16in. and d = 17.5in. The main tension reinforcement lies in the flange.

Check the maximum moment capacity of the section as singly reinforced.

OMymax = Rumanbd?® = 0.82(16)(17.5)2/12 = 3348 K-ft

which is less than the applied moment. Compression steel is needed.
Agp = 0.01806(16)(17.5) = 5.06 in?
M, =4522-3348=1174 K-ft
M, = ¢An fy(d — d'); assumed’ = 2.5 in.
1174 x 12 = 0.9A,»(60)(17.5 —2.5) and Ay, = 1.74 in2

Total tension steel = 5.06 + 1.74 = 6.8in.2 Use seven no. 9 bars in two rows (area used
= 7.0in.2, which is adequate). For compression steel, use two no. 9 bars (area = 2.0 in.%),
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extended from the positive moment reinforcement to the column. Actually, four no. 9 bars
are available; see the longitudinal section in Fig. 4.13.

The seven no. 9 bars must extend in the beam BC beyond section F into the compression
zone, and also must extend into the column B A to resist the column moment of 452.2 K-ft
without any splices at joints B or C.

Check if compression steel yields by using Eq. 3.49 or Table 3.4. K = 0.01552 (d'/d)
= 0.1552(2.5)/(17.5) = 0.02217 > p; = 0.01806. Therefore, compression steel yields, and
fi = 60 ksi as assumed.

Stirrups are shown in the beam to resist shear (refer to Chapter 8), and two no. 5 bars
were placed at the top of the beam to hold the stirrups in position. Ties are used in the
column to hold the vertical bars {refer to Chapter 10). To determine the extension of the
development length of bars in beams or columns, refer to Chapter 7,

4.7 EXAMPLES USING S1 UNITS

Example 4.13

Design a singly reinforced rectangular section to resist a factored moment of 280 kN.m using the

maximum steel percentage for tension-controlled sections. Given: f; = 20 N/fmm?, f, = 400 N/mm?,
and & = 250 mm.

= (0.85)p [%] (ga.%g;«; )

20 ( 600

Solution

=085%x085x —

— | = 0.0217
400 600 -+ 400)

O'OOH% E, = 200,000 MP b 0.002
Pmax = T 0008 Pb s = S a Es_ .

= 0.625 pp = 0.01356
¢ =09

Rumax = ¢pnlaxf}' (l - ﬂmaxfy)

171

— 09 x 0.01356 x 400 1 — X356 X 40N _ | N/mm*(MPa)
1.7 x 20
M, = R,bd*
280 x 106
\/ \/4.1 <250 o2

A; = pbd = 001356 x 250 x 523 = 1772 mm?* = 17.72 cm®

Choose four bars, 25 mm diameter, in two rows.
A; provided = 4 x 4.9 = 19.6cm?. Total depth is

h =d +25 mm + 60 mm
= 523 4+ 25 + 60 = 608 mm say, 610 mm (or 600 mm)



4.7 Examples Using Sl Units 163

Check minimum width:
boip =2D + 15 +95 mm = 3 x 25 + 95 = 170 mm < 250 mm

Bars are placed in two rows.

Example 4.14

Calculate the required reinforcement for a beam that has a section of & = 300mm and a total depth
of & = 600mm to resist M, = 696 kN-m. Given: f =30 N/mm? and = 420 N/mm?.

Solution
1. Determine the design moment strength of the section using pmax (for tension-controlled section,

¢ = 0.9):
fe 600
m=oon 7| (m7)

30 600
=0.85x0. — } = 0.
0-85 > 0.85 x 236 (600+1020) 00304
0.003 + £ 0.6375 0.01938
Pmax = W Py = Py =
Pmax
Rymax = ¢’pmaxfy (l - _l;_j‘;?-)

0.01938 x 420
1.7 x 30

d = h — 85 mm(assuming two rows of bars)
= 600 — 85 = 515 mm
¢M, = R,bd*> =6.16 x 300 x (515)> x 1078 = 490 kN-m

= 0.9 x 0.01938 x 420 (1 - ) = 6.16 N/mm?*(MPa)

This is less than the external moment; therefore, compression reinforcement is needed.
2. Calcuvlate A;y, M.y, and M;:

Ag| = Poaxbd = 0.01938 x 300 x 515 = 2994 mm?>
My =M, — M,; =696 — 490 = 206 KN-m

3. Calculate A;> and A due to M,>. Assume d' = 60 mm:
M= ¢A52fy(d - d’)
206 x 10° = 0.94, x 420(515 —60) Az = 1198 mm’

Total tension steel is 2994 + 1198 = 4192 mm?.
4. Compression steel yields if

; fod 600
(p— =p; > 0858 x == x — X
p—p)=p B 7, d < &o-7,

30 60 600
0.85)% x — —0.
= (085" X 50 X 515 X 00 — a0 — 0%

=K

Because (¢ — p') = pPmax = 0.01938 < 0.020, compression steel does not yield.
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5. Calculate
L A,
0.85fb
2994(420)
= 0.85 % 30 x 300

=193.4 mm d’ = 60 mm

= 164.4 mm

)
I
|=

=]

85

_ d’
00 (C ) = 414 N/mm?
C

Il
o

fe
Al = A;(420/414) = 1215 mm?

6. Choose steel bars as follows: For tension, choose six bars 30 mm in diameter (30 M). The A;
provided (4200 mm) is greater than A;, as required. For compression steel, choose three bars
25 mm in diameter (25 M) (Table B.11).

AL = 1500 mm? > 1215 mm?

SUMMARY

Sections 4.1-4.3 : Design of a Singly Reinforced Rectangular Section

Given: M, (external factored moment), f/ (compressive strength of concrete), and f, (yield
stress of steel).

Case 1.
When b, d, and A; (or p) are not given:

1. Assume Pmin < £ < Pmax. Choose P for a minimum concrete cross-section (smallest)
or choose p between omax/2 and pp/2 for larger sections. For example, if f, = 60 ksi, you
may choose

o =12% R, =618 psi for f. =3 ksi
p=14% R, =736psi for f =4 ksi
p=14% R, =757 psi for f/ =75 ksi

For any other value of p, R, = pfy[1 — (pf,/1.7f))], and R, = ¢R,.
2. Calculate bd? = M, /¢ R, (¢ = 0.9), for tension-controlled sections.
3. Choose b and d. The ratio of d to b is approximately 1 — 3, or d/b ~ 2.0.

4. Calculate A; = pbd; then choose bars (o fit in & either in one row or two rows. {Check
bmin from the tables.)

5. Calculate
h =d + 2.5 in. (for one row of bars)
h =d + 3.5 in. (for two rows of bars)

b and i must be to the nearest higher inch. Note If £ is increased, calculate new d = A
—2.5 (or 3.5) and recalculate A; to get a smaller value.
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Case 2.
When p is given, d, b, and A; are required. Repeat steps (1) through (5) from Case 1.

Case 3.
When & and d (or k) are given, A; is required.

1. Caiculate R, = M,/¢pbd* (¢ = 0.9).

2. Calculate
!
o= (O.SSfC) L= - 2R,
fy 0.85f

(or get p from tables or Eq. 4.2).
3. Calculate A, = pbd, choose bars, and check byq.
4. Calculate 4 to the nearest higher inch (see note, Case 1 (step 5)).

Case 4.
When b and p are given, d and A are required.

1. Calculate

_ _ Py - _
R, = of, (1 L fé) Ry = pRu( = 0.9)

f M,
d= OR,b

3. Calculate A; = pbd, choose bars, and check bpin.

4. Calculate # to the nearest higher inch (see note, Case 1 (step 5)). Note Equations that may
be used to check the moment capacity of the section after the final section is chosen are

— — _ Asfy _ _ pfy
Ma= oM, = 04,1y (4= {2 ) = 9Afyd (1- 2 f;)

2. Calculate

= ¢ofy(bd®) (1 - %) = R.bd?

Section 4.4: Design of Rectangular Sections with Compression Steel
Given: M,,b,d,d’, f/, fy, and ¢ = 0.9.
Required: Ag and Al.

1. General
a. Calculate ppay and pmin as singly reinforced from equations (or from tables).

b. Calculate R, may = pmaxfy [1 - (P_lr_l]%f_f?)] (or use tables).

¢. Calculate the maximum capacity of the section as singly reinforced:
¢My = PRy maxbd”.
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d. If M, > ¢M,, then compression steel is needed. If M, < ¢M,, it is a singly reinforced
section.

2. If M, > ¢$M, and compression steel is needed,
a. Let M, = ¢ Rymaxdd?.
b. Calculate A;; = pmaxbd (basic section).
¢. Calculate M,» = M,—M,, (for the steel section).
3. Calculate A,; and A as steel section.
a M, = ¢As2fy(d —d’).
b. Calculate total tension steel: A; = A + Ao,
4. Calculate A; (compression steel area):
a. Calculate a = (A;, £,/0.85f/b) and ¢ = a/8,.
b. Calculate f] = 87[(c —d")/c] < f,.
If f{ > f,, then f = f, and A} = A;».
If £/ < f,, then A, = Ay, (%)
¢. Check that total steel area {A;) > max Ag, or check & > 0.005

A = [pm(ba’) + Al (—)]
Iy

Section 4.5: Design of T-Sections

Given: M,, f., fy, b, ¢, and b,,.
Required: A; and d (if not given).
There are two cases:

Case 1.
When 4 and A; (or p) are not given:

1. Let a < ¢ (as singly reinforced rectangular section). If @ = ¢ is assumed, then

M, = (total flange) = ¢(0.85 )bz (d - %) = @A, f, (d - %)

Solve for d and then for A;.

Mu t Mu

d=—— —+ A= ——m—

#0085 /Dbt 2 :

¢fi\d—3

2. If a is assumed to be less than f, then
Mu a Mu
d=——————+ —and Ay = ——

#(085fYba 2 _4

Case 2.
When d is given and A; is required (one unknown):
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1. Check if a is greater or less than ¢ by considering the moment capacity of the flange (b?).

(flange) oM, = ¢(0.85£.)bt (d — -;—)

If M, > M, (extemal), then a < t (rectangular section).
if M, < M, (external), then a > ¢ (T-section).

2. If a < t, calculate R, = M,/$bd* and then calculate p (or determine p from tables or

Eq. 4.2):

Lo 08I () 2R,
3 0855,

Then calculate A; = pbd.

3 Ifa >1¢,

a. Calculate Cy and A

b—b> C
Ag = 0.85 fc't(——lfl = —L (flange)
y

Fy 5
Then calculate M (flange) = ¢Cr(d — t/2).
b. Calculate M,y (Web) = M, — M. Calculate R, (web) = Myu/(¢by,d?); then find py
(use the equation or tables). Calculate Aq, (web) = pybyd.

¢. Total A; = A (flange) + Ay (web). Total A; must be less than or equal to Amax and
greater than or equal t0 A min.

(08! 2R,
d "“"( 7, )(1 b oss s

e. Check that p, = As/bwd = Pmin (0w = steel ratio in web) or A; > A min, Where Ay min =
Pmin (Pwd). Check that A; < max Aj,; or check &, = (d; — c)/c > 0.005

PROBLEMS

4.1 Based on the information given in the accompanying table and for each assigned problem, design a

singly reinforced concrete section to resist the factored moment shown in boldface. Use f =4 ksi
and f, = 60 ksi, and draw a detailed, neat section.

No. M, (K-ft) b (in.) d (in) o %
a 2727 12 21.5 —
b 969.2 18 32.0 —
¢ 816.0 16 — 1.70
d 657.0 16 — 1.50
e 559.4 14 — 1.75
f 254.5 10 215 —
g 451.4 14 — 1.80
h 832.0 18 28.0 —_
i 345.0 15 — 1.77

(continues)
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No. M, (K1) b (in.) d (in.) o %
j 510.0 05d — Pmax
k 720.0 — 2.5b 1.80
1 605.0 — 1.5b 1.80

For problems in SI vnits, 1in. = 25.4mm, 1 ksi = 6.9MPa (N/mmy), and 1 M,, (K-ft) = 1.356 kN-m.

4.2 Based on the information given in the following table and for each assigned problem, design a
rectangular section with compression reinforcement to resist the factored moment shown. Use f! =
4 ksi, fy = 60 ksi, and d' = 2.5in. Draw detailed, neat sections.

No. M, (K-ft) b (in) d {in)
a 554 14 20.5
b 790 16 24.5
c 448 12 18.5
d 520 12 20.5
e 765 16 20.5
f 855 18 220
g 555 16 18.5
h 300 12 16.5
i 400 16 16.5
j 280 12 16.5
k 290 14 14.5
| 400 14 17.5

For problems in SI units, 1in. = 25.4mm, 1 ksi = 6.9 MPa (N/mm2), and 1 M,, (X.ft) = 1.356 kN-m.

4.3 Based on the information given in the following table and for each assigned problem, calculate the
tension steel and bars required to resist the factored moment shown. Use f/ =3 ksi and f, = 60 ksi.
Draw detailed, neat sections.

No. M, (K-f) b (in.) by, (in.) t (in.) d (in.) Notes
a 394 48 14 3 18.5
b 800 60 16 4 19.5
¢ 250 44 15 3 15.0
d 327 50 14 3 13.0
e 577 54 16 4 18.5
f 559 48 14 4 17.5
g 388 44 12 3 16.0
h 380 46 14 3 15.0
i 537 60 16 3 16.5
i 515 54 16 3 17.5
K 361 44 15 3 15.0
| 405 50 14 3 15.5
m 378 a4 16 3 — Leta =¢.
n 440 36 16 4 — Leta =¢.
0 567 48 12 3 — Let A; = 6.0 in?.
p 507 46 14 3 — Let A, = 7.0 in%.

For problems in SI units, 1 in. = 25.4mm, 1 ksi = 6.9MPa (N/mm2), and 1 1Mu (K-ft) = 1.356 kN.m.
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LL = 9 k(40 kN)
DL = 0.8 K/t (12kN/m)

I

, L e
- 1Y -l 10 |

(3 m) | (3m) i
Figure 4.14 Problem 4.4.7.

4.4 Design a singly reinforced rectangular section to resist a factored moment of 232 K-ft (320 kN.-m)
if £/ =4 ksi (28 MPa), f, = 60 ksi (420MPa), and & = 10in. {250 mm), using (a} Pmax, (b) p =
0.016, and (c) p = 0.012.

4.5 Design a singly reinforced section to resist a factored moment of 186 K-ft (252 kN-m) if & = 12in.
(275mm), 4 = 20in. (500mm), f; = 3 ksi (20 MPa), and f, = 40 ksi (300 MPa).

4.6 Determine the reinforcement required for the section given in Problem 4.5 when f/ = 4 ksi (30 MPa),
and f, = 60 ksi (400 MPa).

4.7 A simply supported beam has a 20-ft (6-m) span and carries a uniform dead load of 800Ib/ft
{12 kN/m) and a concentrated live load ai midspan of 9 kips (40 kN) (Fig. 4.14). Design the beam
if » = 12in. (300mm), f! =4 ksi (30 MPa), and f, = 60 ksi (400 MPa). (Beam self-weight is not
included in the dead load.)

4.8 A beam with a span of 24ft (7.2m) between supports has an overhanging extended part of 8ft
(2.4m) on one side only. The beam carries a uniform dead load of 2.3 K/ft (30 kN/m) (including its
own weight) and a uniform live load of 1.3 K/ft (18 kN/m) (Fig. 4.15). Design the smallest singly
reinforced rectangular section to be used for the entire beam. Select steel for positive and negative
moments. Use f! = 4 ksi (30 MPa), f, = 60 ksi (400MPa), and b = 12in. (300 mm). (Determine
the maximum positive and maximum negative moments by placing the live load once on the span
and once on the overhanging part.)

4.9 Design a 15-ft (4.5-m) cantilever beam of uniform depth to carry a uniform dead load of 0.88 K/ft
(12 kN/m) and a live load of 1.1 K/ft (15 kN/m). Assume a beam width b = 14in. (350 mm),
£/ =4 ksi (30 MPa), and £, = 60 ksi (400 MPa).

4.10 10-ft (3-m) cantilever beam carries a uniform dead load of 1.50 K/ft (20 kN/m) (including its own
weight) and a live load of 0.77 K/ft (10 kN/m) (Fig. 4.16). Design the beam using a variable depth.
Draw all details of the beam and reinforcement. Given: f! = 3 ksi (20 MPa), f, = 40 kst (300 MPa),
and b = 12in. (300 mm). Assume A at the free end is 10in. (250 mm).

4,11 Determine the necessary reinforcement for a concrete beam to resist an external factored moment of
290 K-ft (400 kN-m) if b = 12in. (300mm), 4 = 19in. (475mm), 4’ = 2.5in. (65 mm),
£/ =3 ksi (20 MPa), and f, = 60 ksi (400 MPa).

DL = 2.3K/ft (34 kN/m)
Li =1.3K/ft(20kN/m) B

Y S YO S A A N T N 0N N T S T S N

et 24 :l: g
l (72 m) |

Figure 415 Problem 4.4.8.
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5 |
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Figure 4.16 Problem 4.4.10.
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Figure 4,17 Problem 4.4.14.
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4.12 Design a reinforced concrete section that can carry a factored moment of 260 K-ft (360 kN-m) as

4,13

4.14

4.15

a. Singly reinforced, & = 10in. (250 mm)
b. Doubly reinforced, 25% of the moment to be resisted by compression steel, b = 10in. (250 mm)

¢. T-section, which has a flange thickness of 3in. (75 mm), flange width of 20 in. (500 mm), and web
width of 10in. (250 mm)

f{ =3 ksi (20 MPa), and f, = 60 ksi (400 MPa), for all problems.

Determine the quantities of concrete and steel designed per foot length (meter length) of beams and
then determine the cost of each design if the price of the concrete equals $50/yd® (67/m?) and that
of steel is $0.30/Ib ($0.66/kg). Tabulate and compare results.

Determine the necessary reinforcement for a T-section that has a flange width of & = 40in. (1000
mm), flange thickness of 1 = 4in. (100 mm), and web width of b, = 10in. (250 mm) to carry a
factored moment of 545 K.-ft (750 kN-m). Given: f/ =3 ksi (20 MPa) and f, = 60 ksi (400 MPa).

The two-span continuous beam shown in Fig. 4.17 is subjected to a uniform dead load of 2.6 K/ft
(including its own weight) and a uniform live load of 3 K/ft. The reactions due to two different loadings
are also shown. Calculate the maximum negative factored moment at the intermediate support 8 and
the maximum positive factored moment within the span AB (at 0.42L from support A), design the
critical section at B and D, and draw the reinforcement details for the entire beam ABC. Given:
L =20ft, b = 12in., A = 24in. Use d = 18in. for one row of bars and d = 17in. for two rows.
f/ =4 ksi, and f; = 60 ksi.

The two-hinged frame shown in Fig. 4.18 carries a uniform dead load of 3.93 K/ft and a uniform live
load of 2.4 K/ft on BC. The reactions at A and D can be evaluated as follows: HA = HD = wL/9
and RA = RD = wL/2, where w = uniform load on BC. A typical cross-section of the beam BC
is also shown. It is required:



Problems
DL K/t LL K/t
/ (125 mm)
K‘ T ! (18 m) |5
L1 7T 1 ¥ & ¢+ 4 - & 0" "1 1
N < |
18’
(54 m) (475 mm) 19”
HaLom X A DR=*—Ho e 2gr—»| 16" |=—
W+ 7A m/ (700 mm) (400 mm})
Ra ’ 10%6;“) ™1 Re Typical section of BC

Figure 4,18 Problem 4.4.15.

a. Draw the bending moment diagram for the frame ABCD.

b. Design the beam BC for the applied factored moments (positive and negative).

¢. Draw the reinforcement details of BC.
Given: f =4 ksi and f, = 60 ksi.
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CHAPTER 5

ALTERNATIVE DESIGN
METHODS

Office building, Minneapolis, Minnesota.

5.1 INTRODUCTION

In the previous chapters, 3 and 4, the analysis and design of flexural reinforced concrete members
were explained based on the provisions of the ACI Code 318-08. An alternative design approach
is presented in Appendix B of the ACI Code according to the load factors given in Appendix C.
This alternative design method was the basis of analysis and design in the ACI Code 318-99. It
is to some extent similar to the method explained earlier except that it uses different load factors
and strength reduction, ¢. The basic analysis and design equations of the previous chapters will
be used here. When Appendix B provisions are used in the design, they should replace all other
\ corresponding provisions in the body of the Code.

5.2 LOAD FACTORS

If the required strength is denoted by U and those due to wind and seismic forces are W and
E, respectively, then according to the ACI Code, Appendix C, the required strength U, shall be
the most critical of the following:

172
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1. In the case of dead, live, and wind loads,

U=14D+1.7L (5.1a)
U=0.75(1.4D + 1.7L) + (1.6W or 1.0E) (5.18)
U=09D+ (1.6W or 1.0E) 5.1¢)

2. When wind load, W, has not been reduced by a directionality factor, 1.3W can be used i
place of 1.6W. When seismic load is based on service forces, 1.4E can be used in place

of 1.0E.
3. In cases when earth pressure load, H, must be included in the design,
U=14D+17L+1.7H (5.2a)
Where dead load, D, and live load, L, reduce the effect of H, U shall be checked for
U=09D+17H (5.2b)

For any combination of D, L, or H,
U=14D+1.7L

4. If weight and pressure loads from liquids, F, must be included in the design,

U=14D+1.7L+ 14F (5.3a)
Where dead load, D, and live load, L, reduce the effort of F,
U=09D+ 14F (5.3b)

For any combination of D, L, or F,
U=14D+1.7L

The vertical pressure of liquids shall be considered as dead load with due regard to variation
in liquid depth.
5. When impact effects are taken into account, they shall be included in the live load.

6. Where the structural effects, 7, of differential settlement, creep, shrinkage, or temperature
change may be significant, they shall be included with the most critical of

U=0.75(14D + 14T + 1.7L) (5.4a)

U=14D+ 14T (5.4b)

Equation 5.1a is most generally used. The dead load factor is equal to 1.4, whereas the
live load factor is equal to 1.7.

For applied concentrated dead and live loads, Pp and Py, the factored concentrated load
is Py = 1.4Pp + L.7P;; also My = 1.4Mp + 1.7M, where Mp and M, are the actual dead
load and live load moments, respectively.

53 STRENGTH-REDUCTION FACTOR, ¢
The nominal strength of a section is reduced by a factor ¢ to account for small adverse variations

in material strengths, artisanry, dimensions, control, and degree of supervision. The factor ¢
constitutes a portion of the factor of safety, as discussed in Section 1.8.
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The ACI Code, Section C.9.3 (Appendix C), specifies the following values to be used:

» Tension-controlled sections: ¢ =090
« Compression-controlled sections
Members with spiral reinforcement: ¢ =0.75
Other reinforced members: ¢ =070
« Shear and torsion: ¢ =085
» Bearing on concrete: ¢ =070

« Bending in plain concrete or in concrete with minimum reinforcement of 200/ f,: ¢ = 0.65

For sections that lie in the transition region between tension- and compression-controlled sections,
¢ may be increased linearly to 0.9.

Also, the strength eduction factor ¢ to be used for columns (or sections with g, < 0.005)
may vary according to the following cases:

1. When P, = ¢ P, > 0.1 A, then ¢ is 0.70 for tied columns and 0.75 for spirally reinforced
columns. This case occurs generally when compression controls. A, is the gross area of
the concrete region.

2. Between values of 0.1f A, or ¢ P, (whichever is smaller) and 0, P, lies in the tension
control zone and ¢ is larger than 0.7 (or 0.75). The ACI Code, Section C.9.3.2, specifies
that for members in which f, does not exceed 60ksi, with symmetrical reinforcement and
with the distance between compression and tension steel (d — &) not less than 0.7k (& =
total depth of section) and d = h — d;, the value of ¢ is increased linearly to 0.9.

For this transition region, ¢ may be determined by linear interpolation between 0.7 (or
0.75) and 0.9. Figure 5.1 shows the variation of ¢ for grade 60 steel. The linear equations are
as follows:

¢ =057+ 67,  (for tied sections) (5.5)
¢ = 0.65 + 50¢, (for spiral sections) (5.6)

Alternatively, ¢ in the transition region can be determined as a function of (d,/c) for grade
60 steel as follows:

d

¢ =037+0.20 (—') (for tied sections) (5.7)
c
dy : .

¢ =0.50+0.15 (—) (for spiral sections) (5.8)
C

where c is the depth of the neutral axis at nominal strength.

5.4 RECTANGULAR SECTIONS WITH TENSION REINFORCEMENT

3

From the analysis of rectangular singly reinforced section (Section 3.9), the following equations
were derived, where f] and f, are in ksi:

_ £ 87
pp = 0.858; 7 (87 n f\,) (3.18)
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¢ = 0.65 + 508, -—\\

0.90
- -
Spiral -
— - \
- AN
075 ——==—" - =
é 2 $ =057 +67¢,
0.70
L Other
0.50
| Compression | Transition _ Tension
1 controlled [ " controlled [
Strain, £,=0.002 0.005
% = 0.600 0.375
Also, Spiral ¢=0.50 + 0.15/c/d))

Other ¢r=0.37 + 0.20/(c/d)

Figure 5.1 Variation of ¢ with the net tensile strain for grade 60 steet [1). Courtesy of
ACI1 318-08.

If the maximum percentage of reinforcement is limited to 0.7505, then

£ 87 )
= 0. = 0.637 == .
Pb 75p 58 s, (87 +7 5.9)

It is to be noted that pmax = 0.75p; is greater than that of 0.634p, as given earlier in
Chapter 3, (Eq. 3.30 for f, = 60ksi).
For f/ <4000 psi,

‘—05420, 87 5.10)
Pmas = B0 8T+ f, '

The value of B8, is 0.85 when [ < 4000 psi (30 N/mm?) and decreases by 0.05 for every
increase of 1000 psi (7 N/mm?) in concrete strength, or g; = 0.85 — 0.05(f; — 4) = 0.65.

The steel percentage of a balanced section, ps, and the maximum allowable steel percentage,
Omax, can be calculated for different values of f; and fy, as shown in Table 5.1. Suggested design
steel ratios for p < pPmax are also shown in Table 5.1.

The design moment equations were derived in the previous chapter in the following forms:

¢M, = M, = R,bd* 3.21)
where
_ _ ofy _
R, = ¢pf) (l 17 fc') = ¢R, (3.22)
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Table 5.1 Suggested Design Steel Ratios ps

f. f, Ratio Ratio Ry Ry max
{ksi) (ksi) % po % Pmax % ps ps!pb #s/ Pmax (psi) {psi)
3 40 3.71 2.78 1.4 0.38 0.50 450 783
60 2.15 1.61 1.2 0.56 0.75 556 702
4 60 2.85 2.14 1.4 0.49 0.65 662 936
75 2.07 1.55 1.2 0.58 0.77 702 867
5 60 3.36 2.52 1.4 0.42 0.56 681 1120
75 2.44 1.83 1.2 0.49 0.66 722 1033

and ¢ = 0.9. For tension-controlled sections, £, > 0.005:

_ _ B A, fy
¢Mn - Mu - ¢Asfy (d 17f('b) (31961)
Also,
_ _ 2{, _ ofy
oM, = M, = dpf,bd (l _1-7fc') (3.20)

We can see that for a given factored moment and known f" and fy, there are three
unknowns in these equations: the width, b, the effective depth of the section, d, and the steel
ratio, p. A unique solution is not possible unless values of two of these three unknowns are
assumed. Usnally p is assumed (using pmax, for instance), and b can also be assumed.

Based on the preceding discussion, the following cases may develop for a given My, f!
and f,:

1. If p is assumed, then R, can be calculated from Eq. 3.19, giving bd? = M,/R,. The
designer may use p up to pmax, Which produces the minimum size of the singty reinforced
concrete section. Using pomyin will produce the maximum concrete section. If & 1s assumed
in addition to p, then d can be determined as follows:

M,
Rub

If d/b = 2, then d = J/(2M,/R,) and b = d/2, rounded to the nearest higher inch.

2. If b and d are given, the required reinforcement ratio, p, can be determined by rearranging
Eq. 3.20 to obtain

d=

(5.1hH

0.85f [ aM,
_ _ - M 12
SRS _1 \/ : 1.7¢f;bd2] 12
_ossi [ [ 2R
“Th | 0.85/7

and
Ag = pbd
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where all units are in kips (or pounds) and inches. For example, if M, = 2440K-in., b =

12in., d = 18in., f/ =3 ksi, and f, = 60ksi, then o = 0.01389 (from Eq. 5.22) and

As = pbd = 0.01389(12)(18) = 3.0 in?. When b and d are given, it is better to check

if compression steel is or is not required because of a small d. This can be achieved as

follows:

a. Calculate pmax and Ry max = 9Pmax [yl — (Pmax /1.7 f)1-

b. Calculate @M, max = Ry max bd? = the maximum moment strength of a singly reinforced
concrete section,

¢. If M, < ¢M, max, then no compression reinforcement is needed. Calculate p and A;
from the preceding equations.

d. If M, > ¢ M, max, then compression steel is needed.

If p and b are given, calculate R,:

_ _ ofy
Ry = dpfy (1 1'7fcl)

The calculate 4 from Eq. 5.21:

M,
Rub

d= and A; = pbd

Example 5.1
Find the necessary reinforcement for a given section 10in. wide and 28 in. total depth (Fig. 5.2) if it
is subjected to an external factored moment of 245 K-ft. Given: f] =4 ksi and f, = 60ksi.

Solution

1. Assuming one layer of no. 8 steel bars (to be checked later), d = 28 — 2.5in. = 25.5in.

2. Check if the section is adequate without compression reinforcement. Compare design moment
strength of the section (using pmax) With the design moment. For f = 4 ksi and f, = 60ksi,
Pmax = 0.02138.

Pmax [, .
Ru = by 1- ﬂi"‘%) =937 psi

N A
18" 25.6"
348
+ —ZF T —— - —
T i

Figure 5.2 Exampie 5.1.
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The design moment strength of a singly reinforced basic section is
¢Mn max — £y mavcbd2 = 0937(10)(25.5)2
= 6093 K-in. > 245 x 12 = 2940 K-in.

Therefore, p < ppax and the section is singly reinforced.

3. Calculate p from Eq. 5.12 to get p = 0.009. A; = pbd = 0.009(10)(25.5) = 2.30in.2 Use three
no. 8 bars (4, = 2.35in.%) in one row, byin < 10in. The final section is shown in Fig. 5.2.

4, Check &;:
2.35(60) .
= ——— =4, .
= o8s@o — rlom
aQ
= —— =488 in.
< 085 88 in
df -
& = - 0003 =0.0127>0.005 ¢ =09

5.5 RECTANGULAR SECTIONS WITH COMPRESSION REINFORCEMENT

A singly reinforced section has a maximum design moment strength when pmay of steel is used.

If the applied factored moment is greater than the internal moment strength, as in the case of

a limited cross-section, a doubly reinforced section may be used, adding steel bars in both the

compression and tension zones.

The procedure for designing a rectangular section with compressive steel when M, f/,

b,d, and d’ are given was summarized in Section 4.4. The only difference is that pyna = 0.75 pp
is used in this design approach here.

1. ( 87 )
= 0.63758, = 5.9
Pmax ﬂl fy 87 + fy (5.9)

Also, check that ¢, > 0.005 for ¢ = 0.9.

Example 5.2

A beam section is limited to » = 12in. and to a total depth of # = 20in. and is subjected to a
factored moment of M, = 330K ft. Determine the necessary reinforcement using f/ = 4 ksi and f,
= 60ksi. (Refer to Fig. 5.3)

Solution

1. Determine the design moment strength of the section as singly reinforced. Assume p = 0.018.
Therefore, R, = 818 psi (Table A2). For two rows of bars, d = 20 — 3.5 = 16.5in.

M, = R,bd* = 0.818(12)(16.5)> = 2672 K-in.

The design moment is M, = 330 x 12 = 3960K-in. > M,; therefore, compression steel is
needed.

2, Calculate Agy, M2, As, and total A;.
A = pbd = 0.018(12)(16.5) = 3.56 in.
Mo =M, — M, =3960 — 2672 = 1288 K-in.
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Figure 5.3 Example 5.2.

M, = ¢Afy(d —d’), assume d’' = 2.5 in.
1288 = 0.94,,(60)(16.5 — 2.5) Ay, = 1.7 in?
Total A, = Ayl + As2 = 3.56 4+ 1.7 = 5.26 in.? (six no. 9 bars)

3. Check if compression steel yields by Eq. 3.49. Compression steel yields if

zr=osnz (5)(77)
—p' 2 K=0858"5{~
p—p 2 ﬂlfy i) \&=7,

=852 (Y (2 (E)_
K = (0.85) (60)(16'5) — ) =0.0235

L Aa_ 356
PP =34 T 12165

Therefore, compression steel does not yield: f; < f,.
4. Calculate f7: f! = 87((c — d')/c] < f,. Determine ¢ from Ay(: A5y = 3.56 in.2

=0018<K

R Aslfv
a = ——
0.85/7b
3.56 x 60 _
= 085 xdxiy _ 4in
a 5.24
= — = — =6.16
€= 8 T 085 n
, 6.16 — 2.5 . .
fs=87X —W)=52k8!<60k81

5. Calculate A, from M,; = ¢ A} fi(d —d'):
1288 = 0.94;(52)(16.5 - 2.5)

Thus, A, = 1.97 in.2, or calculate A’ from A} = An(fy/f)) = 197 in? (two no. 9 bars).
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6. Check
& = (d: _ C) 0.003
C
d=h—25I1n. =.17.5 in.
17.5 - 6.16
=0.0055 > 0.005 ¢ =109
or
c 6.16
prial i 0.352 < 0.375 (ok)
7. Check final $M,. A; = 6.0in%, AL =2.0in2 A, = 4.0in2 a = 5.88in., and ¢ = 6.92in.
5.88 )
M, =4x60 (16.5 - T) +2 % 52(16.5 = 2.5) = 4710 K.in.

Check &;, d; = 17.5in.

d' -
& = 0.003 = 0.0459 < 0.005
¢

¢ = 0.57 + 67(0.0459) = 0.88
oM, = 4145 K-in. > M, = 3960 K.in.

5.6 DESIGN OF T-SECTIONS

In the design of a T-section for a given factored moment, M,, the flange thickness ¢ and
width b would have been already established from the design of the slab and the ACI Code
limitations for the effective flange width b, as given in Section 3.14. The web thickness, b,,,
can be assumed to vary between 8in. and 20in., with a practical width of 12 to 16in. Two
more unknowns still need to be determined, d and A;. The design procedure was sunmimarized
in Section 4.5.

Example 5.3

The T-beam section shown in Fig. 5.4 has a web width, &,,, of 10in., a flange width, b, of 40in., a
flange thickness of 4in., and an effective depth, 4, of 14.5 in. Determine the necessary reinforcement
if the applied factored moment is 3800 K-in. Given: f! =4 ksi and f, = 60ksi.

Solution

1. Check the position of the neutral axis; the section may be rectangular. Assume the depth of
compression block g is 4in.; that is, @ = ¢t = 4in. Then

oM, = $(0.85f))br (d - %) = 6120 K-in. > M, = 3800 K:in.

The design moment that the concrete flange can resist is greater than the factored moment
applied. Therefore, the section behaves as a rectangular section.



5.7

Strut and Tie Method 181
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Figure 5.4 Example 5.3: T-section.

2. Determine the area of tension steel, considering a rectangular section, » = 40in.

M, 3,800,000
T odh T 40x 145
From Eq. 5.22, for R, = 452psi, p = 0.0091.

A, = pbd = 0.0091 x 40 x 14.5 = 5.28 in.”

R,

= 452 psi

Use six no. 9 bars, A, = 6.00in.2 (in two rows).
3. Check that py = Aslby d > Puiny Puw = 5.28/(10 x 14.5) = 0.0364 > pmin = 0.00333.
4. Check

d_
.s,=( ’c c)o.oo:s d = 14.5

_ 528(60)
= 085 x4 x40
& = 00129 > 0.005 ¢ =09

Note that other examples will be similar to those in Chapters 3 and 4.

=2.33 in. ¢ =274 in.

5.7 STRUT AND TIE METHOD

5.7.1 Introduction

The ACI Code, Appendix A, introduces an alternative approach to the method explained earlier
in Chapter 3, called the strut and tie models. This altenative method can be applied effectively in
regions of discontinuity in the structural member, such as support areas, zones of load application,
or areas with sudden change in the geometrical dimensions as brackets and portal frames. In
these regions, the plane sections do not remain plane after bending (as was assumed in Chapter 3,
Section 3.2), and they are called D-regions (Fig. 5.5a). The other regions of a standard beam,
the basic beam theory, and a linear strain relationship apply. These regions are called B-regions
(Fig. 5.5a).

The discontinuity in the stress distribution in region D (due to geometry or loading condi-
tion), based on St. Venants principles, indicates that the stresses due to axial load and bending
approach a linear distribution at a distance approximately equal to the height of the member, 4,
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Figure 5.5 D- and B-regions in beam. {a@) Continuous beam, {b} beam with concen-
trated load, {c} beam with an opening [1]. Courtesy of ACI 318-05.

away from the discontinuity (Fig. 5.56 and ¢) [1]. If two D-regions overlap or meet, they can
be considered a single D-region. The maximum length to depth ratio would be equal to two,
producing a minimum angle of 26.5° (tan %) between the strut and tie (or approximately 25°).

In a strut and tie model (Fig. 5.6), the point where the three forces meet at joint D is called
a node, and the volume of concrete around a node is called a nodal zone. Forces at a node can
vary between different combinations of compression and tensile forces, C-C-C, C-C-T,C-T-T,
or T-T-T (Fig. 5.7). Figure 5.8 shows typical nodal zones for different load applications, while
Fig. 5.9 shows extended nodal zones for one or more layers of reinforcing bars [6].

5.7.2 Strut and Tie Models

A strut and tie model can be represented by an idealized truss model with forces acting at the
different nodes. Now consider the steel truss shown in Fig. 5.10. Due to symmetry, the reactions
at A and B are equal, R4 = Rp 20K, and from the equilibrium of joints A and D, the tensile force
in AB = 20K, while the compressive force in AD or BD = 28.3 K. Member AB is considered
atie, while AD and B D act as struts. The forces in the other members are equal to 0. Comparing
this truss with concrete beam in Fig. 5.6a, it can be seen that most of the areas ACD and BED
and below the nodal zone D are not effective and act as fillers. The forces in the struts, for this
loading condition, are greater than the force in the tie. In this case, adequate concrete areas are
available to act as idealized struts (Fig. 5.6a). Steel reinforcement is needed to act as a tie for AB.
Proper anchoring of the ties are essential for a safe design and should be anchored in a nodal zone.
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Figure 5.6 (a) Strut and tie model, (b) idealized model [1]. Courtesy of ACI 318-05.

5.7.3 ACI Design Procedure
Based on the ACI Code, Section A.2, the design of a D-region includes the following steps [1]:

1. Define and isolate each region.

. Determine the resultant forces acting on each D-region boundary.

3. Select a truss model to transfer the resultant forces across the D-region. The axes of the
struts and ties should coincide, approximately, with the compression and tension fields.

4, Determine the effective widths of the struts and nodal zones based on the concrete and
steel strengths and the truss model chosen.

5. Check serviceability conditions according to the ACI Code requirements. Deflections of
deep beams can be estimated using an elastic analysis. Crack control conditions of the ACI
Code, Section 10.6.4, should be checked assuming the tie is encased in a prism of concrete
according to RA.4.2.

[\
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Figure 5.7 Classification of nodes.

5.7.4 Design Requirements

The design requirements for struts and ties can be summarized as follows:

1. Design of struts, ties, and nodal zones:

oF, = Fy (5.13)

where

F, = force in a strut, tie, or nodal zone due to factored loads
F, = nominal strength of a strut, tie, or nodal zone

¢ = 0.75 for both struts and ties

2. Strength of struts: The nominal compressive strengths of a strut without longitudinal rein-
forcement, Fyq, shall be the smaller value of Fj at the two ends of the strut such that:

Fos = foeAcs (5]4)

where

Ags == cross-sectional area at one end of a strut
fee = the smaller effective compressive strength of concrete in a strut or nodal zone

Jee = 0'8516sf£ (5.15)

where

a. 8; = 1.0 for a strut of uniform cross section (ACI A.3.2.1)
b. B; = 0.4 for struts in tension members, or the tension flanges of members (ACL A.3.2.3)
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Figure 5.9 Extended nodal zones and hydrostatic nodes [1]. Courtesy of ACI 318-05.

¢. For struts located such that the width of the midsection of the strut is larger than the
width of the nodes (bottle-shaped struts) (ACI 3.2.2):
Bs = 0.75 with reinforcement satisfying ACI A.3.3
Bs = 0.64 without reinforcement satisfying ACI A.3.3

d. B; = 0.6 for all other cases (ACI 3.2.4)
A = 1.00 normal-weight concrete
= (.85 sand lightweight concrete
= (.75 for all other lightweight concrete
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Figure 5.10 Example of a stesl truss.

Linear interpolation between 0.75 and 0.85 shall be permitted, on the basis of volumetric
fraction, when a portion of the lightweight fine aggregate is replaced with normal-weight
fine aggregate. Linear interpolation between 0.85 and 1.0 shall be permitted for concrete
containing normal-weight fine aggregate and a blend of light- and normal-weight coarse
aggregate.
3. Reinforcement crossing struts (Fig. 5.11): For f < 6 ksi, the value 8, = 0.75 can be used
if the axis of the strut is crossed by layers of bars such that

A "
Y —siny; > 0.003 (5.16)
bsS[
where

A4 = total area of surface reinforcement at a spacing s; in the ith layer crossing
a strut with reinforcement at an angle «; to the axis of the strut

si = spacing of reinforcement in the ith layer crossing a strut at an angle o; to
the axis of the strut member

/ ] /
7 / /
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/ Strut / strut //
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/ ary |/ /
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Figure 5.11 Reinforcing bars crossing a strut [1]. Courtesy of ACI 318-08.
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b, = width of member
o; = angle between the axis of the strut and the bars in ith layer of bars crossing
the strut

Compression reinforcement in struts: Compression reinforcement can be used to increase
the strength of a strut such that

Fos = foeAcs + AL f] (5.17)
where
Fys = strength of a longitudinal reinforced strut
A’ = area of the compression reinforcement in a strut
£ = stress in A, (f] = f, for grades 40 to 60)
Strength of ties: The nominal strength of a tie, 7y, is:

Foo= Aty + Ap(fee + Afp) (5.18)
where

A = area of nonprestressed reinforcement in the tie

App = area of prestressing reinforcement

Jse = effective stress after losses in prestressed reinforcement
A fp = increase in prestressing stress due to factored loads

Ay = O for nonprestressed members

(fse + ASfp) < fry (5.19)

It is permitted to take A f, = 60ksi for bonded prestressed reinfercement or 10ksi for
unbonded presiressed reinforcement. Also, a practical upper limit of the tie width, w; max
can be taken as follows:

We.max = Fra/(feebs) (5.20)

Stzength of nodai zones: The nominal compression strength of a nodal zone, Fy,. shall be

Fun = fccA-nz (5.21)
where A,, = the area of the face of the nodal zone or a section through a nodal zone
perpendicular to the resultant force on the section.

Confinement in nodal zones: Unless confining reinforcement is provided within the nodal
zone and its effect is supported by tests and analysis, the calculated effective compressive
stress on a face of a nodal zone due to the strut and tie forces should not exceed the
following:

Jee = 0-85.8an (5.22)
where
Br = 1.0 in nodal zones bounded by struts or bearing areas, or both, C-C-C node.
Bn = 0.80 in nodal zones anchoring one tie, C-C-T node.
Br = 0.60 in nodal zones anchoring two or more ties, C-T-T node.

The application of the strut and tie method to a deep beam is given in Example 8.6,
Section 8.11.
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CHAPTER 6

DEFLECTION AND
CONTROL OF
CRACKING

6.1 DEFLECTION OF STRUCTURAL CONCRETE MEMBERS
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Flexural concrete members must be designed for safety and serviceability. The members will be
safe if they are designed according to the ACI Code equations and limitations. Consequently,
as explained in previous chapters, the size of each member is determined as well as the rein-
forcement required to maintain an internal moment capacity equal to or greater than that of
the external moment. Once the final dimensions are determined, the beam must be checked for
serviceability: cracks and deflection. Adequate stiffness of the member is necessary to prevent
excessive cracks and deflection.

The use of the ACI Code provisions, taking into consideration the nonlinear relationship
between stress and strain in concrete, has resulted in smaller sections than those designed by
the elastic theory. The ACI Code, Section 9.4, recognizes the use of steel up to a yield strength
of 80ksi (560 MPa) and the use of high-strength concrete. The use of high-strength steel and
concrete results in smaller sections and a reduction in the stiffness of the flexural member and
consequently increases its deflection.

The permissible deflection is governed by many factors, such as the type of the building,
the appearance of the structure, the presence of plastered ceilings and partitions, the damage
expected due to excessive deflection, and the type and magnitude of live load.

The ACI Code, Section 9.5, specifies minimum thickness for one-way flexural members and
one-way slabs, as shown in Table 6.1 in this chapter. The values are for members not supporting
or attached to partitions or other constructions likely to be damaged by large deflections.
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Table 6.1 Minimum Thickness of Beams and One-Way Slabs (L = Span Length)

Yield
Strength Simply One End Both Ends

Member fy (ksi) Supported Continuous Continuous Cantilever
Solid one-way slabs 40 Li25 Li30 L35 LN25

50 L2 Li27 Li31 L/11

60* L1720 Li24 Li28 L/10
Beams or ribbed one-way slabs 40 L120 L/23 L/26 L0

50 L/18 Li20.5 Li235 L9

60" L6 L/18.5 Li21 L/8

*Values reported in ACI Table 9.5(a).

The minimum thicknesses indicated in Table 6.1 are used for members made of normal-
weight concrete, and for steel reinforcement with yield strengths as mentioned in the table. The
values are modified for cases of lightweight concrete or a steel yield strength different from
60 ksi as follows:

« For lightweight concrete having unit weights in the range of 90 to 115 pef, the values in
the tables for f, = 60ksi (420 MPa) shall be multiplied by the greater of (1.65 — 0.005
W.) but not less than 1.09, where W, is the unit weight of concrete in pounds per cubic
foot.

« For yield strength of steel different from 60ksi (420 MPa), the values in the tables for
60 ksi shall be multiplied by (0.4 + £,/100), where f, is in ksi.

6.2 INSTANTANEOUS DEFLECTION

The deflection of structural members is due mainly to the dead load plus a fraction of or
all the live load. The deflection that occurs immediately upon the application of the load is
called the immediate, or instantaneous, deflection. Under sustained loads, the deflection increases
appreciably with time. Various methods are available for computing deflections in statically
determinate and indeterminate structures. The instantaneous deflection calculations are based on
the elastic behavior of the flexural members. The elastic deflection, A, is a function of the load,
W, span, L, moment of inertia, 7, and the modulus of elasticity of the material, E:

WL wi? MIZ
a=f (E) =« (Tsr) =K (E) (6.1)

where W = total load on the span and o and K are coefficients that depend on the degree of
fixity at the supports, the variation of moment of inertia along the span, and the distribution of
load. For example, the maximum deflection on a uniformly loaded simply supported beam is

SWLY  swif

 384E1  384El
where W = the total load on the span = wL (uniform load per unit length x span). Deflections
of beams with different loadings and different end conditions as a function of the load, span,
and EI are given in Appendix C and in books of structural analysis.

6.2)
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Because W and L are known, the problem is to calculate the modulus of elasticity, £, and
the moment of inertia, I, of the concrete member or the flexural stiffness of the member E7.

6.2.1 Modulus of Elasticity

The ACI Code, Section 8.5,specifies that the modulus of elasticity of concrete, E., may be taken
as

E.=33W)%./f! psi (6.3)
for values of W, between 90 and 160 pcf. For normal-weight concrete (W, = 145 pef),

E. =57,400,/f psi (or 57,000,/

The modulus of elasticity is usually determined by the short-term loading of a concrete
cylinder. In actual members, creep due to sustained loading, at least for the dead load, affects the
modulus on the compression side of the member. For the tension side, the modulus in tension
is assumed to be the same as in compression when the stress magnitude is low. At high stresses
the modulus decreases appreciably. Furthermore, the modulus varies along the span due to the
variation of moments and shear forces.

6.2.2 Modular Ratio

The modular ratio, # = Es/E., which is used in the transformed area concept was explained
in Section 2.10. It may be used to the nearest whole number but may not be less than 6. For
example,

when f] = 2500 psi (17.5 MPa), n =10
when f = 3000 psi (20 MPa), n=9
when £, = 4000 psi (30 MPa), n=2§
when f! = 5000 psi (17.5 MPa), n=7
For normal-weight concrete, n» may be taken as 500/ \/—Z , (psi units).

6.2.3 Cracking Moment

The behavior of a simply supported structural concrete beam loaded to failure was explained
in Section 3.3. At a low load, a small bending moment develops, and the stress at the extreme
tension fibers will be less than the modulus of rupture of concrete, f, = 7.51,/f7. If the load is
increased until the tensile stress reaches an average stress of the modulus of rupture, f,, cracks
will develop. If the tensile stress is higher than f,, the section will crack, and a cracked section
case will develop. This means that there are three cases to be considered:

1. When the tensile stress, f;, is less than f,, the whole-uncracked section is considered to
calculate the properties of the section. In this case, the gross moment of inertia, /,, 1s used:
I, = bh3/12, where bh = the whole concrete section.

2. When the tensile stress, f;, is equal to the modulus of rupture, f, = 7.5,/ f/, a crack may
start to develop, and the moment that causes this stress is called the cracking moment.
Using the flexural formula;

I
fo=Mas of Me=f -2 (6.4)
lg o
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where f, = 7.5,/ f., I, = the gross moment of inertia, and ¢ = the distance from the
neutral axis to the extreme tension fibers. For example, for a rectangular section, I, =

bh3/12 and ¢ = A2, and where

A is a modification factor for type of concrete (ACI 8.6.1)
A = 1.0 Normal-weight concrete

A = 0.85 Sand-lightweight concrete

A = 0.75 For all-lightweight concrete

Linear interpolation shall be permitted between 0.85 and 1.0 on the basis of volumetric
fractions, for concrete containing normal-weight fine aggregate and a blend of lightweight
and normal-weight coarse aggregate.

3. When the applied external moment exceeds the cracking moment, M., a cracked section
case is developed, and the concrete in the tension zone is neglected. A transformed cracked
section is used to calculate the cracking moment of inertia, /¢, using the concrete area in
compression and the transformed steel area nA;.

Example 6.1

A rectangular concrete section is reinforced with three no. 9 bars in one row and has a width of
12in., a total depth of 25in., and d = 22.5. (Fig. 6.1. Calculate the modulus of rupture, f,, the gross
moment of inertia, I, and the cracking moment, M. Use f, = 4 ksi and f, = 60ksi.

Solution
1. The modulus of rupture is f, = 7.54/f’c = 7.5 x 1 x /4000 = 474 psi. (A =1 normal-

weight concrete)
2. The gross moment of inertia for a rectangular section is

12(25)%

bh? /12 = = 15,625 in.*

3. The cracking moment is M = f, I /c
f,=4Ta4psi I, =15625in* c=h/2=125in
Therefore, M = 474 x 15,625/(12.5 x 1000) = 592.5 K-in. = 49.38 K-ft

5
I O Y _-T _____
12.5"
225 _l
25 T T—-———— T ——— — === —-———— -
A,
— o——o—9-|-
y
1" f’b "
12 > Stress diagram e 12" ———

Figure 6.1 Example 6.1.
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6.2.4 Moment of Inertia

The moment of inertia, in addition to the modulus of elasticity, determines the stiffness of
the flexural member. Under small loads, the produced maximum moment will be small, and the
tension stresses at the extreme tension fibers will be less than the modulus of rupture of concrete;
in this case, the gross transformed cracked section will be effective in providing the rigidity. At
working loads or higher, flexural tension cracks are formed. At the cracked section, the position of
the neutral axis is high, whereas at sections midway between cracks along the beam, the position
of the neutral axis is lower (nearer to the tension steel). In both locations only the transformed
cracked sections are effective in determining the stiffness of the member; therefore, the effective
moment of inertia varies considerably along the span. At maximum bending moment, the concrete
is cracked, and its portion in the tension zone is neglected in the calculations of moment of inertia.
Near the points of inflection the stresses are low, and the entire section may be uncracked. For
this situation and in the case of beams with variable depth, exact solutions are complicated.

Figure 6.2a shows the load—deflection curve of a concrete beam tested to failure. The beam
is a simply supported 17-ft span and loaded by two concentrated loads 5 ft apart, symmetrical
about the centerline. The beam was subjected to two cycles of loading: In the first (curve cy 1),
the load—deflection curve was a straight line up to a load P = 1.7 K when cracks started to occur
in the beam. Line a represents the load—deflection relationship using a moment of inertia for the
uncracked transformed section. It can be seen that the actual deflection of the beam under loads less
than the cracking load, based on a homogeneous uncracked section, is very close to the calculated
deflection (line a). Curve cy 1 represents the actual deflection curve when the load is increased to
about one-haif the nltimate load. The slope of the curve, at any level of load, is less than the slope of
line a because cracks developed, and the cracked part of the concrete section reduces the stiffness
of the beam. The load was then released, and a residual deflection was observed at midspan. Once
cracks developed, the assumption of uncracked section behavior under small loads did not hold.

In the second cycle of loading, the deflection (curve ¢) increased at a rate greater than that of
line a, because the resistance of the concrete tension fibers was lost. When the load was increased,
the load—deflection relationship was represented by curve ¢y 2. If the load in the first cycle is
increased up to the ultimate load, curve cy 1 will take the path cy 2 at about 0.6 of the ultimate load.
Curve ¢ represents the actual behavior of the beam for any additional loading or unloading cycles.

Line b represents the load—deflection relationship based on a cracked transformed section;
it can be seen that the deflection calculated on that basis differs from the actual deflection.
Figure 6.2¢ shows the variation of the beam stiffness £/ with an increase in moment. ACI Code,
Section 9.5, presents an equation to determine the effective moment of inertia used in calculating
deflection in flexural members. The effective moment of inertia given by the ACI Code (Eq. 9.8)
is based on the expression proposed by Branson [3] and calculated as follows:

M\’ Mo \°
Ie:(ﬁ:) 1g+[1—(MZ)]1crslg (6.5)

where
I, = effective moment of inertia
I
M =cracking moment, (f;, g ) (6.6)
f

fr = modulus of rupture of concrete

= 7.5x/f! psi, (0.623)./ f MPa) (6.7)
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M, = maximum unfactored moment in member at stage for which deflection is being
computed
{, = moment of inertia of gross concrete section about the centroidal axis, neglecting
the reinforcement
I = moment of inertia of cracked transformed section
Y, = distance from centroidal axis of cross-section, neglecting steel, to the tension face

The following limitations are specified by the code:

For continuous spans, the effective moment of inertia may be taken as the average of the
moment of inertia of the critical positive and negative moment sections.

For prismatic members, /. may be taken as the value obtained from Eq. 6.5 at midspan
for simple and continuous spans and at the support section for cantilevers (ACI Code,
Section 9.5.2).

Note that I, as computed by Eq. 6.5, provides a transition between the upper and
lower bounds of the gross moment of inertia, I,, and the cracked moment of inertia, {.,
as a function of the level of M /M,. Heavily reinforced concrete members may have an
effective moment of inertia, 1., very close to that of a cracked section, I, whereas flanged
members may have an effective moment of inertia close to the gross moment of inertia, 7.

For continuous beams, an approximate value of the average I, for prismatic or nonpris-
matic members for somewhat improved results is as follows: For beams with both ends
continuous,

Average I, = 0.701,, + 0.15(11 + I.2) (6.8)
For beams with one end continuous,
Average I, = 0.851, + 0.15(Zcon) (6.9)

where I, = midspan I, 1,1, I,» = I, at beam ends, and I, = /. at the continuous
end. Also, I, may be taken as the average value of the I.s at the critical positive- and
negative-moment sections. Moment envelopes should be used in computing both positive
and negative values of Z,. In the case of a beam subjected to a single heavy concentrated
load, only the midspan /, should be used.

6.2.5 Propertics of Sections

To determine the moment of inertia of the gross and cracked sections, it is necessary to calculate
the distance from the compression fibers to the neutral axis (x or kd).

l.

Gross moment of inertia, I (neglect all steel in the section)
a. For a rectangular section of width b and a total depth &, I, = bh3/12.

b. For a T-section, flange width b, web width b,,, and flange thickness ¢, calculate v, the
distance to the centroidal axis from top of flange:

bt? (h — 1)
() -0 [452]

bt + by(h—1)

y = (6.10)
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Then calculate ,:

bt3 £\? (y — 1) (h—y)
w= (o= ) Je [ 0524 2052 oo

2. Cracked moment of inertia, /: Let x = the distance of the neutral axis from the extreme
compression fibers (x = kd).

a. Rectangular section with tension steel, Ag, only
i. Calculate x from the following equation:

b 2
-2x——nAs(d—x)=0 6.11)
ii. Calculate I, = bx3/3 + nA; (d — x)? (6.11a)

b. Rectangular section with tension steel A; and compression steel A
i. Calculate x:

bx? , ,
T+(n—1)As(x—d)—nA5(a‘—x)::0 (6]2)
ii. Calculate I, = (bx3/3) + (n — DAL(x — d')? + nAs(d — x)%. (6.124a)
¢. T-sections with tension steel A;
¢ 2
i. Calculate x : bt (x — 5) + by x 20 —nAg(d —x)=0 (6.13)

ii. Calculate 1

be3 1\* (x — 1) 5
Ic,=|:-ﬁ+bt( —5)]4-[!7.” 3 ]+nAs(d—x) {6.13a)

6.3 LONG-TIME DEFLECTION

Deflection of reinforced concrete members continues to increase under sustained load, although
more slowly with time. Shrinkage and creep are the cause of this additional deflection, which is
called long-time deflection [1]. It is influenced mainly by temperature, humidity, age at time of
loading, curing, quantity of compression reinforcement, and magnitude of the sustained load. The
ACI Code, Section 9.5.2.5, suggests that unless values are obtained by a more comprehensive
analysis, the additional long-term deflection for both normal and lightweight concrete flexural
members shall be obtained by multiplying the immediate deflection by the factor

4

Ay = ———
A7 1+ 500

(6.14)

where

Aa = multiplier for additionai deflection due to long-term effect.

p' = A,/bd for the section at midspan of a simply supported or continuous beam or at
the support of a cantilever beam

¢ = time-dependent factor for sustained loads that may be taken as shown in Table 6.2,
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Table .2 Multipliers for Long-time Deflections

Pariod {months) 1 3 6 12 24 36 48 60 &over
¢ 0.5 1.0 1.2 1.4 1.7 1.8 1.9 2.0

The factor A, is used to compute deflection caused by the dead load and the portion of
the live load that will be sustained for a sufficient period to cause significant time-dependent
deflections. The factor A A is a function of the material property, represented by £, and the section
property, represented by (1 + 50p"). In Eq. 6.14, the effect of compression reinforcement is
related to the area of concrete rather than the ratio of compression to tension steel.

The ACI Code Commentary, Section 9.5.2.5, presents a curve to estimate { for periods
less than 60 months. These values are estimated as shown in Table 6.2.

The total deflection is equal to the immediate deflection plus the additional long-time
deflection. For instance, the total additional long-time deflection of a flexural beam with o=
0.01 at a S5-year period is equal to A5 times the immediate deflection, where A, = 2/(1 + 50 x
0.01) = 1.33.

6.4 ALLOWABLE DEFLECTION

Deflection shall not exceed the following values according to the ACI Code, Section 9.5:

« L/180 for immediate deflection due to live load for flat roofs not supporting elements that
are likely to be damaged

+ L7360 for immediate deflection due to live foad for floors not supporting elements likely
to be damaged

« L/480 for the part of the total deflection that occurs after attachment of elements, that is,
the sum of the long-time deflection due to all sustained loads and the immediate deflection
due to any additional live load, for floors or roofs supporting elements likely to be damaged

» L7240 for the part of the total deflection occurring after elements are attached, for floors
or roofs not supporting elements likely to be damaged

6.5 DEFLECTION DUE TO COMBINATIONS OF LOADS

If a beam is subjected to different types of loads (uniform, nonuniform, or concentrated loads)
or subjected to end moments, the deflection may be calculated for each type of loading or force
applied on the beam separately and the total deflection calculated by superposition. This means
that all separate deflections are added up algebraically to get the total deflection. The deflections
of beams under individual loads are shown in Table 6.3.

Example 6.2

Calculate the instantaneous midspan deflection for the simply supported beam shown in Fig. 6.3,
which carries a uniform dead load of 0.4 K/ft and a live load of 0.6 K/ft in addition to a concentrated
dead load of 5 kips at midspan. Given: f! = 4 ksi normal-weight concrete, f, = 60ksi, b = [3in,,
d = 21in., and total depth = 25in. (n = B).
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Table 6.3 Deflection of Beams
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_ 5wlt
' 384E.1
P, D= 5 K
20 O ———= N
LL = Y ™
Y — T ; : :
DL Frae oy > * { * * i ‘ 21u
0.4 K/ft
7.
L . . g#7
! o Eu%
a4
r— 37— f
Figure 6.3 Example 6.2.
Solution
1. Check minimum depth according to the ACI Code, Table 6.1.
L 40x12
Minimum total depth = 6= l); =30in

The total thickness used in 25in. < 30in.; therefore, deflection must be checked.
2. The deflection at midspan due to a distributed load is

SwL?
A=
384E.1,
The deflection at midspan due to a concentrated load is
A= PL?
*T 48EL,

Because w, P, and L are known, we must determine the modulus of elasticity, E,, and the
effective moment of inertia, /..

3. The modulus of elasticity of concrete is
E. = 57,400,/ = 57,400¥/4000 = 3.63 x 10°psi
4. The effective moment of inertia is equal to

_ swit
T 384E.1,

I"z(M:) 1g+[1-(-ﬁff‘;—') ]Icrsfg

Determine values of all terms on the right-hand side:

1

2
M, = %+ ’% - w@m)? 12+ 2812 = 3000 Kein,
3 3
L= b’ _ 132 _ 16,927 in.*
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! h
M, = . ; £ Y= 5 =125 in.  f, =7.5A/f, =474 psi A =1 (normal-weight)
!
474 x 16,927
2474 x 16927 _ 4r Kein.
12.5

The moment of inertia of the cracked transformed area, I, is calculated as follows:
Determine the position of the neutral axis for a cracked section by equating the moments
of the transformed area about the neutral axis to 0, letting x = &d = distance to the neu-
tral axis:

bx? E
— —nAdd-x)=0 n= E’ =80 A, =48in’

¢

1—23-x2 — (8)(4.8)(21 —x) =0

x?+59x—124=0 x=288in

bx? 13(8.8)3

I, = ? +nAg(d —x)? = +38.4(21 — 8.8)% = 8660 in.*

With all terms calculated,
233 3
I = (%) x 16,927 + [1 - (%) } x 8660 = 8740 in.*

8. Calculate the deflections from the different loads:
SwL?

384E.1,

A 5\, (1000y  @0x 12)4 -
-_— — = 1. Ik,
1= 384 12 3.63 x 105 x 8740

PL?
48E 1,

Aj(due to distributed load) =

As(due to concentrated load) =

5000 x (40 x 12)°
T 48 x 3.63 x 106 x 8740

Total immediate deflection = A; + Az = 1.82 + 0.36 = 2.18in.

6. Compare the calculated values with the allowable deflection: The immediate deflection due to
a uniform live load of 0.6 K/ft is equal to 0.6(1.82) = 1.09in. If the member is part of a floor
construction not supporting or attached to partitions or other elements likely to be damaged by
large deflection, the allowable immediate deflection due to live load is equal to

L 40x12
360 360
If the member is part of a flat roof and similar to the preceding, the allowable immediate

deflection due to live load is L/180 = 2.67 in. Both allowable values are greater than the actual
deflection of 1.09in. due to the uniform applied live load.

=0.361n.

2

= 1.33 in. > 1.09 in.

Example 6.3

Determine the long-time defiection of the beam in Example 6.2 if the time-dependent factor
equals 2.0.
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Solution

1. The sustained load causing long-time deflection is that due to dead load, consisting of a dis-
tributed uniform dead load of 0.4 K/ft and a concentrated dead load of 5K at midspan.

Deflection due to uniform load = 0.4 x 1.82 = 0.728 in.
Deflection is a linear function of load, w, all other values (L, E., I.) being the same.
Deflection due to concentrated load = 0.36 in.
Total immediate deflection due to sustained loads = 0.728 + 0.36
= 1.088 in.
2. For additional long-time deflection, the immediate deflection is multiplied by the factor Aa:
I SR
14+500 140
In this problem, A] = 0; therefore, A, = 2.0.

Aa

Additional long-time deflection = 2 x 1.088 = 2.176 in.

3. Total long-time deflection is the immediate deflection plus additional long-time deflection: 2.18
+ 2.176 = 4.356in.

4. Deflection due to dead load plus additional long-time deflection due to shrinkage and creep is
1.088 + 2.176 = 3.2641in.

Example 6.4

Calculate the instantaneous and 1-year long-time deflection at the free end of the cantilever beam
shown in Fig. 6.4. The beam has a 20-ft span and carries a uniform dead load of 0.4 K/ft, a uniform
live load of 0.4 K/ft, a concentrated dead load, Pp, of 3 K at the free end, and a concentrated live
load, Pr, of 4 K placed at 10ft from the fixed end. Given: f! =4 ksi, f, = 60ksi, b = 12in,,d =
21.5in., and total depth of section = 25in. (Tension steel is six no. 8 bars and compression steel is
two no. 8 bars.). Assume normal-weight concrete.

Solution

1. Minimum depth = L/8 = %D = 2.5 ft = 30 in., which is greater than the 25 in. used. Therefore,
deflection must be checked. The maximum deflection of a cantilever beam is at the free end.
The deflection at the free end is as follows.

P, =4K Pp=3K
DL=LL = 6#8

% 04 Kt \ (As=471in7)
 IERERENRRRENNR!
 EARERRRREEENR
7

Y, " 10—

r 2#8
e v 4 - (AL = 157 In?)
le—— 12" —a
25"

Figure 6.4 Example 6.4.
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Deflection due to distributed load:
wl?

Al = ——
1= 8EI

Deflection due to a concentrated dead load at the free end:

Ppl?
Ar =
27 3E1
Deflection due to concentrated live load at ¢ = 10ft from the fixed end is maximum at the
free end:
Pi(a)? Pa’ 3b
Az = 3L — —(1+=
3= g1 CFTY o g\t

2. The modulus of elasticity of normal-weight concrete is
E, = 57,400/ f = 57,400~/4000 = 3.63 x 10° psi

3. Maximum moment at the fixed end is

L2
Ma=w—2—+PDx20+P;_>< 10

_ (0.4+02.4)(400) +3 %2044 % 10 =260 K-ft

4. I, = gross moment of inertia (concrete only)
bR 12 x (25)°

o BXBY 56050t
T s 5,625 m.
5. M, = Irfs - (TDVE00) X 1562 _ 505 g K.in, = 49.40 Kofe
Y, 2
2

6. Determine the position of the neutral axis; then determine the moment of inertia of the cracked
transformed section. Take moments of areas about the neutral axis and equate them to 0. Use
n = 8 to calculate the transformed area of A; and use (n — 1) = 7 to calculate the transformed
area of Aj. Let kd = x.

2
b% +{n— DA(x —-d)—nA;(d—x)=0

For this section, x = 8.441in.
b , , - .
I = §x3 +(n — DALY —d) + nAd — x)* =9220in*
7. Effective moment of inertia is
Mc 3 M 3
e (2 - () o

49.40\° 49.40\°
={ = \ 1-| — 220 = in.*4
(260) x15625+[ (260)]x9 9264 in
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8. Determine the components of the deflection:
Ay (due to uniform _ 800 {20 x 12)*

load of 08K/ = 12 * 8 3.63 x 10° x 9264 — -0 I
0.4
A (due to dead load) = 0.82 x 08 =041 in.
Az (due to concentrated 3000020 x 12> 0.41 in

dead load) at free end ~ 3 x 3.63 % 10° x 9264

As (due to concentrated live  4000(10 x 12)% x (3 x 20 x 12 — 10 x 12)

load at 10 ft from fixed end) — 6 x3.63 % 10° x 9264 =0.17 in.

The total immediate deflection is
A=A+ A +A;=082+4+0414+0.17 =140 in.

9. For additional long-time deflection, the immediated deflection is multiplied by the factor A,.
For a 1-year period, { = 1.4,

A’ 1.57
/——:=—= .
P =34 = Taxars =~ 0008l
14
Apy = =1.073
47 17¥50 x 0.0061

Total immediate deflection A; due to sustained load (here only the dead load of (.4 K/ft and
Pp =3 K at free end): A, = (0.41 + 0.41) = 0.82 in. Additional long-time deflection = 1.073
x 0.82 = 0.88in.

10. Total long-time deflection is the immediate deflection plus long-time deflection due to shrinkage
and creep.
Total A = 1.40 4 0.88 = 2.28in.

Example 6.5

Calculate the instantaneous midspan deflection of beam AB in Fig. 6.5, which has a span of 32 ft. The
beam is continuous over several supports of different span lengths. The absolute bending moment
diagram and cross-sections of the beam at midspan and supports are also shown. The beam carries a
uniform dead load of 4.2 K/ft and a live load of 3.6 K/ft. Given: f! = 3 ksi normal-weight concrete,
fy = 60ksi, and n = 9.2.

Moment at midspan; Mp =192 Kft Mpyry =480 KAt
Moment at left supportA:  Mp =179 Kft Mpy1) = 420 K-t
Moment at right supportB : Mp =216 K-ft Mpyz, = 542 K-ft

Solution

1. The beam AB is subjected to a positive moment that causes a deflection downward at midspan
and negative moments at the two ends, causing a deflection upward at midspan. As was
explained earlier, the deflection is a function of the effective moment of inertia, /.. In a
continuous beam, the value of [, to be used is the average value for the positive and negative
moment regions. Therefore, three sections wiil be considered: the section at midspan and the
sections at the two supports.

2. Calculate /,: For the gross area of all sections, kd = 13.5in. and I, = 114,300 in.* Also,

fr =750/f] =410 psi and E, = 57,400,/ f = 3.15 x 10° for all sections. The values of
kd, I, and M, for each cracked section, I, for dead load only (using M, of dead load), and
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DL = 42 K/ft ] (? @ @ 4
LL = 3.6 K/ft A B
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Figure 6.5 Example 6.5: deflection of a continuous beam.
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1, for dead and live loads (using M, for dead and live loads) are calculated and tabulated as
follows.

Section kd (in) I (in%) M (Kf) 1, (in%) (Dead load) /o (in*) (D + L)

Midspan 6.67 48,550 1594 86,160 50,960
Support A 109 34,930 289.3 114,300 60,880
Support B 126 44360 2893 114,300 55,415

Note that when the beam is subjected to dead load only and the ratio M. /M, is greater than
1.0, I, s equal to .
3. Calculate average I, from Eq. 6.8:

I.1(average) = 0.7(50,960) + 0.15(60,880 + 55,415)
= 53,116 in.*
For dead and live loads,
Average I, for end sections = 3(60,880 + 55,415)
= 58,150 in.?
1> (average) = £(50,960 + 58,150) = 54,550 in.*
For dead loads only,
Average I, for end sections = 114,300 in.?
I3 (average) = 1(86,160 + 114,300) = 100,230 in.*

4, Calculate immediate defiection at midspan:

A1 (due to unifi load) Swl? (downward)
= oW
1 (due to uniform I84EL
MyL?
A, (d A, -
3 (due to a moment at A, M) 16EL (upward)
M 2
A3 (due to a moment at B, Mg} = — 7 6[)3':"1 (upward)

Total deflection A = A} — Ay — Aj

The dead-load deflection for a uniform dead load of 4.2 K/ft, taking M4 (D.L.}) = 179K ft, Mp
(D.L) = 216 K-ft, and 7.3 = 100,230in.* and then substituting in the preceding equations, is

A =0314-0.063 —0.075=0.176 in. (downward)

The deflection due to combined dead and live loads is found by taking dead plus live load =
7.8K/Mt, My = 420K-ft, Mg = 542Kft, and I, = 54.550in.*:

A =1.071-0270 — 0.349 = 0.452 in. {(downward)

The immediate deflection due to live load only is 0.542 — 0.176 = 0.276in. (downward). If
the limiting permissible deflection is L/480 = (32 x 12)/480 = 0.8in., then the section is
adequate.
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There are a few points to mention about the results.

a. If I, of the midspan section only is used (I, = 50,960in.4) then the deflection due to dead
plus live loads is calculated by muitiplying the obtained value in step 4 by the ratio of the
two /,:

54,550

50,960
The difference is small, about 7% on the conservative side.

b. If I, 1 (average) is used (J,; = 53,116 in.*), then A (dead + live) = 0.471 in. The difference
is small, about 4% on the conservative side.

c. It is believed that it is more convenient to use 7, at midspan section unless a more rigorous
solution is required.

A (dead + live) = 0.452 x ( ) = 0.484 in.

6.6 CRACKS IN FLEXURAL MEMBERS

The study of crack formation, behavior of cracks under increasing load, and control of cracking
is necessary for proper design of reinforced concrete structures. In fiexural members, cracks
develop under working loads, and because concrete is weak in tension, reinforcement is placed
in the cracked tension zone to resist the tension force produced by the external loads.

Flexural cracks develop when the stress at the extreme tension fibers exceeds the modulus
of rupture of concrete. With the use of high-strength reinforcing bars, excessive cracking may
develop in reinforced concrete members. The use of high-tensile sieel has many advantages,
yet the development of undesirable cracks seems to be inevitable. Wide cracks may allow
corrosion of the reinforcement or leakage of water structures and may spoil the appearance of
the structure.

A crack is formed in concrete when a narrow opening of indefinite dimension has developed
in the concrete beam as the result of internal tensile stresses. These internal stresses may be due
to one or more of the following:

+ External forces such as direct axial tension, shear, flexure, or torsion

» Shrinkage

e Creep

» Internal expansion resulting from a change of properties of the concrete constituents

In general, cracks may be divided into two main types: secondary cracks and main cracks.

6.6.1 Secondary Cracks

Secondary cracks, very small cracks that develop in the first stage of cracking, are produced by
the internal expansion and contraction of the concrete constituents and by low flexural tension
stresses due to the self-weight of the member and any other dead loads. There are three types
of secondary cracks.

Shrinkage cracks. Shrinkage cracks are important cracks, because they affect the patiern of
cracking that is produced by loads in flexural members. When they develop, they form a weak
path in the concrete. When load is applied, cracks start to appear at the weakest sections, such as
along the reinforcing bars. The number of cracks formed is limited by the amount of shrinkage
in concrete and the presence of restraints. Shrinkage cracks are difficult to control.
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Secondary flexural cracks. Usually secondary flexural cracks are widely spaced, and one
crack does not influence the formation of others [8]. They are expected to occur under low
loads, such as dead loads. When a load is applied gradually on a simple beam, tensile stress
develops at the bottom fibers, and when it exceeds the flexural tensile stress of concrete, cracks
start to develop. They widen gradually and extend toward the neutral axis. It is difficult to predict
the sections at which secondary cracks start because concrete is not a homogeneous, isotropic
material.

Salinger [9] and Billing [10] estimated the steel stress just before cracking to be from about
6000 to 7000 psi (42 to 49 MPa). An initial crack width of the order of 0.001in. (0.025 mm)
is expected at the extreme concrete tensile fibers. Once cracks are formed, the tensile stress of
concrete at the cracked section decreases to 0, and the steel bars take all the tensile force. At this
moment, some slip occurs between the steel bars and the concrete due to the differential elonga-
tion of concrete and steel and extends to a section where the concrete and steel strains are equal.
Figure 6.6 shows the typical stress distribution between cracks in a member under axial tension.

Corrosion secondary cracks. Corrosion secondary cracks form when moisture containing
deleterious agents such as sodium chloride, carbon dioxide, and dissolved oxygen penetrates
the concrete surface, corroding the steel reinforcement [11]. The oxide compounds formed by
deterioration of steel bars occupy a larger volume than the steel and exert mechanical pressure
that perpetuates extensive cracking [12,13]. This type of cracking may be severe enough to result
in eventual failure of the structure. The failure of a roof in Muskegan, Michigan, in 1955 due to
the corrosion of steel bars was reported by Shermer [13]. The extensive cracking and spalling
of concrete in the San Mateo—Hayward Bridge in California within 7 years was reported by
Stratful [12]. Corrosion cracking may be forestalled by using proper construction methods and
high-quality concrete. More details are discussed by Evans [14] and Mozer and others [15].

Cracks

P*—C::::E/_:__:;_:‘}:______'j——— P
- i a— a—
|

|
I |
7 |
;,’ me { Concrete
| I
! !
—5—
fs Steel
i

Figure 6.6 Typical stress distribution between cracks.
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6.6.2 Main Cracks

Main cracks develop at a later stage than secondary cracks. They are caused by the difference
in strains in steel and concrete at the section considered. The behavior of main cracks changes
at two different stages. At low tensile stresses in steel bars, the number of cracks increases,
whereas the widths of cracks remain small; as tensile stresses are increased, an equilibrium
stage is reached. When stresses are further increased, the second stage of cracking develops, and
crack widths increase without any significant increase in the number of cracks. Usually one or
two cracks start to widen more than the others, forming critical cracks (Fig. 6.7).

Main cracks in beams and axially tensioned members have been studied by many inves-
tigators; prediction of the width of cracks and crack control were among the problems studied.
These are discussed here, along with the requirements of the ACI Code.

Crack width. Crack width and crack spacing, according to existing crack theories, depend on
many factors, which include steel percentage, its distribution in the concrete section, steel flexural
stress at service load, concrete cover, and properties of the concrete constituents. Different
equations for predicting the width and spacing of cracks in reinforced concrete members were
presented at the Symposium on Bond and Crack Formation in Reinforced Concrete in Stockholn,
Sweden, in 1957. Chi and Kirstein [16] presented equations for the crack width and spacing as
a function of an effective area of concrete around the steel bar: A concrete circular area of
diameter equal to four times the diameter of the bar was used to calculate crack width. Other
equations were presented over the next decade [17-23].
Gergely and Lutz [23] presented the following formula for the limiting crack width:

W = 0.0768f,/ Ad. x 107° (in.) (6.15)

where 8, A, and f; are as defined previously and d. = thickness of concrete cover measured
from the extreme tension fiber to the center of the closest bar. The value of 8 can be taken to
be approximately equal to 1.2 for beams and 1.35 for slabs. Note that f; is in psi and W is in
inches.

The mean ratio of maximum crack width to average crack width was found to vary between
1.5 and 2.0, as reported by many investigators. An average value of 1.75 may be used.

In SI units (mm and MPa), Eq. 6.15 is

W = 11.08f, Ad, x 107° (6.16)

Tolerable crack width. The formation of cracks in reinforced concrete members is unavoid-
able. Hairline cracks occur even in carefully designed and constructed structures. Cracks are
usually measured at the face of the concrete, but actually they are related to crack width at
the steel level, where corrosion is expected. The permissible crack width is also influenced
by aesthetic and appearance requirements. The naked eye can detect a crack about 0.006 in.
(0.15mm) wide, depending on the surface texture of concrete. Different values for permissible
crack width at the steel level have been suggested by many investigators, ranging from 0.010 to
0.016 in. (0.25-0.40 mm) for interior members and from 0.006 to 0.010in. (0.15-0.25 mm) for
exterior exposed members. A limiting crack width of 0.016in. (0.40 mm) for interior members
and 0.013in. (0.32 mm) for exterior members under dry conditions can be tolerated.

Crack control. Control grows in importance with the use of high-strength steel in reinforced
concrete members, as larger cracks develop under working loads because of the high allowable
stresses. Control of cracking depends on the permissible crack width: It is always preferable to
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(b)

Figure 6.7 (a) Main cracks in a reinforced concrete beam. (b) Spacing of cracks in a
reinforced concrete beam.

have a large number of fine cracks rather than a small number of large cracks. Secondary cracks
are minimized by controlling the total amount of cement paste, water—cement ratio, permeability
of aggregate and concrete, rate of curing, shrinkage, and end-restraint conditions.

The factors involved in controlling main cracks are the reinforcement stress, the bond
characteristics of reinforcement, the distribution of reinforcement, the diameter of the steel bars
used, the steel percentage, the concrete cover, and the properties of concrete constituents. Any
improvement in these factors will help in reducing the width of cracks.
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6.7 ACI CODE REQUIREMENTS

To control cracks in reinforced concrete members, the ACI Code, Chapter 10, specifies the
following:

1. Only deformed bars are permitted as main reinforcement.

2. Tension reinforcement should be well distributed in the zones of maximum tension
(Section 10.6.3).

3. When the flange of the section is under tension, part of the main reinforcement should be
distributed over the effective flange width or one-tenth of the span, whichever is smaller.
Some longitudinal reinforcement has to be provided in the outer portion of the flange
(Section 10.6.6).

4. The design yield strength of reinforcement should not exceed 80ksi (560 MPa)
(Section 9.4).

5. The maximum spacing s of reinforcement closest to a concrete surface in tension in rein-
forced concrete beams and one-way slabs is limited to

s (in.) = [15 (%) - 2.5C{| (6.17)

but not greater than 12 (40/ f;), where

fs = calculated stress (ksi) in reinforcement at service load computed as the unfactored
moment divided by the product of steel area and the internal moment arm, f; = M/
(Agjd). (Alternatively, f; = % Jfy may be used; an approximate value of jd = 0.87d
may be used.)

C. = clear cover from the nearest surface in tension to the surface of the flexural tension
reinforcement (in.).

s = center to center spacing of flexural tension reinforcement nearest to the extreme

concrete tension face (in.).

The preceding limitations are applicable to reinforced concrete beams and one-way
slabs subject to normal environmental condition and do not apply to structures subjected
to aggressive exposure. The spacing limitation just given is independent of the bar size,
which may lead to the use of smaller bar sizes to satisfy the spacing criteria. For the case
of concrete beams reinforced with grade 60 steel bars and C, = 2in., clear cover to the
tension face, the maximum spacing is calculated as follows: Assume f; = 2/3 f, = (2/3)
x 60 = 40ksi and s = 15 (32) — 2.5 x 2 = 10 in. (controls), which is less than 12(40/40)
= 12in.

6. In SI units, Eq. 6.17 becomes

s (mm) = 105,000/f, — 2.5C, (6.18)

but not greater than 300 (280/f;), where f; is in MPa and C, is in mm. For example, if
bars with a clear cover equal to S0 mm are used, then the maximum spacing, s, is calculated
as follows:

s = (105,000/280) — 2.5 x 50 == 250 mm (controls),

which is less than 300(280/280) = 300 mm in this example. This is assuming that f; =
2 x 420 = 280 MPa.
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7. In the previous Codes, control of cracking was based on a factor Z defined as follows:

Z = fi/Ad. <175 K/in. (31 kN/mm) for interior members
Z < 140 K/in. (26 kN/mm) for exterior members. (6.19)

where f; = flexural stress at service load (ksi) and may be taken as 0.6 f,. A and d, are
the effective tension area of concrete and thickness of concrete cover, respectively. This
expression is based on Eq. 6.15 assuming a limiting crack width of 0.016in. for interior
members and 0.013 in. for exterior members. It encouraged a decrease in the reinforcement
cover to achieve a smaller Z, while unfortunately it penalized structures with concrete
cover that exceeded 2in.

8. Skin reinforcement: For relatively deep girders, with a total depth, %, equal to or greater than
36 in. (900 mm), light reinforcement should be added near the vertical faces 1n the tension
zone to control cracking in the web above the main reinforcement. The ACI Code, Section
10.6.7, referred to this additional steel as skin reinforcement. The skin reinforcement should
be uniformly distributed along both side faces of the member for a distance 4/2 from the
tension face.

The spacing S between the longitudinal bars or wires of the skin reinforcement shall be as
provided in Eq. 6.17 where C, is the least distance from the skin reinforcement to the side face.

Referring to Figure 6.8, if # = 16in., # = 40in., fy = 60ksi and choosing no. 3 bars
spaced at 6.0in. as skin reinforcement (3 spaces on each side), then the height covered = 3 x
6 + 2.5 = 20.5in., which is greater than #/2 = 40/2 = 20in.

Checking the spacing S by Eq. 6.18 and assuming f; = 2/3, f, = 2/3 x 60 = 40ksi, and
C, = 2in., then § = 15(40/40) — 2.5 x 2 = 10in., which is less than 12(40/40) = 12in. The
spacing used is adequate. Note that C. = 1.5in. may be used for the skin reinforcement concrete
cover.

It is recommended to use smaller spacing to control the propagation of tensile cracks along
the side of the tension zone with the first side bar to be placed at 4 to 6in. from the main tensile
steel.
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Figure 6.8 Skin reinforcement (6 no. 3 bars).
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Example 6.6
The sections of a simply supported beam are shown in Fig. 6.9.

a. Check if the bar arrangement satisfies the ACI Code requirements.
b. Determine the expected crack width.
¢. Check the Z-factor based on Eq. 6.19.

Given: f! =4 ksi, f, = 60ksi, and no. 3 stirrups.

Solution

1. Fig. 6.9, section a:

a.

For three no. 8 bars, A, = 2.35 in.z, clear cover, C., = 2.5 — 8&/16 = 2.0in. Assume
fi= %fy = 2/3 x 60 = 40 ksi. Maximum spacing s = 600/40 — 2.5 x 2 = 10in., which
is less than 12(40/40) = 12in. Spacing provided = 0.5(12 — 2.5 - 2.5) = 3.5in., center to
center of bars, which is less than 10in.

For this section, d, == 2.5in. The effective tension area of concrete for one bar is
A =122 %25)/3=20in?
Estimated crack width using Eq. 6.16 is
W = 0.076(1.2)(36,000)v/20 x 2.5 x 10~% = 0.0121 in.

This is assuming 8 = 1.2 for beams and f; = 36ksi. The crack width above is less than
0.016in. and 0.013 in. for interior and exterior members.

2. Fig. 6.9, section b:

a.
b.

Calculations of spacing of bars are similar to those in section a.

For this section, 4. = 2.5in., and the steel bars are placed in two layers. The centroid of
the steel bars is 3.51in. from the bottom fibers. The effective tension concrete area is A =
12(2 x 3.5/6 = 14in.2

W = .076 x 1.2 x 36,000/14 x 2.5 x 107® = 0.0107 in.
which is adequate.

~ A
2#4
A
P\2#‘4
225"
175"
I AL Trgszadl
s | ot gl 7 * 941
2"5u { —— 25" 3.5”
v i ——
(a) (b)

Figure 8.9 Two sections for Example 6.6.
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Discussion

It can be seen that the spacing, s, in Eq. 6.17 is a function of the stress in the tension bars or,
indirectly, is a function of the strain in the tension steel, f; = E; x &, and E; for steel is equal io
29,000 ksi. The spacing also depends on the concrete cover, C.. An increase in the concrete cover
will reduce the limited spacing s, which is independent on the bar size used in the section.

In this example, the expected crack width was calculated by Eq. 6.17 to give the student or
the engineer a physical feeling for the crack width and crack control requirement. The crack width
is usually measured in beams when tested in the laboratory or else in actual structures under loading
when serious cracks develop in beams or slabs and testing is needed. If the crack width measured
before and after loading is greater than the yield strain of steel, then the main reinforcement is in the
plastic range and ineffective. Sheets with lines of different thickness representing crack widths are
available in the market for easy comparisons with actval crack widths. In addition to the steel stress
and the concrete cover, W depends on a third factor, A, representing the tension area of concrete
surrounding one bar in tension.

Example 6.7

Design a simply supported beam with a span of 24 ft to carry a uniform dead load of 1.5 K/ft and a
live load of 1.18 K/ft. Choose adequate bars; then check their spacing arrangement to satisfy the ACI
Code. Given: b = 16in., f! =4 ksi, f, = 60ksi, a steel percentage = 0.8%, and a clear concrete
cover of 2in.

Solution

1. For a steel percentage of 0.8%, R, = 400 psi = 0.4ksi (¢ = 0.9). The external factored moment
is M, = w, x L¥8, and w, = 1.2(1.5) + 1.6(1.18) = 3.69 K/ft.

M, = 3.69(24)*/8 = 265.68 K.ft = 3188.2 K-in.
M, = R,-bd’ d=2232 A; = 0.008 x 16 x 22.32 = 2.86 in.?

Choose three no. 9 bars (area = 3.0in.?) in one row, and a total depth of £ = 25.0in. Actual
d =25 —2—-9/16 = 22.44in. (Fig. 6.10).
2. Check spacing of bars using Eq. 6.18. Calculate the service load and moment: w = 1.5 + 1.18
= 2.68 K/Aft.
M = 2.68(24)*/8 = 193 K-ft = 2315 K.in.

957 22.44”
3#9
Y
v ® ® ® T.SL6"
2.56"-» |
fe—— 16 —>

Figure 6.10 Example 6.7.
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3. Calculate the neutral axis depth kd and the moment arm jd (Eq. 6.12 ).
bkd)2 /2 —nA,(d —kd)=0 a=8 A;=30 d=244in
kd = 6.85 in. jd =d —kd/3 =20.16 in. J =20.16/22.44 = 0.898

Note that an approximate value of j = 0.87 may be used if kd is not calculated.
4. Calculate the stress fi:

M= A;-fi-jd 2315 =3(f;)(20.16) f; = 38.3 ksi
5. Calculate the spacing s by Eq. 6.18:
s = 600/38.3 — 2.5 x 2 = 10.7 in. (controls)

which is less than 12(40/40) = 12.0in. Spacing provided, = 0.5 (16 — 2.56 — 2.56) = 5.441in,,
which is less than 10.7 in,

Example 6.8: SI Units

Design a simply supported beam of 7.2-m span to carry a uniform dead load of 22.2 kN/m and a
live load of 17 kN/m. Choose adequate bars, and check their spacing arrangement to satisfy the ACI
Code.

Given: b = 400 mm, f! = 30 MPa, f, = 400MPa, a steel percentage of 0.8%, and a clear concrete
cover of 50 mm.

Solution

1. For a steel percentage of 0.008 and from Eq. 3.22, R, = 2.7 MPa. Factored load w, = 1.2(22.2)
+ 1.6(17) = 53.8 KN/m. M, = w,-L}/8 = 53.8(7.2)%/8 = 348.6 kN-m. M,, = R,-bd?, or 348.6
x 108 = 2.7 x 400d? then d = 568 mm A; = pbd = 0.008 x 400 x 568 = 1818 mm?. Choose
four bars, 25 mm (no. 25M), A, = 2040 mm?, in one row (bmin = 220 mm). Let k = 650 mm,
the actual d = 650 — 50 — 25/2 = 587.5mm, say 585 mm. Finat section: & = 400mm, # =
650 mm, with four no. 25 mm bars (Fig. 6.11).

2. Check spacing of bars using Eq. 6.17. Calculate the service load moment, w = 22.2 + 17 =
39.2 kN/m.

M =1392(7.2)%/8 = 254 kN-m

650 mm 600 mm
3 s & & o 50 mm
. ;
62.5 mm
}a——400 mm—»|

Figure 6.11 Example 6.8.
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Calcylate kd and jd as in the previous example. Alternatively, use a moment arm, jd = 0.87d
= 0.87(585) = 509mm and f; = M/(A,-jd) = 254(10)%/(2040 x 585) = 213 MPa. From
Eq. 6.19, maximum § = (105,000/213) — 2.5(50) = 368 mm (controls), which is less than
30002807 ;) = 300(280)/213 = 394 mm. Note that if f; = 0.6 f, = 0.6(400) = 240MPa is
used, then maximum s = 312mm. It is preferable to calculate f; from the moment equation
to reflect the actual stress in the bars. Spacing provided = (1/3X400 — 50 — 25) = 92 mm,
which is adequate.

SUMMARY

Sections 6.1-6.2

1. Deflection A = a(WL3/EI) = SWL*/384EI = 5 wL*/384EI for a simply supported beam
subjected to a uniform total load of W = wL.

E. =33w'3/f = 57,400 f! psi
for normal-weight concrete.
2. Effective moment of inertia is

M\ M\
Ie=(M(:) lg+[l—(Ma)]!crslg

I
My=fx2% and f =750/f (6.5)
Ve

Section 6.3

The deflection of reinforced concrete members continues to increase under sustained load.
Additional long-time deflection = ¢ o x instantaneous deflection:

U
A7 1+ 500
¢ =10, 1.2, 1.4, and 2.0 for periods of 3, 6, 12, and 60 months, respectively.

(6.14)

Sections 6.4-6.5

1. The allowable deflection varies between L/180 and L/480.

2. Deflections for different types of loads may be calculated for each type of loading separately
and then added algebraically to obtain the total deflection.

Section 6.6

1. Cracks are classified as secondary cracks (shrinkage, corrosion, or secondary flexural
cracks) and main cracks.

2, Maximum crack width is
W = 0.0768f,7 Ad, x 107° (in.) (6.15)

et e ket s i il
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Approximate values for 8, f;, and d. are § = 1.2 for beams and 1.35 for slabs, d. =
2.5in, and f; = (2/3)f,.
3. The limiting crack width is 0.016 in. for interior members and 0.013 in. for exterior members.

Section 6.7

The maximum spacing s of bars closest to a concrete surface in tension is limited to

s = 600/f, — 2.5C, (6.17)

but not more than 12(40/ f;). Note that f; may be taken as 2/3 f,.
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PROBLEMS

Determine the instantaneous and long-time deflection of a 20-ft-span simply supported beam for each
of the following load conditions. Assume that 10% of the live loads are sustained and the dead loads
include the self-weight of the beams. Use f, =4 ksi, f, = 60ksi, d' = 2.5in., and a time limit of
5 years. Refer to Fig. 6.12.

No. b(n) diin}) h(in}) As(in3 A.(in%) Wo(K) W, (KM PFPpK) PLIK
a 14 17.5 20 5no. 9 — 2.2 1.8 — —
b 20 27.5 30 6 no. 10 — 7.0 36 - —
c 12 19.5 23 6 no. 8 — 3.0 1.5 — —_—
d 18 20.5 24 6 no. 10 2no. 9 6.0 20 —_ —
¢ 16 225 26 6no. 11 2no. 10 5.6 32 12 10
f 14 20.5 24 8 no. 9 2no. 9 3.8 2.8 8 6
h-d = 2.5 in. indicates one row of bars, whereas f-d = 3.5 in. indicates two rows of bars. Concentrated loads are placed
at midspan.

6.2 Determine the instantaneous and long-term deflection of the free end of a 12-ft-span cantilever beam

for each of the following load conditions. Assume that only dead loads are sustained, and the dead
loads include the self-weight of the beams. Use f = 4 ksi, f, = 60ksi, and a time limit of more than
5 years. Refer to Fig. 6.13.
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Figure 6.12 Problem 6.1.
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Figure 6.13 Problem 6.2.
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Figure 6.14 Problem 6.3: Dead load = 2 K/ft (30 kN/m) and live load = 1.33 K/ft
(20 kN/m).
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Figure 6.15 Problem 6.5.
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Figure 6.16 Problem 6.6 {skin reinforcement).

No. b(in}) d(n) hiin) Afin2 A, (n2) Wp(KM) W, KM Po(K) PK

a 15 20.5 24 8 no. 9 2no. 9 35 20 — —
b 18 225 26 6 no. 10 — 20 1.5 74 5.0
c 12 19.5 23 & no. § 2 no. 8 24 1.6 — —
d 14 205 24 8 no. 9 2no0.9 30 1.1 5.5 4.0

h-d = 2.5 in. indicates one row of bars, whereas h-d = 3.5 in. indicates two rows of bars. Concentrated loads are placed
as shown

6.3 A 28-ft simply supported beam caries a uniform dead Ioad of 2 K/ft (including self-weight) and a live
load of 1.33 K/ft. Design the critical section at midspan using the maximum steel ratio allowed by the
ACI Code and then calculate the instantaneous deflection. Use f,! = 4 ksi, fy = 60ksi, and b = 12in.
See Fig. 6.14.

6.4 Design the beam in Problem 6.3asdoubly reinforced, considering that compression steel resists 20% of
the maximum bending moment. Then calculate the maximum instantaneous deflection.

6.5 The four cross-sections shown in Fig. 6.15 belong to four different beams with f/ =4 ksi and f, =
60ksi. Check the spacing of the bars in each section according to the ACI Code requirement using
fs = 0.6f,. Then calculate the tolerable crack width, W.

6.6 Determine the necessary skin reinforcement for the beam section shown in Fig. 6.16. Then choose
adequate bars and spacings. Use f! =4 ksi and f, = 60ksi.



CHAPTER 7

DEVELOPMENT
LENGTH OF
REINFORCING BARS

Reinforced concrete columns supporting an
office building, Toronto, Canada.

7.1 INTRODUCTION

The joint behavior of steel and concrete in a reinforced concrete member is based on the fact
that a bond is maintained between the two materials after the concrete hardens. If a straight bar
of round section is embedded in concrete, a considerable force is required to pull the bar out of
the concrete. If the embedded length of the bar is long enough, the steel bar may yield, leaving
some length of the bar in the concrete. The bonding force depends on the friction between steel
and concrete. It is influenced mainly by the roughness of the steel surface area, the concrete mix,
shrinkage, and the cover of concrete. Deformed bars give a better bond than plain bars. Rich
mixes have greater adhesion than weak mixes. An increase in the concrete cover will improve
the ultimate bond stress of a steel bar [2].
In general, the bond strength is influenced by the following factors:

1. Yield strength of reinforcing bars, fy,. Longer development length is needed with
higher f;.

2. Quality of concrete and its compressive strength, f. An increase in f; reduces the required
development length of reinforcing bars.

3. Bar size, spacing, and location in the concrete section. Horizontal bars placed with more
than 12 in. of concrete below them have lower bond strength due to the fact that concrete
shrinks and settles during the hardening process. Also, wide spacings of bars improve the
bond strength, giving adequate effective concrete area around each bar.

4. Concrete cover to reinforcing bars. A small cover may cause the cracking and spalling of

the concrete cover.
221



