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Precast, prestressed concrete sections: (a) single T-, (b) double T- and (c¢) U-sections.

2. Estimate prestress losses, given F, = 175ksi.
a. Assume elastic loss is 4%, or 0.04 x 175 = 7ksi.
b. Loss due to shrinkage is 0.0003E; = 0.0003 x 29,000 = 8.7 ksi.
¢. Loss due to creep of concrete: A good first estimate of creep loss is 1.67 times the elastic loss.

1.67 x 7 = 11.7 ksi

d. Loss due to relaxation of steel is 4%:
0.04 x 175 = 7 ksi
Time-dependent losses are 8.7 + 11.7 + 7 = 27.4ksi.

175

e. The total loss is 27.4 + 7 (elastic loss) = 34.4 ksi. The percentage of total loss is

= 15.7%

Percentage =

34.4/175 = 19.7%
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f, Prestress stresses are
F, =175 -7 = 168 ksi (at transfer)
F =175 —-34.4 = 140.6 ksi

723

F=nF
n = 1 — time — dependent losses ratio
140.6
= —— =0.837
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Figure 19.6 {¢) Example 19.4; average &°.

3. Limits of the eccentricity, ¢, at midspan section: Calculate the allowable stresses and moments.
At transfer, f = 4000 psi, fi; = 0.6 x 4000 = 2400 psi, and fi = 3\/}TC’ = 190 psi. At ser-
vice load, f! = 5000 psi, fo =0.45f] =2250 psi, and f, = 6\/f_; = 424 psi.

372
Self-weight of beam = 1ad x 150 = 388 Ib/ft

0.388
Mp (self-weight) = < (48)% x 12 = 1341 K-in.

. . welL?
M, (additional load and live load) =

_ 09+ L1
N 8
Total moment (M7) = Mp + M, = 8253 K.in.

F; = stress at transfer x area of prestressing steel

(48)% x 12 = 6912 Kiin.
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The area of 20 tendons, % in. in diameter, is 20 x 0.1089 = 2.1781in.2
Fi =2.178 x 168 = 3659 K
F =2.178 x 140.6 = 306.2 K

a. Consider the section at midspan.
Top fibers, unloaded condition:

JuAKp
<K
e b+ F, + F

1341 0.190(372)(9.4) .
3650 + 365.9 < 14.9 in. (19.20)
Bottom fibers, unloaded condition:

<94+

JaAK;
<-K —
e ! + E + E

1341 2.4(372)(8.6)

~86 <161 in. 19.22
=80t oot T g0 S0l (19:22)

Maximum e = 14.9 in. controls.

Top fibers, loaded condition:

My  fAK,
> K — =
e » + F F

8253  0.424(372)(8.6) .
4 — .7 in. .
>9 +306.2 306.2 > 10.7 in (19.24)

Bottom fibers, loaded condition:

8253 0.424(372)(8.6) .
> —8.6+ 2067 3062 > 13.9in. (19.26)

Minimum e = 13.9 in. controls.

b. Consider a section 8 ft from the midspan (section 2, Fig. 19.6a):

Mp (self-weight) = R4(16) — -u—;g x (16)%
0.388
= 0.388(24)(16) — — (16)2 = 99.3 K-ft = 1192 K-in.

2
M, = 2(24)(16) — 3 (16)* = 512 K-ft = 6144 K-in.
My = 6144 4 1192 = 7336 K-in.

Top fibers, unloaded condition:

1192  0.190(372)(9.4) .
< 9, < 14, .
9_94+365.9+ 365.9 < 14,5 in

Bottom fibers, unloaded condition:

1192 2.4(372)(8.6) .
< 8. < 15.
¢ B0+ st T3 S 156D

Maximum ¢ = 14.5 in. controls.
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Top fibers, loaded condition:
7336  2.25(372)(9.4)

¢294+ 3062~ 3062

> 7.7 in.

Bottom fibers, loaded condition:
7336  0.424(372)(8.6)

¢ =86+ 3065 T T 3062

> 11.0 in.

Minimum ¢ = 11.0in. controls.

Consider a section 16 ft from midspan (section 3, Fig. 19.6a); Mp (self-weight) = 745 K-in.,
M, = 3840K-in., and M7 = 4585K-in.

« Top fibers, unloaded condition, e < 13.3in. (max) controls.

« Bottom fibers, unloaded condition, ¢ < 14.41in.

» Top fibers, loaded condition, ¢ > —1.3in.

» Bottom fibers, loaded condition, ¢ > 1.9in. (min) controls.

. Consider a section 3 ft from the end (anchorage length): Mp = 314 K-in., M, = 1620K-in,,

and My = 1934 K.in.

« Top fibers, unloaded condition, ¢ < 12.1in. {(max) controls.
+ Bottom fibers, unloaded condition, ¢ < 13.3in.

» Top fibers, loaded condition, ¢ > —10in,

+ Bottom fibers, loaded condition, ¢ > —6.7 in. (min) controls.

. The tendon profile is shown in Fig. 19.6b. The eccentricity chosen at midspan is ¢ = 14.5in,,

which is adequate for section B at 8 ft from midspan. The centroid of the prestressing steel is
horizontal between A and B and then harped linearly between B and the end section at E. The
eccentricities at sections C and D are calculated by establishing the slope of line BE, which is
14.5/16 = 0.91 in/ft. The eccentricity at C is 7.25in. and at D it is 2.72in. The tendon profile
chosen satisfies the upper and lower limits of the eccentricity at all secttons.

Harmping of tendons is performed as follows:

Place the 20 tendons (1—76 diameter) within the middle third of the beam at spacings of 2in.,
as shown in Fig. 19.6a. To calculate the actual eccentricity at midspan section, take moments
for the number of tendons about the base line of the section:

Distance from base = % (16 x5+4x11)=6.2in.
e (midspan) = y, — 6.2 in.
=208 -6.2=14.6in.

which is close to the 14.5in. assumed. If the top two tendons are placed at 3in. from the
row below them, then the distance from the base becomes %) (16 x54+2x104+2x13) =
6.3 in. The eccentricity becomes 20.8 — 6.3 = 14.5in., which is equal to the assumed
eccentricity. Practically, all tendons may be left at 2in. spacing by neglecting the difference
of 0.1in.

Harp the central 12 tendons only. The distribution of tendons at the end section is shown
in Fig. 19.6a. To check the eccentricity of tendons, take moments about the centroid of the
concrete section for the 12 tendons at top and the eight tendons left at bottom:

e=2(8x145-12x92) =028 in.
This value of ¢ is small and adequate. The actual eccentricity at 3 ft from the end section is
e=2(145-028)+028=295in. (3 in)
The actual eccentricity at 8 ft from the end section is
e=1(145-028) + 028 =74 in.
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5. Limited values of F;: The value of F; used in the preceding calculations is F; = 365.9K.
Check minimum F; by Eq. 19.31:

Min, Fi = —— [(' 1) Mp+ ML _ “‘AK") ~ (fahK)
) L\n n f

1 1 6912
T (9.4+8.6) [(0.8423 ) 1341 + 0.843

(0424 x 372 x 8.6)
0.843
which is less than the F; used. Check maximum F; using Eq. 19.32:
1 1 (fAKp) ]
Max. F; = ——-—— |1 - M-—+ + (fuAK
(Kb‘f*K:) [( ??) D 7 7 (fl r)
:l [(l 1 ) 1341 — 6912 +(2.25><3.72x9.4)
18 0.843 (0.843 0.843
=4757 K

(0.19 x 372 x 9.4)] =3431K

+ (2.4 x 3.72 % 8.6)]

which is greater than the F; used. Therefore, the critical section at midspan is adequate.
6. Check prestress losses, recalling that F, = 175ksi and Aps = 2.178in.2

Total F, = 2.178 x 175 = 381 K

E. = 4000 ksi
E; 29
= E‘ 2_6 7.25

n can be assumed to be 7.
Mp at midspan = 1341 K.in.

Fy+nAg f-(DL) x 2
Fi = 3 (19.5)

2
L+ (14g0) (l + ‘37)

The value of f, due to the distributed dead load is multiplied by 2 3 to reflect the parabolic
variation of the dead load stress along the span, giving a better approximation of F;,

a. Determine the average value of e?, as adopted in the beam. The curve representing e is
shown in Fig. 19.6¢:

Average * = 52 [(3 X3 x 9) + (9 x 13) + (3 x 13 x 201) + (210 x 8)]
=111.5in?
e =10.56 in.

The area of a parabola is one-third the area of its rectangle.
b. Stress due to dead load at the level of the tendons is

1341 x 10.56 _
fe(DL) = W = 0.212 ksi
Therefore. 381 +7(2.178) x 0.212 x 2/3
F = +7E. )Xl‘ 1Xu/5 =358 K
| .
T 2178) (372 66,862)



728

Chapter 19 Introduction to Prestressed Concrete

Elastic loss is 381 — 358 = 23K = 6.1%. This value is greater than the assumed elastic

loss of 4%.
Elastic loss per unit steel area = 23 = 10.6 ksi
2.178
F; per unit steel area = i = 164.4 ksi
2.178

¢. Time-dependent losses:
Loss due to shrinkage = 8.7 ksi (as before)

Loss due to creep:

;358
AE. 372 x 4000
Af:? = CeleEy)

Elastic strain = =0.240 x 10~

Let C, = 1.5. Then
Af, = 1.5(0.24 x 107> x 29,000) = 10.4 ksi

10.
P t 1 = ——— =0©6.
ercent loss Tead 6.3%

Loss due to relaxation of steel is 7 ksi (as before). Time-dependent losses equal 8.7 + 104
+ 7 = 26.1ksi, for a percentage loss of 26.1/164.4 = 15.8%, which is very close to the
previously estimated value of 15.7%.

F =gyF = (1 —0.158)F, = 0.842F;
5 = 0.842

19.5 DESIGN OF FLEXURAL MEMBERS

19.5.1 General

The previous section emphasized that the stresses at the top and bottom fibers of the critical
sections of a prestressed concrete member must not exceed the allowable stresses for all cases
or stages of loading. In addition to these conditions, a prestressed concrete member must be
designed with an adequate factor of safety against failure. The ACI Code requires that the
moment due to the factored service loads, M, must not exceed ¢M,, the flexural strength of
the designed cross-section.

For the case of a tension-controlled, prestressed concrete beam, failure begins when the
steel stress exceeds the yield strength of steel used in the concrete section. The high-tensile
prestressing steel will not exhibit a definite yield point, such as that of the ordinary mild steel
bars used in reinforced concrete. But under additional increments of load, the strain in the steel
increases at an accelerated rate, and failure occurs when the maximum compressive strain in the
concrete reaches a value of 0.003 (Fig. 19.9).

The limits for reinforcement of prestressed concrete flexural members according to the
ACI Code, Section 18.8, is based on the net tensile strain for tension-controlled, transition, or
compression-controlled sections in accordance with the ACI Code, Section 10.3, as was explained
here in this textbook, Section 3.5. The strength reduction factor, ¢, was given earlier in Section
3.7 of this textbook based on the ACI Code, Section 9.3.
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Figure 19.7 Factored moment capacity of presiressed concrete beams.

19.5.2 Rectangular Sections
The nominal moment capacity of a rectangular section may be determined as follows (refer to
Fig. 19.7):

M, =c(d— -‘2’-) - T(d—%) (19.34)

where T = Aps fs and C = 0.85 flab. For C =T,

_ Aps fps _ Pp Jps
= 0855 085/ d (19.33)

where the prestressing steel ratio is 0, = A,s/bd, and Aps and fy, refer to the area and tensile
stress of the prestressing steel. Let
f ps

Wp = Pp (?) <0328
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Then
=24 (19.36)

The quantity w, is a direct measure of the force in the tendon. To ensure a tension-controlled
behavior, the ACI Code, Section 18.8.1, specifies that w, must not exceed 0.32;, which corre-
sponds to a net tensile strain, &;, of 0.005. Note that the value of 8; = 0.85 for f] < 4 ksi and

reduces by 0.05 for each 1ksi greater than 4 ksi (ACI Code, Section 10.2.7.3). M, can also be
written as follows:

My, = Aps fos (d — 3)

2
Pp fi

M, = Aps fosd (1 - TE’?}IE) (19.37)
[42]

My = Ags frsd (1 = = (19.38)

and M, = ¢M,,.

In the preceding equations, f, indicates the stress in the prestressing steel at failure. The
actual value of f; may not be easily determined. Therefore, the ACI Code, Section 18.7.2,
permits f;s to be evaluated as follows (all stresses are in psi). For bonded tendons,

Yp Jpu
fszfu[l__(p x_,)] (19.39)
P P B\ g
For unbonded tendons in members with a span-to-depth ratio less than or equai to 35,
fl
fo = (fse +10.000-+ 7 ) < oy (19.40)

provided that fi. > 0.5 fp, and that f,, for unbonded tendons does not exceed either f,, or
fse + 60,000 psi. For unbonded tendons in members with a span-to-depth ratio greater than 335,

fe
05, ) (19.41)

Jos = (fsc + 10,000 +

but not greater than fuy or fi + 30,000 psi, where

¥p = factor for the type of prestressing tendon
= (.55 for f,y/fpu not less than 0.8
= 0.4 for fuy/fpu not less than 0.85
= 0.28 for foy/fpu not less than 0.9
fou = specified tensile strength of prestressing steel
fse = effective stress in prestressing steel after all losses

Joy = specified yield strength of prestressing steel

In the event that @, > 0.328,, a compression-controlled, prestressed concrete beam
may develop. To ensure a ductile failure, @, is limited to a maximum value of 0.328,. For
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wp = 0.328y, a = 0.3778:1d (from Eg. 19.36). Substituting this value of ¢ in Eq. 19.38,

0.32
M, = Apsfpsd(l - 7'3‘)

= (ppbd) fpsd(1 — 0.1888;)
= w, f1(1 — 0.1888,)bd*
= (0.328; — 0.068}) f.bd* (19.42)

for f! =5 ksi, 1 = 0.8. Then
M, = 0.22f/bd* = 1.09bd*
Similarly, for f! = 4 ksi, M,, = 0.915bd?, and for f! = 6 ksi, M, = 1.238bd*.

19.5.3 Flanged Sections

For flanged sections (T- or I-sections), if the stress block depth a lies within the flange, it will
be treated as a rectangular section. If @ lies within the web, then the web may be treated as
a rectangular section using the web width, b,,, and the excess flange width (b — b,) will be
treated similarly to that of reinforced concrete T-sections discussed in Chapters 3 and 4. The
design moment strength of a flanged section can be calculated as follows (see Fig. 19.7)

M, = M, (moment strength of the web) + M,, (moment strength of excess flange)

a h
My = Apy fos (dp = 5) + Aptfos (dp - —f) (19.43)

2
A wJps
M,=¢M, and a= p—fp
0.85f/by

where
pr = Aps - Apf
Apt = [0.85 fi(b — by)hf1/ fos
hy = thickness of the flange
Note that the total prestressed steel, Ap, is divided into two parts, Apy and Apf, developing the

web and flange moment capacity. For flanged sections, the reinforcement index, wpy, must not
exceed 0.328, for tension-controlled sections, where

A
Wpw = (ﬂ) (f—pf) = prestressed web steel ratio x (f—pf)
byd S f!

19.5.4 Nonprestressed Reinforcement

In some cases, nonprestressed reinforcing bars (A;) are placed in the tension zone of a prestressed
concrete flexural member together with the prestressing steel (Aps) to increase the moment
strength of the beam. In this case, the total steel (Aps and Ay) is considered in the moment
analysis. For rectangular sections containing prestressed and nonprestressed steel, the design
moment strength, $M,,, may be computed as follows:

My = Ags fos (dp %) +4,f,(d- %) (19.44)
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where
. Apsfps i A.\' fy
0.85fb
Also, dj, and d are the distances from extreme compression fibers to the centroid of the prestressed
and nonprestressed steels, respectively. For flanged sections,
a

M, = prfps (dp 2

) + Asfy (a’ < %’) + Aop e (d,, = %’) (19.45)

where
Apw = Aps — Apf
_ Apfost+ Ay
0.85f/by,
For rectangular sections with compression reinforcement, and taking moments about the force C,

My = Aps fis (d - %) + Ay (d- %) LA (% ~ d’) (19.46)

where ‘ _
— Apsfps < Asf_v - A_,cf_\-'
0.85f!b

This equation is valid only if compression steel yields. The condition for compression steel to

yield is
Apsfos + As fy — AL fy 'd’ 87
bd d 87 — fy

Prestressed concrete beds for slabs and wall panels.
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If this condition is not met, then compression steel does not yield. In this case, A; may be
neglected (let A; = 0), or alternatively, the stress in A; may be determined by general analysis,
as explained in Chapter 3.

When prestressed and nonprestressed reinforcement are used in the same section, Eq. 19.39
should read as follows:

fos = Jou [ -2 ( Jou —(w co))] (19.47)
£
(ACI Code, Eq. 18.3). If any compression reinforcement is taken into account when calculating
fps, the term
fpu
P f.f (w fx))

must be greater than or equal to 0.17 and d’ must be less than or equal to 0.15d,, where d, d’, and
dp are the distances from the extreme compression fibers to the centroid of the nonprestressed
tension steel, compression steel, and prestressed reinforcement, respectively,

yp = factor for type of prestressing tendon

f
pu

Joy

pu

= 0.55 for = not less than 0.8

= 0.40 for “*X not less than 0.85

= 0.28 for —=—= Joy Y not less than 0.90
pu

B1 = 0.85for f/ < 4 ksi less 0.05 for each 1 ksi increase in f., but 8y > 0.65.

1. For rectangular sections, the ACI Code, Section 18.8, limits the reinforcement ratio as
follows (&, > 0.005 for tension-controlled sections):

d
wp +—w < 0.326)

where
. A
wp = Pp (f—p,) and p, = - (prestressed steel)
| M bd

fy d 4s ( tressed steel)

w=p|= an = — {nonprestr
I £ P b prestressed stee
2. If ordinary reinforcing bars A; are used in the compression zone, then the condition
becomes

d
wp + d_p (0w — ") <0.328

where o' = p'(f,/f/) and p’ = A} /bd. This reinforcement limitation is necessary to ensure
a plastic failure of underreinforced concrete beams.
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3. For flanged sections, the steel area required to develop the strength of the web (Apw) is

used to check the reinforcement index.

opu(Web) = (?—P) < 0326,
<
where
_ Apw
PPV = buda

If nonprestressed reinforcement is used, then the reinforcement limitations are

d '
Wpw + d (ww - ww) = 0032ﬂl
pw

As {f AL (S,
d o = L24 d == _})
Y (f;) M bed (fc’

respectively. When compression steel A is not used, then w, = 0. The preceding reinforce-
ment conditions must be met in the analysis and design of partially prestressed concrete
members.

For class C of prestressed concrete flexural members, where f; > 12\/70’ (cracked
section), crack control provisions should be used as explained in Section 6.7 of this texi-
book. When using Eq. 6.18 for the maximum spacing s, the ACI Code, Section 18.4.4,
specifies the following:

a. For tendons, use % of the spacing s.

where

b. For a combination of nonprestressed reinforcement and tendons, use % of the spacing s.

¢. For tendons, use A f,s in place of f;, where A fi,s is the difference between the stress
computed in the prestressing tendons at service load based on a cracked section and
the decompression stress, fac, in the prestressing tendons, which may be taken conser-
vatively, to be equal to the effective prestress, fi. Note that A f, should not exceed
36ksi. If it is less than or equal to 20ksi, the spacing requirement will not apply.

Equation 8.18 can be written as follows:

= (5) [ () 2]

19.6 CRACKING MOMENT

Cracks may develop in a prestressed concrete beam when the tensile stress at the extreme fibers
of the critical section equals or exceeds the modulus of rupture of concrete, f,. The value of
fr for normal-weight concrete may be assumed to be equal to 7-59&\/72 where A = [.0. The
stress at the bottom fibers of a simply supported beam produced by the prestressing force and
the cracking moment 1s

F o (Fe)y, Myy
Op = —— —

A I * 1
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When 03, = f, = 7.5,/ f, then the cracking moment is

M = yi (7.51\/74 + % + & ‘?’ ") (19.48)
b

The maximum tensile stress after all losses is 7.5A,/f/, which represents f,. In this case,
prestressed concrete beams may remain uncracked at service loads. To ensure adequate strength
against cracking, the ACI Code, Section 18.8.2, requires that the factored moment of the member

oM, be at least 1.2 times the cracking moment, M,,.

Example 19.5
For the beam of Example 19.4, check the design strength and cracking moment against the ACI Code

requirements.
Solution
1. Check if the stress block depth a lies within the flange.
Aps Jps
= 19.35
@ = 0858 (19.35)

7
Apg (of 20 tendons E in. in diameter) =2.178 in2

Let foy/ fou = 0.85, pp = 0.4, and y ,/8; = 0.4/0.8 = (.5. For bonded tensions,

Yp fpu)
= 1 —--"=p, % {19.39)
fps fpu ( B1 P fc’
d=40—-63 =337 in,
Aps 2178
Pp=pq = Tax337 — 000359

Given fp, = 250ksi,

250
fos =250 [1 —0.5(0.00359) x ?] = 228 ksi

2178 x 228
T 085x5x%x18

which is greater than 6 in. Therefore, the section acts as a flanged section.
2. For flanged sections,

a =6.5In.

a h

where
Apw (web) = Ay — Apr (flange)

1
Apt = — [0.85 (b — bu)hf]
fps

1

228
Apy = 2.178 — 1.342 = 0.836 in?

g Awfos _ 0836(228)
T 085flb, 0.85x5x6

[0.85 x 5(18 — 6)6] = 1.342 in.2

=75in.
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M, = 0.836(228) (33.7 - g) + 1.342 x 228 (33.7 - g)

= 15,102 K-in. = 1258.5 K-ft
oM, = 0.9(1258.5) = 1132.7 K-t

Check the reinforcement index for the flanged section:

A 0.836
b = pw — = (). 3
Ppu (WEB) = 5 = a3y D004l
wpw (Web) = ppw % <0328 =032 x 0.8 =0.256
[
(B) = 08 for f/ =5 ksi.)
(228)

wpw = 0.00413 — = 0.188 < 0.256 (¢ =0.9)

3. Calculate the external factored moment due to dead and live loads.
Dead load = self-weight 4 additional dead load
=(.388 4+ 0.9 = 1.29 K/ft
Live load = 1.1 Kfft
U=12D+1.6L
_ (48)?

8

This external moment is less than the factored moment capacity of the section of 1132.7 K ft;
therefore, the section is adequate.
4. The cracking moment (Eq. 19.48) is

I F
M= — (7.51\/Tg+ — +(Fe) &)
Vb A I

From Example 194, F = 3062K, A = 372 inZ, e = 14.5in., vp = 208in., f = 66,862 in.4,
fl =15 ksi, and 7.5)L\/TC’ = 7.55000 = 530 psi.

66,862 [0. 534 3062 (306.2)(14.5)(2{}.8)]

M, {1.2(1.29) + 1.6(1.1)] =952.7 K-ft

“7 7208 372 66,862
= 8790 K.in. = 732.5 K ft
Check that 1.2M; < ¢M,.
1.2M = 1.2(732.5) = 879 KAt
This value is less than ¢ M, = 1132.7 K-ft. Thus, the beam is adequate against cracking.

19.7 DEFLECTION

Deflection of a point in a beam is the total movement of the point, either downward or upward,
due to the application of load on that beam. In a simply supported prestressed concrete beam,
the prestressing force is usually applied below the centroid of the section, causing an upward
deflection called camber. The self-weight of the beam and any external gravity loads acting on
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the beam will cause a downward deflection. The net deflection will be the algebraic sum of both
deflections.

In computing deflections, it is important to consider both the short-term, or immediate,
deflection and the long-term deflection. To ensure that the structure remains serviceable, the
maximum short- and long-term deflections at all critical stages of loading must not exceed the
limiting values specified by the ACI Code (see Section 6.3 in this text).

The deflection of a prestressed concrete member may be calculated by standard deflection
equations or by the conventional methods given in books on structural analysis. For example, the
midspan deflection of a simply supported beam subjected to a uniform gravity load w is equal
to (SwL*/384E1). The modulus of elasticity of concrete is E, = 330!,/ f/ = 57,000,/ f! for
normal-weight concrete.

The moment of inertia of the concrete section 7 is calculated based on the properties of the
gross section for an uncracked beam. This case is appropriate when the maximum tensile stress
in the concrete extreme fibers does not exceed the modulus of rupture of concrete, f, = 7.5,/ f/
(class U beams). When the maximum tensile stress based on the properties of the gross section
exceeds 7.5\/Tc’ , the effective moment of inertia, /., based on the cracked and uncracked sections
must be used as explained in Chapter 6 (class T and C beams). Typical midspan deflections for
simply supported beams due to gravity loads and prestressing forces are shown in Table 19.3.

Example 19.6
For the beam of Example 19.4, calculate the camber at transfer and then calculate the final anticipated
immediate deflection at service load.

Solution

1. Deflection at transfer:
a. Calculate the downward deflection due to dead load at transfer, self-weight in this case. For
a simply supported beam subjected to a uniform load,
5wL4
384E1

From Example 194, wp = 3881b/ft, L = 48ft, E; = 3600ksi, and / = 66,862 in4
_ 5(0.388/12)(48 x 12)*
b= 384(3600)(66,862)

b. Calculate the camber due to the prestressing force. For a simply supported beam harped
at one-third points with the eccentricity e; = 14.5in. at the middle third and ¢, = 0 at
the ends,

Ap (dead load) =

=0.192 in. {downward)

_ 23(FeL?
P 216E41

23(365.9 x 14.5)(48 x 12)? .

= T 216(3600)(66,862) /0l (upward)

¢. Final camber at transfer is —0.779 4 0.192 = —0.587in. (upward).
2. Deflection at service load: The total uniform service load is Wy = 0.388 4+ 09 + 1.1 =
2.388 K/ft, and E, = 4000ksi. The downward deflection due to Wy is
_ SwrL? _ 5(2.388/12)(48 x 12)¢
T 384E.1 T 384(4000)(66,862)

(Table 19.3)

Ay = +1.067 in. (downward)
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Table 19.3 Midspan Deflections of Simply Supported Beams

Schematic Deflection Equations

Camber due to prestressing force

Fe)L?
COCpm g e e N A= {
CGS. 1o SEl (1

(Horizontal tendons)

'

e o
| ¢ 1

FL% [5 1
C.G.C. = Centroid {concrete) A=_—|-a+-e 2)
CGS. = Centoid (steel) 8EI |6 6
When e; = 0:
S5(Fe)L?
= 3
48 EJ )
FlL? 4 ra\2
=7 [e. +3 (Z) (e2 —el)] 4)
When g = E
FL
=35 [el + — (é’z —61)] 3)
Whena_gandm:(]
2
_ 23 Fe)L ®)
216 E1
FL?
= 7
2451[221+€2] N
When e; = O:
7 2
- B ®
Deflection due to gravity loads
W k/ft 4
SwlL
(T T I T T3 vi1] A= ©
ﬁ/-, ;éa;, 3
A8 E [

e
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Upward deflection (camber) in double-T prestressed concrete beams.

The camber due to prestressing force F = 306.2K and E. = 4000ksi is

_23(306.2 x 14.5)(48 x 12)?
P 216(4000)(66,862)
The final immediate deflection at service load is

A=Ay —Ap=1.067—0.587 =+0.48 in. (downward)

= —0.587 in. (upward)

19.8 DESIGN FOR SHEAR

The design approach to determine the shear reinforcement in a prestressed concrete beam is
almost identical to that used for reinforced concrete beams. Shear cracks are assumed to develop
at 45° measured from the axis of the beam. In general, two types of shear-related cracks form.
One type is due to a combined effect of flexure and shear: The cracks start as flexural cracks
and then deviate and propagate at an inclined direction due to the effect of diagonal tension.
The second type, web-shear cracking, occurs in beams with narrow webs when the magnitude
of principal tensile stress is high in comparison to flexural stress. Stirrups must be used to
resist the principal tensile stresses in both cases. The ACI design criteria for shear will be
adopted here.

19.8.1 Basic Approach

The ACI design approach is based on ultimate strength requirements using the load factors
mentioned in Chapter 3. When the factored shear force, V,, exceeds half the nominal shear
strength (¢V,/2), shear reinforcement must be provided. The required design shear force, V,, at
each section must not exceed the nominal design strength, ¢V, of the cross-section based on
the combined nominal shear capacity of concrete and web reinforcement:

Vi <oV = (Ve + Vi) (19.49)
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where

V. = nominal shear strength of concrete
Vs = nominal shear capacity of reinforcement
¢ = strength reduction factor = 0.75

When the factored shear force, V,, is less than %q) V., minimum shear reinforcement is required.

19.8.2 Shear Strength Provided by Concrete

The ACI Code, Section 11.3, presents a simple empirical expression to estimate the nominal
ultimate shear capacity of a prestressed concrete member in which the tendons have an effective
prestress, fie, of at least 40% of the specified tensile strength, fpu:

V. = (0.6AJT; + 700 ‘;‘;d) byd (ACI Code, Eq. 11.9) (19.50)

“

where

V, and M, = factored shear and moment at the section under
consideration

b, = width of web

d (in the term V"d) = the distance from the compression fibers to the centroid of
t the prestressing steel
d(in V or V., equations) = the larger of the above d or 0.84 (ACI Code,
Section 11.3.1)

The use of Eq. 19.50 is limited to the following conditions:

1. The quantity V,d/M, < 1.0 (to account for small values of V, and M,)
2. V. > (2h/f))byd(minimum V,)

3. V. < (54/f))byd(maximum V)

The variation of the concrete shear capacity for a simply supported prestressed concrete beam
subjected to a uniform load is shown in Fig. 19.8. Note that the maximum shear reinforcement
may be required near the supports and near one-fourth of the span where ¢V, reaches maximum
values. In contrast, similar reinforced concrete beams require maximum shear reinforcement (or
minimum spacings) only near the support where maximum ¢V, develops.

The values of V. calculated by Eq. 19.50 may be conservative sometimes; therefore, the
ACI Code, Section 11.3.3, gives an alternative approach for calculating V. that takes into con-
sideration the additional strength of concrete in the section. In this approach, V; is taken as the
smaller of two calculated values of the concrete shear strength V; and V. (Fig. 19.8). Both are
explained next.

The shear strength, Vi, is based on the assumption that flexural-shear cracking occurs near
the interior extremity of a flexural crack at an approximate distance of d/2 from the load point
in the direction of decreasing moment. The ACI Code, Section 11.3.3.1 specifies that V;; be
computed as follows:

%MCY

max

Vi = (0.6A/ f)byd + Vy +

(19.51)
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¢
Uniform load w,
BN ENENEN
-
I: Lj2 -
v,_,] PV,
Equation 20.51 .
. ¢
1
\ $V,
ARG A Minimum ¢V, = ¢(22/72 )b d
Ve '
!\‘Aaximum V. = S5V b.d
v, 4 N2
S \\
/—"‘-/ (vu vcn)
(Ve — Vo) Volé . :
Minimurn V., = (1.7 A/f)b.d
VCUI Vci {

Figure 19.8 Distribution of shear forces along span. The middle diagram shows shear
capacity of a simply supported prestressed concrete beam. The bottom diagram shows

ACI analysis. (Stirrups are required for shaded areas).

but it is not less than (1.7A,/f])b,,d, where
shear force at section due to unfactored dead load

Vi =
V: = factored shear force at section due to externally applied loads occurring
simultaneously with Mpy
Mmax = maximum factored moment at the section due to externally applied loads

M = cracking moment
The cracking moment can be determined from the following expression:

My = yi(ﬁx\/fgthpe — f12)  (ACI Code, Eq. 11.11)

where
{ = moment of inertia of the section resisting external factored loads

741

(19.52)

y: = distance from the centroidal axis of the gross section neglecting reinforcement to

the extreme fiber in tension

Jpe = compressive strength at the extreme fibers of the concrete section due to the

effective prestress force after all losses
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fa = stress due to the unfactored dead load at the extreme fiber, where tensile stress is
caused by external loads

A = modification factor for concrete

The web-shear strength, V,,, is based on shear cracking in a beam that has not cracked
by flexure. Such cracks develop near the supports of beams with narrow webs. The ACI Code,
Section 11.3.3.2, specifies that V., be computed as follows:

Vew = 350/ F + 03 fpo)bud + V) (19.53)
where

V, = vertical component of the effective prestress force at the section considered

Jpe = compressive stress (psi) in the concrete (after allowance for prestress losses) at the
centroid of the section resisting the applied loads or at the junction of the web and
flange when the centroid lies within the flange

Alternatively, V., may be determined as the shear force that produces a principal tensile stress
of 41,/ f! at the ceniroidal axis of the member or at the intersection of the flange and web when
the centroid lies within the flange. The equation for the principal stresses may be expressed as
follows:

2
fi=aJ/fl= ”gw‘i‘(f%c) _%c

or

fi

where f, = 4A./f. When applying Egs. 19.51 and 19.53 or 19.54, the value of d is taken as
the distance between the compression fibers and the centroid of the prestressing tendons but is
not less than 0.84.

The critical section for maximum shear is to be taken at 2/2 from the face of the sup-
port. The same shear reinforcement must be used at sections between the support and the
section at h/2.

Vew = fi ( lJrf*’“) byd (19.54)

19.8.3 Shear Reinforcement

The value of V; must be calculated to determine the required area of shear reinforcement,

Vi=0¢(Ve+ V) (19.49)
Ve = %(Vu —oVe) (19.55)
For vertical stirrups,
Vs = A”f’d (19.56)
and
U (19.57)
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where A, = area of vertical stirrups and s = spacing of stirmups. Equations for inclined stirrups
are the same as those discussed in Chapter 8.

19.8.4 Limitations

1. Maximum spacing, smax, Of the stirrups must not exceed 3#/4 or 24in. If V; exceeds
4./f!b,d, the maximum spacing must be reduced to half the preceding values (ACI Code,
Section 11.4.4).

2. Maximum shear, V;, must not exceed 8,/ f/b,d; otherwise, increase the dimensions of the
section (ACI Code, Section 11.4.7.9).

3. The minimum shear reinforcement, A,, required by the ACI Code is

50b,,s < 0.75\/?;(13},,3
¥ ¥

When the effective prestress, fi, is greater than or equal to 0.4 f;e, the minimum A, is

_Aps  fpu s d
» =30 < 5, X=X be (19.59)
The effective depth, d, need not be taken less than 0.84. Generally, Eq. 19.59 requires
greater minimum shear reinforcement than Eq. 19.58.

vmin —

) (19.58)

Example 19.7

For the beam of Example 19.4, determine the nominal shear strength and the necessary shear rein-
forcement. Check the sections at /2 and 1Cft from the end of the beam. Use f, = 60ksi for the
shear reinforcement, and a live load = 1.33 K/ft. using normal-weight concrete.

Solution
1. For the section at A/2:
A 40
E = 7 =20 in. = 1,67 ft from the end

2. The factored uniform load on beam is

W, = 1.2(0.388 + 0.9) + 1.6 x 1.33 = 3.68 K/ft

h
V. at a distance 3= 3.68(24 — 1.67) =822 K
Using the simplified ACI methed (Eq. 19.50), determine M,, at section A/2.

(1.67)2

M, = (3.68 x 21) x 1.67 — 3.68 = 1424 K-ft = 1708 K-in.

2
The value of d at section #/2 from the end (Fig. 19.6b) is
d = 33.7 (at midspan) — w x 14.5 = 20.7 in.
Vid _822x207 o0 o

M, 1708
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as required by the ACI Code.

Vid
Ve = (0.61\/75 + 700 11; )b,,,d

u

= (0.6 x 1 x ~/5000 + 700 x 0.996)6 x 20.7 = 91,800 Ib=91.8 K
Minimum V, = 20/ flb,d =2 x 1 x /5000 x 6 x 20.7 = 17.6 K

Maximum V, = SA/fb,d =439 K

The maximum V. of 43.9K controls.

3. The alternative approach presented by the ACI Code is that V. may be taken as the smaller
value of V; and V.

a. Based on the flexural-shear cracking strength,

V;
Vei = (0.6A/ fD)bod + (Vd + A’l—m) (19.51)

max

Calculate each item separately:
Q.61 FDbud = 0.6 x 1 x V5000 x 6 x 20.7 =53 K
V4 = unfactored dead load shear = 1.288(24 — 1.67) =288 K
Mpax = maximum factored moment at section {(except for weight of beam)

Factored load = 1.2 x 0.9 4+ 1.6 x 1.3 = 3.13K/ft
(1.67)?

Muax = 3.13 [24 x 1.67 — ] = 121 K/ft = 1453 K-in.
Vi=313(24—-167) =699 K
I
M, = y«(&\/?g + foe — f2)
t

I =66862in*  y, =208 in.

fe = compressive stress due to prestressing force

_F, Fen
At
306.2  306.2(1.5)(20.8) )
=57 + 66.862 = 0.966 ksi
Mpys
fa4 = dead load stress =
2
Mp = (1.288) [24 x 1.67 — (1.67) ] = 49.8 K-ft = 598 K-in.
598 x 20.8 .
fd = W = (.186 ksi
2
My = %(6«/ 5000 + 966 4 186) = 3871 K.in.
Therefore,
Vei = (5.3) + (28.8) + 69.9 3871 =2203K
“a ' TA1453 ) T

V.; must not be less than (l.7l\/)Tc’)bwd = (1.7 x 1 x +/5000) x 6 x 20.7 =149 K.
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b. Shear strength based on web-shear cracking is

Vew = (3.50/f] + 0.3 fpo)bud + V)

306.
foc = % = 0.823 ksi (19.53)

d=207in. or 0.8 =08 x40=232in.

Use d = 32in.

1
V,=3062x — =232K
P 132

where 1/13.2 = slope of tendon profile = 14.5in./(16 x 12).
3,50/ = 3.5 x 1 x /5000 = 248 psi

Therefore,
Vew = (0248 4+ 03 4+0823) x 6 x 32+4+232=1182K

¢, Because V. < V,; the value V., = 118.2 K represents the nominal shear strength at section
h/2 from the end of the beam. In most cases, V., controls at #/2 from the support.

4. Web reinforcement:
V, = 823K @ Vew = 0.75 x 118.2 = 88.65K

Because V, < ¢ V., Vs = 0; therefore, use minimum stirrups. Use no. 3 stirrups. 4, = 2 x
0.11 = 0.22in.2 Maximum spacing is the least of
3 3

51=Zh:2x40=30in. s2 = 24 in.

Calculate s3 from the equation of minimum web reinforcement:

A fp., ) d
Min. A, = —0 x 222 x = /—«»
mn. A, 3 X fy X — X

2178 250 53 [207
2= et m‘/— .
0 30 60 207V 6 (19.59)

s3=21.6in. (20 in)

Also,
506
Min. A, = 25 <0.75/7 (I’Ls) 0.75/F = 53
5 Sy
Avfy 022 x 60,000 .
_ _ = 41.5 in.
53b, 53% 6 B

Smax = §3 = 20in. controls. Thus, use no. 3 stirrups spaced at 20in.

5. For the section at 10 ft from the end, the calculation procedure is similar to that for the section
at /2. Using the ACI simplified method,

V, = 3.68(24 — 10) = 51.5 K
(10)?

M, =3.68 [24 x 10 — ] = 699.2 K-ft = 8390 K.in.

16 x 10
d = 33.7 (at midspan) — EIXT) % 14.5 = 28.3 in.
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Vud  515x28.3
M, 839

Ve =1(0.6 x1 x+50004+0.174 x 700)6 x 28.3 =27886I1b =279 K (controls)

Minimum V, = 17.6K and maximum V. = 43.9K.

6. Using the ACI Code equations to compute V; and V., calculate V;; first (which controls at
this section):

0.6A/f1byd = 0.6 x 1 x /5000 x 6 x 283 =72K
V; = 1.288(24 — 10) = I8 K
(10)*

=0.174 < 1.0

Mumax = 3.13 [24 x 10 — ] = 594.7 K-ft = 7136 K-in,

V, =3.13024 — 10) =438 K
3062 | 306.2(9.1)(20.8)

= 1.69 ksi
foe = =375 66.862 .
A (10)? ,
Mp = 1288124 x 10 — — 244.7 K-ft = 2937 K-in.
_BTX 203 oolaksi M. — 3858 Kii
fd p— W — . Sl cr — ‘ln.
Therefore,
43.8(3858)
Vi =724 18 + o290 _ 499k
@ +IB+ 7136

Vei min = (1.7 x 1 x +/5000)6 x 28.3 = 20.4 K
Thus the minimum is met. Then calculate Vi :
Spe = 0.893 ksi V,=232K {(as before)
d=283in. or 0.84=32in.
Use d = 32in.
Vew = (3.50/f + 0.3 fyc)byd + V,
= (0.248 + 0.3 x 0.823)6 x 32+ 232 = 1182 K

This value of V., is not critical. At about span/4, the critical shear value is V,; (Fig. 19.8).
7. To calculate web reinforcement,

V, =515K ¢V, =075x489=2367K

Vi = ¢(Vc + V:s)
1

Ve=—-(15-367)=197K
f 0'75( )
Use no. 3 stirrups; A, = 0.22in*. Check maximum spacing: smax = 18in. (as before).
Required A, = Yss = M =0.209 in?
fvd 60 x 283

A, used is 0.22in.2 > 0.209in%. Therefore, use no. 3 stirrups spaced at 14in.
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19.9 PRELIMINARY DESIGN OF PRESTRESSED CONCRETE FLEXURAL MEMBERS

19.9.1 Shapes and Dimensions

The detailed design of prestressed concrete members often involves a considerable amount of
computation. A good guess at the dimensions of the section can result in a savings of time and
effort. Hence it is important to ensure, by preliminary design, that the dimensions are reasonable
before starting the detailed design.

At the preliminary design stage, some data are usually available to help choose proper
dimensions. For example, the bending moments due to the applied external loads, the permissible
stresses, and the data for assessing the losses are already known or calculated.

The shape of the cross-section of a prestressed concrete member may be a rectangular, T-,
I-, or box section. The total depth of the section, #, may be limited by headroom considerations or
may not be specified. Given the freedom of selection, an empirical practical choice of dimensions
for a preliminary design is as follows (Fig. 19.9):

1. Total depth of section is A = % to % of the span L; for heavy loading # = L/20 and for
light loading # = L/30 or h = 2./Mp + My, where M is in K-1 ft.

The depth of top flange is 2y = h/8 to h/6.

The width of top flange is b > 24/S.

The thickness of the web 1s b, > 4in. Usually b, is taken as #/30 + 4in.

b, and ¢t are chosen to accommodate and uniformly distribute the prestressing tendons,
keeping appropriate concrete cover protection.

6. The approximate area of the concrete section required is

N BN

MD + Mf
Ay = ———°
(ft%) 0%
where Mp + M, are in K-ft and 4 is in ft. In SI units,
M M
Ac(m?) = % (Mp + Myin kN - m and 4 in m)
Lo b . i
My
h

Figure 19.9 Proportioning prestressed concrete sections.
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For practical and economical design of prestressed concrete beams and floor slabs, the
precast concrete industry has introduced a large number of standardized shapes and dimen-
sions from which the designer can choose an adequate member, Tables of standard sections
are available in the PCI Design Handbook {3]. AASHTO (23] has also presented standard
girders to be used in bridge construction (Table 19.4).

19.9.2 Prestressing Force and Steel Area

Once the shape, depth, and other dimensions of the cross-section have been selected, approximate
values of the prestressing force and the area of the prestressing steel, Aps, can be determined.
From the internal couple concept, the total moment, Mr, due to the service dead and live
loads is equal to the tension force, T, times the moment arm, jd.
My =T(jd) = C(jd)
My
Sse(jd)

where A, is the area of the prestressing steel and f. is the effective prestressing stress after
all losses. The value of the moment arm, jd, varies from 0.4k to 0.8k, with a practical range of
0.6 to 0.7h. An average value of (.65 may be used. Therefore,

Mr

Mr = Apsfse(jd) Aps =

Ao = i 19.60
P27 (0.65h) fee (19.60)
and the prestressing force is
My
F=T=A = — 19.61
psJse = 5 65 (156

The prestressing force at transfer is F; = F/n, where 7 is the factor of time-dependent losses.

Table 19.4 AASHTO Girders, Normal-Weight Concrete 25

Designation A(in2) 1 (in4) ¥ (in) Z, (in%) Z; (in.%) Weight (Ib/ft)
Type 1I 369 50,979 15.83 3220 2527 384
Type 1l 560 125,390 20.27 6186 5070 393
Type IV 789 260,741 2473 10,544 8908 822

o ‘-4— 1 8"4>|
L T
0" T T
T!T | T o
El & 7 i ¥
el

S
”

ey By b
f Fws",' } |¢1' 10'*{ $ fe—2 2";—'
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The compressive force, C, on the section is equal to the tension force, T

In terms of stresses,
C Apsfse
- = = f(‘l
A, A

where fe, is an assumed uniform stress on the section.

For preliminary design, a triangular stress distribution is assumed with maximum allowable
compressive stress, fc,, on one extreme fiber; therefore, the average stress is 0.5 o, = f;,. The
allowable compressive stress in concrete is fo, = 0.45 f/. Thus, the required concrete area, A,
can be estimated from the force, T, as follows:

A = I_ — APSfSC _ APste _ Apsfse
.

fo fo, 05fa  0.225f
T My My Mp
T 05f;a (0.65h)(0.5fca) T 033f.a  0.15f7
This analysis is based on the design for service loads and not for the factored loads. The

eccentricity, e, is measured from the centroid of the section to the centroid of the prestressing
steel and can be estimated approximately as follows:

(19.62)

A, (19.63)

M
e=Kp+ — (19.64)
F;

where K, is the lower Kern limit and Mp is the moment due ¢o the service dead load.

19.10 END-BLOCK STRESSES

19.10.1 Pretensioned Members

Much as a specific development length is required in every bar of a reinforced concrete beam,
the prestressing force in a prestressed concrete beam must be transferred to the concrete by
embedment or end anchorage or a combination thereof. In pretensioned members, the distance
over which the effective prestressing force is transferred to the concrete is called the transfer
length, I,. After transfer, the stress in the tendons at the extreme end of the member is equal
to 0, whereas the stress at a distance /; from the end is equal to the effective presiress, fpe.
The transfer length, /;, depends on the size and type of the tendon, surface condition, concrete
strength, f/, stress, and method of force transfer. A practical estimation of /; ranges between
50 and 100 times the tendon diameter. For strands, a practical value of /; is equal to 50 tendon
diameters, whereas for single wires, [, is equal to 100 wire diameters.

In order that the tension in the prestressing steel develops full ultimate flexural strength,
a bond length is required. The purpose is to prevent general slip before the failure of the
beam at its full design strength. The development length, I,, is equal to the bond length plus
the transfer length, /;. Based on established tests, the ACI Code, Section 12.9.1, gives the
following expression for computing the development length of three- or seven-wire pretensioning
strands:

2
lq(in.) = (fps - §fse) dp (19.65)
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where

Jps = stresses in prestressed reinforcement at nominal strength (ksi)
fse = effective stress in prestressed reinforcement after all losses (ksi)
dp = nominal diameter of wire or strand (in.)

In pretensioned members, high-tensile stresses exist at the end zones, for which special rein-
forcement must be provided. Such reinforcement in the form of vertical stirrups is uniformly
distributed within a distance #/5 measured from the end of the beam. The first stirrup is usu-
ally placed at 1 to 3in. from the beam end or as close as possible. It is a common practice to
add nominal reinforcement for a distance d measured from the end of the beam. The area of
the vertical stirrups, A,, to be used at the end zone can be calculated approximately from the
following expression:

Fih
fsals
where fi; = allowable stress in the stirrups (usually 20ksi) and I, = 50 tendon diameters.

A, = 0.021

(19.66)

Example 19.8

Determine the necessary stirrup reinforcement required at the end zone of the beam given in
Example 19.4.

Solution
7
Fi=3659K h=40in. f, =20 ksi I,=50><E=22in.

Therefore,
365.9 x 40
Ay =002l x /" =07 in?

v * 20x22 "

ho 40

5 = ? = 8 in.
Use four no. 3 closed stirrups within the first 8-in. distance from the support. A, (provided) = 4 x
0.22 = 0.88in.%.

19.10.2 Posttensioned Members

In posttensioned concrete members, the prestressing force is transferred from the tendons to the
concrete, for both bonded and unbonded tendons, at the ends of the member by special anchorage
devices. Within an anchorage zone at the end of the member, very high compressive stresses
and transverse tensile stresses develop, as shown in Fig. 19.10. In practice, it is found that the
length of the anchorage zone does not exceed the depth of the end of the member; nevertheless,
the state of stress within this zone is extremely complex.

The stress distribution due to one tendon within the anchorage zone is shown in Fig. 19.11.
At a distance & from the end section, the stress distribution is assumed uniform all over the
section. Considering the lines of force (trajectories) as individual elements acting as curved
struts, the trajectories tend to deflect laterally toward the centerline of the beam in zone A,
inducing compressive stresses. In zone B, the curvature is reversed in direction and the struts
deflect outward, inducing tensile stresses. In zone C, struts are approximately straight, inducing
uniform stress distribution.
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Figure 19.10 Tension and compression zones in a posttensioned member.
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Figure 19.11 Tension and compression trajectories in a posttensioned member.

The reinforcement required for the end anchorage zones of posttensioned members gener-
ally consists of a closely spaced grid of vertical and horizontal bars throughout the length of the
end block to resist the bursting and tensile stresses. It is a common practice to space the bars
not more than 3 in. in each direction and to place the bars not more than 1.5in. from the inside
face of the bearing plate. Approximate design methods are presented in Refs. 24 to 27.



752 Chapter 19 Introduction to Prestressed Concrete

SUMMARY

Section 19.1

The main objective of prestressing is to offset or counteract all or most of the tensile stresses in a
structural member produced by external loadings, thus giving some advantages over a reinforced
concrete member. A concrete member may be pretensioned or posttensioned. Nonprestressed
reinforcement may also be added to the concrete member to increase its ultimate strength.

Section 19.2
1. The allowable stresses in concrete at transfer are
Maximum compressive stress = 0.6 f;

Maximum compressive stress at end of simply supported = 0.7 £,

Maximum tensile stress = 3,/ fi.

Maximum tensile stress at end of simply supported = 6,/ f/,

The allowable stresses after all losses are 0.45 f. for compression and 6 f for tension.
2. The allowable stress in a pretensioned tendon at transfer is the smaller of 0.74 fy, or
0.82 fpy. The maximum stress due to the tendon jacking force must not exceed 0.85 f;, or

0.94 f,y; and the maximum stress in a posttensioned tendon after the tendon is anchored
is 0.70 fp.

Section 19.3

The sources of prestress loss are the elastic shortening, shrinkage, and creep of concrete; relax-
ation of steel tendons; and friction. An approXimate lump sum loss is 35ksi for pretensioned
members and 25 ksi for posttensioned members (friction is not included).

nF;

Loss due to elastic shortening = (19.1)
Loss due to shrinkage = &4, F (19.6)
Loss due to creep = C.(e.Ey) (19.7)

Loss due to relaxation of steel varies between 2.5% and 12%. Loss due to friction in posttensioned
members stems from the curvature and wobbling of the tendon.

P, = Ppie~"lpxtiepaps) (19.10)

Ppy = Ppi(1 + Klpy + pp0tpy) ™! (19.11)

Section 19.4

Elastic stresses in a flexural member due to loaded and unloaded conditions are given by
Eqgs. 19.13 through 19.16. The limiting values of the eccentricity, e, are given by Eqgs. 19.20,
19.22, 19.24, and 19.26. The minimum and maximum values of F; are given by Egs. 19.31 and
19.32, respectively.
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Section 19.5
The nominal moment of a rectangular prestressed concrete member is
. _ay _ _ Pp Jps
My =T (d 2) = Ape foud (1 l»7fc’) (19.37)
The values of f,s are given by Eqgs. 19.39 and 19.40. For flanged sections,
a h
My = Ap fin (- 5) + At fos ( - Tf) (19.43)
If nonprestressed reinforcement is used in the flexural member, then
a a
My = Aoty (dy = 5) + Aty (d - 3) (19.44)

where a = (Aps fps + As fy)/0.85 fb. For M, of flanged and rectangular sections with compres-
sion reinforcement, refer to Eqs. 19.46 and 19.47, respectively.

Sections 19.6-19.7

1. The cracking moment is

I F Fe
My=— [7.5%/;‘,; LI )y"] (19.48)
b A 1
2. Midspan deflections of simply supported beams are summarized in Table 19.3.
Section 19.8
Shear strength of concrete (V) = [ 0.6,/ f + 700 v bd (19.50)

Minimum V, = 2A/f/b,d
Maximum V, = SA./f’b,d

The shear strength, Vi, based on flexural shear, is given by Eq. 19.47, and the web-shear strength,
Vew, i given by Eq. 19.53:

1 A fou S d
V,=—(V, —¢V. = — x 2 = '
, ¢( $Ve) and A 20~ ’, 71V (19.59)

Section 18.9

Empirical practical dimensions for the preliminary design of prestressed concrete members are
suggested in this section.

Section 19.10

The development length of three- to seven-wire strands is

2
la = (fps - ‘?;fse) dp (19.65)
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The area of stirrups in an end block is

1.

2.
3.
4.

5.

®°

10.
11.

12,
13.

14.
15.

16.
17.
18.

19.

20.

F:h
A, =0.021—1, (19.66)
fee
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19.1

19.2

19.3

19.4

19.5
19.6

PROBLEMS

A 60-ft-span simply supported pretensioned beam has the section shown in Fig. 19.12. The beam is

prestressed by a force F; = 395K at transfer (after the elastic loss). The prestress force after all losses

is F = 320, f/,(compressive stress at transfer) = 4 ksi and f/(compressive stress after all losses) =

6 ksi. For the midspan section and using the ACI Code allowable stresses, (a) calculate the extreme

fiber stresses due to the prestressing force plus dead load and (b) calculate the allowable uniform

live load on the beam.

For the beam of Problem 19.1 (Fig. 19.12), calculate the elastic loss and all time-dependent losses

using the following data: F; = 405K, Ap = 2.39in.? located at 6.5in. from the base, f; = 4 ksi,

and f/ =6 ksi.E, = 57,000\/_6’, and E, = 28,000ksi. The profile of the tendon is parabolic, and

the eccentricity at the supports is 0.

The cross-section of a 56-ft-span simply supported postiensioned girder that is prestressed by 30

cables 17—6'1{1. in diameter (area of one cable is 0.1089) is shown in Fig. 19.13. The cables are

made of seven-wire stress-relieved strands. The profile of the cables is parabolic with the cen-
troid of the prestressing steel (C.G.S.) located at 9.6in. from the base at the midspan section and
located at the centroid of the concrete section {¢ = 0) at the ends. Calculate the elastic loss of pre-
stress and all other losses. Given: f; = 4 ksi, f/ = 6 ksi, E. = 57,000,/f, E; = 28,000 ksi, fo. =

250 ksi, F, = 175 ksi, D. L. = 1.0 K/ft (excluding self-weight), and L. L. = 1.6 K/ft.

For the girder of Problem 19.3,

a. Determine the location of the upper and lower limits of the tendon profile for the section at
midspan and for at least two other sections between midspan and support. (Choose sections at
12 fe, 18 ft, and 25 ft from support.)

b. Check if the parabolic profile satisfies these limits.

For the girder of Problem 19.3, check the limiting values of the prestressing force at transfer F;.

A 64-span simply supported pretensioned girder has the section shown in Fig. 19.14. The loads on

the girder consist of a dead load = 1.2K/ft (excluding its own weight) that will be applied at a

22—+ |

6”

[
J— _...._ 12”
65" | c6s. {

=

Figure 19.12 Problem 19.1.
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Figure 19.14 Problem 19.6.

later stage and a live load of 0.6 K/ft. The prestressing steel consists of 24 cables % in. in diameter

(area of one cable = 0.114in.2), with E; = 28,000ksi, F, = 175ksi, and fou = 250ksi. The strands

are made of seven-wire stress-relieved steel. The concrete compressive strength at transfer is fi; =

4ksi, and at 28 days, f/ =5 ksi. The modulus of elasticity is £; = 57,000,/7/. For the beam just

described,

a. Determine the upper and lower limits of the tendon profile for the section at midspan and three
other sections between the midspan section and the support. (Choose sections at 3 ft, 11ft, and
22 ft from the support.)
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Figure 19.15 Problem 19.10.

b. Locate the tendons to satisfy these limits using straight horizontal tendons within the middle third
of the span.

¢. Check the limiting values of the prestressing force at transfer.

19.7 For the girder of Problem 19.6,

a. Harp some of the tendons at one-third points, and draw sections at midspan and at the end of the
beam showing the distribution of tendons.

b. Revise the prestress losses, taking into consideration the variation of the eccentricity, e, along the
beam.

¢. Check the factored moment capacity of the section at midspan.
d. Determine the cracking moment.
19.8 For the girder of Problem 19.6,
a, Calculate the camber at transfer.
b. Calculate the immediate deflection at service load.

19.9 For the girder of Problem 19.6, determine the shear capacity of the section and calculate the necessary
web reinforcement.

19.10 Determine the nominal moment capacity, M,, of a pretensioned concrete beam that has the cross-section
shown in Fig. 19.15. Given: f =5 ksi, fpu = 270 psi, fie = 160 ksi, and A, = 2.88 in?,
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STR U CTU R Es Collapse ofae concrete struc(ures‘due to an earthquake.

20.1

R

INTRODUCTION

Ground motions during an earthquake can severely damage the structure. The ground acceleration
when transmitted through the structure is amplified, and it is called the response acceleration.
The amplified motion can produce forces and displacements that can be larger than the motions
the structure can sustain.

Many factors influence the intensity of shaking of the structure such as earthquake mag-
nitude, distance from fault or epicenter, duration of strong shaking, soil conditions of the site,
and frequency content of the motion.

A structure should be designed, depending on the type of structure and its function, to
have acceptable levels of response generated in an earthquake. Economy of design is achieved
by allowing the structure to deform above elastic limit.

20.2 SEISMIC DESIGN CATEGORY

758

Building Code Requirements for Structural Concrete (ACI 318-08) gives the procedure for design
and detailing of structures subjected to earthquake loads but does not address the calculations of
seismic forces. In this chapter the International Building Code (IBC 2006) will be utilized for
the calculation of seismic forces.

The IBC 2006 section 1613.5.6 defines six seismic design categories (SDC): A, B, C, D, E,
and F. It also defines four occupancy categories: I, II, III, and IV. To relate the SDC and
the occupancy category, the design spectral response accelerated coefficients Sps and Sp; are
used. Sps is the design spectral response acceleration coefficient for short periods and Sp,
is the design response acceleration coefficient for 1-second period. Design spectral response
acceleration coefficients are related to severity of the design earthquake ground motions at
the site.

A seismic design category will determine which type of lateral force analysis must be
performed and which type of lateral-force resisting system must be used.
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20.2.1 Determination of Occupancy Category

Buildings shall be assigned an occupancy category according to Table 20.1 as described in IBC
2006 Section 1604.5. The first step is to define the nature of occupancy of the structure according
to the occupancy category. The seismic factor, /g, also called seismic occupancy factor, is also
listed in Table 20.1 and will be utilized in a later section.

20.2.2 Determination of Design Spectral Response Acceleration Coefficients

Earthquake ground motion is usually recorded as an acceleration of the ground at a particular
location. The acceleration of the ground generates the acceleration of the structure (response
acceleration), which produces earthquake forces that act on the structure. Earthquake forces
generate deformations, internal forces, and stresses in the structure. If the structure is not properly
designed to sustained deformations and forces it will have great damage and may even collapse.

Therefore, the first step to design an earthquake-resistant structure is to determine the
maximum possible response accelerations that can occur during the earthquake. It is also impor-
tant to know that response of the given structure depends on period of vibration and damping
characteristics of the structure.

The IBC 2006 Section 1613.5.4 gives a procedure to determine the design response spec-
trum curve, from which the design response accelerations, S, for any given period of vibration
T are calculated. One part of this procedure is the determination of the spectral response accel-
eration coefficients for short periods, Sps, and for a 1-second period, Sp;.

To calculate the design acceleration values for short periods, Sps and 1-second periods,
Spi, the following equation can be utilized:

2

Sps = §SMS (20.1a)
2

Spl = §SM1 (20.15)

where

Sms = mapped maximum considered earthquake spectral response accelerations for short
periods adjusted for soil type
Sy = mapped maximum considered earthquake spectral response accelerations for
t-second period adjusted for soil type
Sms and Sy can be determined from
Sms = F,Ss (20.2q)
Svi = Fu'$h (20.2bh)
where
Ss = mapped maximum considered earthquake spectral response accelerations at

short periods determined from Fig. 20.1a

S = Mapped maximum considered earthquake spectral response accelerations at
I-second period determined from Fig. 20.15

F,, F, = Site coefficients

The values of F; and F, are determined from Tables 20.2 and 20.3 and are dependent on
the mapped spectral values (Sg and S) and the site class as can be determined in Table 20.4.
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Table 20.1 Classification of Structures Based on their Nature of Occupancy

Occupancy Seismic
Category Nature of Occupancy Factor, ig f

Buildings and other structures that represent a low hazard to human
life in the event of failure including, but not limited to
I « Agricultural facilities 1.00
» Certain temporary facilities
« Minor storage facilities
)i Buildings and other structures except those listed in Categories I, I, 1.00
and IV

Buildings and other structures that represent a substantial hazard to
human life in the event of failure including, but not limited to

+ Buildings and other structures where more than 300 people
congregate in one area

» Buildings and other structures with elementary school, secondary
school, or day care facilities with an occupant load greater than 250

» Buildings and other structures with an occupant load greater than
500 for colleges or adult education facilities,

I « Health care facilities with an occupant load of 50 or more resident 1.25

patients but not having surgery or emergency treatment facilities

« Jails and detention facilities

« Any other occupancy with an occupant load greater than 5000

= Power-generating stations, water treatment for potable water, waste
water treatment facilities and other public utility facilities not
included in Category IV

» Buildings and other structures not included in Category IV
containing sufficient quantities of toxic or explosive substances to
be dangerous to the public if released

Buildings and other structures designed as essential facilities
including, but not limited to

+ Hospitals and other health care facilities having surgery or
emergency treatment facilities

« Fire, rescue, and police stations and emergency vehicle garages

+ Designed earthquake, hurricane, or other emergency shelters

* Designed emergency preparedness, communication, and operation
centers and other facilities required for emergency response

v » Power-generating stations and other public utility facilities required 1.50

as emergency backup facilities for Category 1V structures

» Structures containing highly toxic materials as defined by Section
307 of IBC 2006 where the quantity of the material exceeds the
maximum allowable quantities of Table 307.7(2) of IBC 2006

¢ Aviation control towers, air traffic control centers, and emergency
aircraft hangers

* Buildings and other structures having critical natienal defense
functions

» Water treatment facilities required to maintain water pressure for
fire suppression
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FIGURE 1613.5 (1) MAXIMUM CONSIDERED EARTHQUAKE GROUND MOTION FOR
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Figure 20.1a Maximum considered earthquake spectral response acceleration at
short periods, Ss (IBC Fig. 1613.5 (1)). Courtesy of International Building Code (IBC

2006).
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FIGURE 1613.5 (1) (continued) MAXIMUM CONSIDERED EARTHQUAKE GROUND MOTION FOR l
THE CONTERMINOUS UNITED STATES. OF 0.2 SEC SPECTRAL RESPONSE ¢
ACCELERATION (5% OF CRITICAL DAMPING), SITE CLASS B
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Figure 20.1a (continued)
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Figure 20.1b Maximum considered earthquake spectral response acceleration at
1-second periods, S (IBC Fig. 1613.5(2)). Courtesy of International Building Code (IBC

2006).
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FIGURE 1613.5 (2) (continued) MAXIMUM CONSIDERED EARTHQUAKE GROUND MOTION FOR

THE CONTERMINOUS UNITED STATES. OF 1.0 SEC SPECTRAL RESPONSE
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Table 20.2 Values of Site Coefficient, F,? (Table 1613.5.3(1) of IBC 2006}

Mapped Spectral Response Acceleration at Short Periods

Site Class Ss <025 Ss = 0.50 Ss =0.75 Ss = 1.00 Ss > 1.25
A 0.8 0.8 0.8 0.8 0.8
B 1.0 1.0 1.0 1.0 1.0
C 1.2 1.2 1.1 1.0 1.0
D 1.6 14 1.2 1.1 1.0
E 25 1.7 1.2 0.9 0.9
F Note b Note b Note b Note b Note b

“Use straight-line interpolation for intermediate values of mapped spectral response acceleration at short period, .
PSite-specific geotechnical investigation and dynamic site response analysis shall be performed to determine appropriate
values, or in accordance with Section 11.4.7 of ASCE 7.

Table 20.3 Values of Site Coefficient, F,@ (Table 1613.5. 3(2) of IBC 2006)

Mapped Spectral Response Acceleration at 1-Second Period

Site Class $; <01 Sy =02 $:=03 51 =04 $>05
A 0.8 0.8 0.8 0.8 0.8
B 1.0 1.0 1.0 1.0 1.0
C 1.7 1.6 1.5 14 1.3
D 24 2.0 1.8 1.6 1.5
E 3.5 3.2 2.8 24 2.4
F Note b Note b Note b Note b Note b

“Use straight-line interpolation for intermediate values of mapped spectral response aceeleration at 1-second period, ;.

bSite-specific geotechnical investigation and dynamic site response analysis shall be performed to determine appropriate
values, or in accordance with Section 11.4.7 of ASCE7.

20.2.3 Design Response Spectrum

Design response spectrum is used to determine the design spectral response acceleration for a
given structure (i.e., given period of vibration). After calculating design response acceleration
coefficients Sps and Sp; from Section 20.2.2, the design response spectrum curve (ASCE 7-05,
Section 11.4.5) should be constructed as follows:

1. For periods T < T, the design spectral response acceleration, S,, shall be determined as

S
2 =0.6 22T + 0.45ps (20.3)
P
where
Spi
T, =02— (20.4)
Sps

T = Fundamental period of the structure (in seconds) and will be determined later in
Section 20.3.1 (Eq. 20.15 or 20.16).



766

Chapter 20 Seismic Design of Reinforced Concrete Structures

Table 20.4 Site Classification (Table 1613.5.2 of IBC 2006)

Average Properties in Top 100, as per Section 1613.5.5

Site Soil Profile Soll Shear Wave Standard Penetration Soil Undrained
Class Name Velocity, Vs, (ft/s) Resistance, N Shear Strength, S,
A Hard rock Vs > 5,000 N/A N/A
B Rock 2500 < Vs < 5000 N/A N/A
C  Very dense soil 1200 < V5 < 2500 N)50 S, = 2000
and soft rock
D  Stiff soil profile 600 < Vg < 1200 15<N <50 1000 < S, < 2000
E  Stff soil profile Vg < 600 N <15 S. < 1000
E — Any profile with more than 10 ft of soil having the following
characteristics:
1. Plasticity index (PI) > 20
2. Moisture content (w) > 40%
3. Undrained shear strength S,,) < 500 psf
F — Any profile containing soils having one or more of the following

characteristics:

1.

W

Soils vulnerable to potential failure or collapse under seismic loading
such as liquefiable soils, quick and highly sensitive clays, collapsible
weakly cemented soils.

. Peats and/or highly organic clays (H > 10 ft of peat and/or highly

organic clay where H = thickness of soil)

. Very high plasticity clays (H > 25 ft with plasticity index (PI) > 75)
. Very thick soft/medium stiff clays (H > 120 ft)

2. For periods T, <

mined as

where

3. For periods 7; >

mined as

< T, the design spectral response acceleration, S;, shall be deter-
S: = Sps (20.5)
T, = Sbi (20.6)

Sps
> T, the design spectral response acceleration, S,, shall be deter-
S _
S, = % (20.7)

4. For periods greater than 7y, S, shall be taken as

where

So1TL

s, =221
T‘.

(20.8)

T; = long-period transition period(s) showns in Fig. 20.3a (Conterminous United
States), Fig. 20.3b (Region 1), Fig. 20.3c (Alaska), Fig. 20.3d (Hawaii).
Fig 20.3e (Puerto Rico, Culebra, Vieques, St. Thomas, St. John, and St.
Croix), and Fig. 20.3f (Guam and Tutuila).

The shape of the design response spectrum curve is shown in Fig. 20.2.
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Figure 20.2 Design response spectrum (courtesy of ASCE 7.05, Section 11.4.5).

20.2.4 Determination of Seismic Design Category (SDC)

Structures shall be assigned SDCs, which are classified as A, B, C, D, E, and F are determined
from Table 20.5 and Table 20.6. These have no relation to the site class types that, are also
named A, B, C, D, E, and F as described in Table 20.4. To determine the SDC, the values of
Sps and Sp; are utilized and the occupancy category must be defined.

“Occupancy Category I, 11, or III structures located where the mapped spectral response acceleration
parameter at 1-s period. Sy, is greater than or equal to (.75 shall be assigned to Seismic Design Category
E. Occupancy Category IV structures located where the mapped spectral response acceleration parameter
at 1-s period, $;, is greater than or equal to 0.75 shall be assigned to Seismic Design Category F. All
other structures shall be assigned to a Seismic Design Category based on their Occupancy Category and the
design spectral response acceleration parameters, Sps and Spi, determined in Section 20.2.2. Each building
and structure shall be assigned to the more severe Seismic Design Category in accordance with Table 20.5
or 20.6, irrespective of the fundamental period of vibration of the structure, 7.

Where S is less than 0.75, the Seismic Design Category is permitted to be determined from Table 20.5

alone where all of the following apply:

1. In each of the two orthogonal directions, the approximate fundamental period of the structure, T,
determined in accordance with Section 20.3.1 is less than 0.87;, where T is determined in accordance
with Section 20.2.3.

2. In each of two orthogonal directions, the fundamental period of the structure used to calculate the
story drift is less than 7.

5

3. The seismic response coefficient C; is determined from C; = ( e
E
4, The diaphragms are rigid or for diaphragms that are fiexible, the distance between vertical elements
of the seismic force-resisting system does not exceed 401t.
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Figure 20.3a Long-period transition period, T, (SEC), for the conterminous United

States (courtesy of ASCE 7-05).
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Figure 20.3c Long-period transition period, T, (SEC), for region 1 (courtesy of ASCE
7-05).
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Figure 20.3d Long-period transition period, T;(SEC), for Alaska (courtesy of ASCE
7-05).

Figure 20.3e Long-period transition period, T, (SEC), for Hawaii (courtesy of ASCE
7-05).

7m
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Figure 20.3f Long-period transition period, T, (SEC), for Puerto Rico, Culebra, Vieques,
St. Thomas, St. John, and St. Croix (courtesy of ASCE 7-05).

Figure 20.3g Long-period transition period, T, (SEC), for Guam and Tutuila (courtesy
of ASCE 7-05).
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Table 20.5 Seismic Design Category Based on Short-Period Response Accelerations (Table
1613.5.6(1) of IBC 2006)

Occupancy Category
Value of Spg lorlt [} v
SDS < 0.167 g A A A
0.167g < Sps < 0.33¢ B B C
033g < Spg < 0.50¢g C C D
0.50g < Sps D D D

Table 20.6 Seismic Design Category Based on 1-Second Period Response Acceleration (Table
1613.5.6(2) of IBC 2006)

Occupancy Category
Value of Spq Jorl ]| v
Sp) < 0.067g A A A
0.067g < Sp; < 0.133¢g B B C
0.133g < Sp) < 0.20g C C D
020g < Sp) D D D

Where the alternate simplified design procedure of Section 20.3.3 is used, the Seismic Design Category
is permitted to be determined from Tabie 20.5 alone, using the value of Sps determined in Section 20.2.2.”
(Source: ASCE 7-05, Section 11.6)

20.2.5 Summary: Procedure for Calculation of Seismic Design Category (SDC)

Step 1. Determine seismic use group as described in Section 20.2.1. (Table 20.1)

Step 2. Based on the location of the building determine the mapped spectral accelerations for
short periods, S5, and the mapped spectral accelerations for a 1-second period. Use
Fig. 20.1a and Fig. 20.15 of Section 20.2.2

Step 3. Use Table 20.4 to determine site class based on the soil profile name and properties
of soil.

Step 4. Using Table 20.2 determine site coefficient F, based on mapped maximum considered
earthquake spectral response accelerations at short periods, Sg. Also using Table 20.3
determine site coefficient I, based on mapped maximum considered earthquake spectral
response accelerations at 1-second period, §).

Step 5. Calculate the maximum considered earthquake spectral response accelerations for short
periods for specific soil class, Sys, using Eq. 20.2a. Also calculate the maximum con-
sidered earthquake spectral response accelerations for 1-second period for specific soil
class, Smi, using Eq. 20.2b.

Step 6. Using Eq. 20.1a determine design spectral response acceleration coefficient for short
periods, Sps, and using Eq. 20.1b determine spectral response acceleration coefficient
for 1-second period, Sp;.

Step 7. Determine SDC according to Section 20.2.4, Utilize Table 20.5 and Table 20.6.
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Example 20.1
Determine seismic design category for 2 minor storage facility building in San Francisco on soft rock.

Solution

1. According to Table 20.1, minor storage facilities buildings are classified in occupancy cate-
gory L

2. S5 =202¢g (Fig. 20.1a)
1 =060g (Fig. 20.18)

3. According to the Table 20.4, a site with soft rock is considered to be class C.

4, According to the Table 20.2 for the site class C and S5 = 2.02 > 1.25, F, = 1.0.
According to the Table 20.3 for the site class C and S} = 0.60 > 0.5, F, = 1.3,

Sms = FoSs = (1.0)(2.02) =202 g (Eq. 20.2a)
Sm1 = Fu$1 = (1.3)(0.60) =078 g (Eq. 20.25)

2 2
Sps =3 Sws=3(20)=135g  (Eq.20.1a)

2 2
Sp1 = 3 Smi1 = 5(0.78) =052¢g (Eq. 20.10)

7. According to Table 20.5 for Sps = 1.35g > 0.50g, occupancy category I, and since S| <
0.75 g, therefore SDC is D.
According to Table 20.6 for Sp; = 0.52g > 0.20g, occupancy category L, and since
S < 0.75 g, therefore SDC is D.

Therefore, seismic design category D is assigned to the structure.

Example 20.2
Determine seismic design category for a hospital building in Oakland, California, on soft soil.

Solution

1. According to Table 20.1, hospital buildings are classified in the occupancy category IV.
2.

Ss=208g (Fig 20.la)
5,=092¢  (Fig. 20.1b)

3. According to Table 20.4, the site class for soft soil is E.

4. According to the Table 20.2, for the site class E and S5 = 2.08 > 1.25, F, = 0.9.
According to the Table 20.3, for the site class E and §; = 092 > 05, F, = 24.

5.
Sms = FaSs = (0.9)(2.08) =187 g  (Fig. 20.2a)
S = F,8 = (24)(092) =221 g (Fig. 20.2b)
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6.

Sps = =Sms =

3 (187Yy=125g  (Fig 20.1a)

W Wi

Sp1 = SSM] =_-(221)=147¢g (Fig. 20.1a)

7. According to Table 20.5, for Spg = 1.25g > 0.50 g, occupancy category IV, and since S; >
0.75g, SDC is F.
According to Table 20.6, for Sp; = 1.47g > 0.20 g, occupancy category IV, and since
S > 0.75g, SDC is F.

Therefore, seismic design category F is assigned to the structure.

20.3 ANALYSIS PROCEDURES

During the earthquake motions, the structure is subjected to the deformation that produces
internal forces and stresses. Earthquake engineering philosophy is to relate earthquake dynamic
forces to the equivalent static forces, and then using static analysis of the structure, determine
deformations, internal forces, and stresses in the structure. IBC describes two analysis procedures
to determine the equivalent static forces that will simulate an earthquake action on the structure.
These are

1. The equivalent lateral force procedure (used for SDC B, C, D, E, and F)

2. The simplified analysis (used for SDC B, C, D, E, and F, and for constructions limited to
two stories in height and three stories in height for light frame constructions)

It should be noted that for the structures in SDC A neither the simplified analysis nor the
equivalent lateral force procedure can be utilized. This type of structure should be designed so
that the lateral resisting-force system can resist the minimum design lateral force, F,, applied
at each floor level (ASCE 7-05, Section 11.7.2). The design lateral force can be determined for
this type of structure using the following equation:

F, =0.01lw, (20.9)
where

wx = the portion of the dead load of the structure located or assigned to level x.

20.3.1 Equivalent Lateral Force Procedure
This procedure describes how to calculate the seismic base shear and lateral seismic forces.
(ASCE 7-05, Section 12.8)

Seismic Base Shear Calculation. The total seismic force that acts at the base of the structure,
called seismic base shear, can be determined according to the following equation:

V=CW (20.10)
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where

C; = seismic response coefficient

W = the effective weight of the structure including the total dead load and other loads
listed below:

1. In areas used for storage, a minimum of 25% of the reduced floor live load (floor live load
in public garages and open parking structures need not be included)

2. Where an allowance for partition load is included in the floor load design, the actual partition
weight or a minimum weight of 10 psf of floor area, whichever is greater (0.48 kN/m?)

. Total weight of permanent operating equipment
4. 20 percent of flat roof snow load where flat snow load exceeds 30psf (1.44 kN/m?)

w

Seismic Response Coefficient Calculation. The seismic response coefficient, Cy, shall be
determined from:

C, = (20.11)

where

Sps = design spectral response acceleration parameter
R = response modification factor given in Table 20.7
I g = occupancy importance factor determined from Table 20.1

The value of C, should not exceed
Sp1

Cs max = T 5N
(%)
Ig

Sp1 = the design spectral response acceleration parameter at a period of 1.0 s, as
determined from Section 11.4.4

T = the fundamental period of the structure (s) determined in Section 20.3.1
(Eq. 20.15 or Eq. 20.16)

T; = lone-period transition period (s} determined in Section 20.2.3

S| = the mapped maximum considered earthquake spectral response accerelation
parameter determined in accordance with Figure 20.1b

for T <T; (20.12)

where

Also, Cg should not be less than the following:

1. For buildings and structures in seismic design categories A, B, C, and D and in buildings and
structures for which 1-second spectral response acceleration, Sy is less than 0.6 g, the value
of the seismic coefficient, C,, should not be taken less than

Csmin = 0.01 (20.13)



20.3 Analysis Procedures 777

Table 20.7 Design Coefficients and Factors for Basic Seismic-Force-Resisting Systems
(ASCE 7-05, Section 12.2.1)

Basic Seismic-Force — Resisting System R QP C4°

1.Bearing wall systems

Special reinforced concrete shear walls 5 2.5 5
Ordinary reinforced concrete shear walls 4 2.5 4
Detailed plain concrete shear walls 2 2.5 2
Ordinary plain concrete shear wall 1.5 2.5 1.5
2. Building frame systems
Special reinforced concrete shear walls 6 25 5
Ordinary reinforced concrete shear walls 5 2.5 4.5
Detailed plain concrete shear walls 2 2.5 2
Ordinary plain concrete shear walls 1.5 2.5 1.5
3. Moment-resisting frame systems
Special reinforced concrete moment frames 8 3 55
Intermediate reinforced concrete moment frames 5 3 45
Ordinary reinforced concrete moment frames 3 3 25
4, Dual systems with special moment frames
Special reinforced concrete shear walis 7 2.5 5.5
Ordinary reinforced concrete shear walls 6 2.5 5
5. Dual systems with interntediate moment frames
Special reinforced concrete shear wall 6.5 2.5 5
Ordinary reinforced concrete shear wall 3 3 2.5
6. Shear wall-frame intermediate system with ordinary 4.5 2.5 |
reinforced concrete moment frames and ordinary
reinforced concrete shear walls
7. Inverted pendulum systems
Special reinforced concrete moment frames 25 1.25 2.5

¢Response modification coefficient
4System overstrength factor
Deflection amplification factor

2. For buildings and structures in seismic design categories E and F and in buildings and
structures for which the 1-second spectral response acceleration, S, is equal to or greater
than 0.6 g, the value of the seismic coefficient, C;, should not be taken less than

0.58
Comin = —f— (20.14)

Ig
The response modification factor, R, is a function of several factors. Some of them are
ductility capacity and inelastic performance of structural materials and systems during past
earthquakes. Values of R for concrete structures are given in Table 20.7 and are selected by
defining the type of basic seismic force resisting system. (Table 12.2-1 of ASCE 7-05)

Fundamental period. Elastic fundamental period, T, is a function of the mass and the stiffness
of the structure. If the building is not designed, the period T cannot be precisely determined. On
the other hand, to design a building, the period of vibration should be known and included in
equations for design. That is why building codes provide equations for calculation of approximate
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periods of vibrations, T,. Calculated approximate periods are shorter than the real periods of
structure, which leads to the higher base shear and safe design.
An approximate period of vibration, 7', can be determined using the following equation:

T, =C I (20.15)

where k, is the height in ft above the base to the highest level of the structure and the coefficients
C; and x are determined from Table 20.8.

For the concrete moment-resisting frame buildings that do not exceed 12 stories in height
and have a minimum story height of 10ft, the approximate period of vibration, T, can be
determined using the following equation:

T, =0IN (20.16)
where

N = number of stories in the building

The lateral seismic force calculation. Vertical distribution of the base shear force produces
seismic lateral forces, Fy, at any floor level. Seismic lateral forces act at the floor levels because
masses of the structure are concentrated at the floor levels. It is known that the force is a product
of mass and acceleration. Earthquake motions produce accelerations of the structure and induce
forces at the places of mass concentrations (i.e., floor levels).

The lateral force that will be applied to level x of the structure, Fy, can be determined

from the following equation:
Fy=CV (20.17)

k
Cop = 2 (20.18)

n

Zw,hf
i=l

where

Cvx == vertical distribution factor
k = distribution exponent related to the building period
= 1 for building having a period of T < 0.5sec

Table 20.8 Values of Approximate Period Parameters C; and x

Structure Type Ce x

Moment-resisting frame systems in which the frames resist
100% of the required seismic force and are not enclosed
or adjoined by components that are more rigid and will
prevent the frames from deflecting where subjected to
seismic forces:

Steel moment-resisting frames 0.028 0.8
Concrete moment-resisting frames 0.016 0.9
Eccentrically braced steel frames 0.03 0.75
All other structural systems 0.02 0.75

Source: ASCE 7-05, Section 12.8.2.1
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= 2 for building having a period of T > 2.5sec

= 2, or linear interpolation between 1 and 2, for building having a period of
05sec < T < 25sec

h;, h, = height from the base to level i and x
w;, wy = portion of W assigned to level { or x

20.3.2 Summary: Equivalent Lateral Procedure
Step 1. Determine seismic design category according to Section 20.2 and choose an appropriate
Ig value from Table 20.1.
Step 2. Choose R value from Table 20.7
Step 3. Determine 7 using Eq. 20.15 or Eq. 20.16, as applicable.
Step 4. Calculate C; using Eq. 20.10 and check for Cymax (Eq. 20.11) and C; min (Eq. 20.12 or
Eq. 20.13, whichever is applicable). Ensure that Cspin < €5 < Cypax and
if Cs > Cs max, then choose Cs = C; max-
if C; < Cs min, then choose C; = Cs min-
Step 5. Calculate total gravity load, W, as described in Section 20.3.1.
Step 6. Calculate seismic base shear using Eq. 20.10.
Step 7. Using Eq. 20.17 calculate seismic lateral load, Fy, for every level of the structure.

20.3.3 The Simplified Analysis

The simplified analysis procedure for seismic design described in Section ASCE 7-05, Sec-
tion 12.14.8.1 is applicable to any structure that satisfies the following limitations and conditions:

1. Seismic design category B, C, D, E, or F.

2. Light-framed construction not exceeding three stories in height, excluding basement, or any
construction.

The seismic base shear and lateral seismic forces are calculated as follows:

“1. The seismic base shear, V, in a given direction shall be determined in accordance with
FSps

V = w (20.19)
R
where
2
SDS = §FaSs

where F; is permitted to be taken as 1.0 for rock sites, 1.4 for soil sites, or determined in accordance with
Section 20.2.2. For the purpose of this section, sites are permitted to be considered to be rock if there is no
more than 10 ft (3 m) of soil between the rock surface and the bottom of spread footing or mat foundation.
In calculating Sps, S shall be in accordance with Section 20.2.2, but need not be taken larger than 1.5.

F = 1.0 for one-story buildings

F = 1.1 for two-story buildings

F = 1.2 for three-story buildings

R = the response modification factor from Table 20.7 (ASCE 7-05, Table 12.2)

W = effective seismic weight of structure that shall include the total dead and other loads listed in
the following text
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1. In areas used for storage, a minimum of 25 percent of the floor live load (ficor live load in public garages
and open parking structures need not be included.)

2. Where provision for partitions is required by Section 4.2.2 (Provision for Partitians) in the floor load design,
the actual partition weight, or minimum weight of 10 psf (0.48 kNm?) of floor area, whichever is greater.

3. Total operating weight of permanent equipment.

4. Where the flat roof snow load, Py, exceeds 30psf (1.44 kN/m?), 20 percent of the uniform design snow
load, regardless of actual roof slope.” (Source: ASCE 7-05, Section 12.14.8.1)

2. The lateral seismic forces calculation. The lateral seismic forces can be determined from
(ASCE 7-05, Section 12.14.8.2)

Fo= —2w, (20.20)

where

F, = the seismic force applied at level x
w, = the portion of the effective seismic weight of the structure, W, at level x.

20.3.4 Summary: Simplified Analysis Procedure

Step 1. Check whether the structure satisfies the three conditions described in Section 20.3.6 for
qualification for the simplified analysis procedure.

Step 2. Determine the value of Spg as described in Section 20.2.2.

Step 3. Choose appropriate R factor from Table 20.7.

Step 4. Determine the total gravity load, W, of the structure as described in Section 20.3.1.
Step 5. Utilize Eq. 20.19 to calculate seismic base shear, V.

Step 6. Determine the seismic lateral forces acting on the structure, F,, using Eq. 20.20.

20.3.5 Design Story Shear

The seismic lateral forces will produce seismic design story shear, V., at any story x that can
be determined from the following equation:

V, = Z F, (20.21)
i=1

where

F; = the portton of seismic base shear, V, assigned to level i
n = number of stories

The seismic story shear in any story x should be collected and transferred to the story below
by vertical elements of lateral-force-resisting system (walls). The distribution of story shear on
vertical elements depends on flexibility of the diaphragm, which those elements (walls) support.

There are two types of diaphragm:

1. Flexible diaphragm
2. Rigid diaphragm

Diaphragm is flexible when the lateral deformation of diaphragm is more than two times
the average story drift of the story that supports diaphragm. Lateral deformation of diaphragm
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is maximum in-plane deflection of the diaphragm under lateral load, and the story drift is the
difference between the deflections of the center of mass at the top and the bottom of the story
being considered.

A diaphragm that is not flexible by the above definition is rigid.

For flexible diaphragms, the seismic story shear, V,, is distributed to vertical elements in
the story x based on the area of the diaphragm tributary to each line of resistance. The vertical
elements of the seismic-force—resisting system may be considered to be in the same line of
resistance if the maximum out-of-plane offset between such elements is less than 5% of the
building dimension perpendicular to the direction of the lateral force.

For rigid diaphragms, V; is distributed to the vertical elements in the story x based on the
relative lateral stiffpess of the vertical resisting elements and the diaphragm.

20.3.6 Torsional Effect

For rigid diaphragms the eccentricity between center of mass and center of rigidity can occur. The
lateral shear force is applied to the center of mass. Distribution of V. to the vertical elements can
be determined when the shear force acts to the center of rigidity. When the shear force moves from
center of mass to the center of rigidity it produces torsional moment. Effect of torsion will increase
horizontal forces on vertical elements. Forces are not to be decreased due to torsional effects.

T =V.e (20.22)
where

V. = base shear at level x in any direction

e = eccentricity between center of mass and center of rigidity. It can occur in both
directions x and y.

20.3.7 Overturning Moment

The lateral seismic force F, produces overturning moments. Overturning moment M, should be
calculated using the following equation:

M,=1 Z F:(h; — h,) (20.23)
i=1

where

F; = portion of the seismic base shear, V, induced at level ;
hi, h, = height from the base to level ¢ and x
T = overturning moment reduction factor
= 1.0 for the top 10 stories
= 0.8 for the twentieth story from the top and below

= linear interpolation between 1.0 and 0.8 for stories between the twentieth and
tenth stories below the top

7 is permitted to be taken as 1.0 for the full height of the structure.

20.3.8 Lateral Deformation of the Structure

The seismic lateral forces should be used in calculating deformations of the structure. The value
that is of interest for engineers is story drift—the difference between the deflections of the
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center of mass at the top and the bottom of the story being considered. The value of story drift
under seismic forces is important from different perspectives: stability of the structure, potential
damage to nonstructural elements, and human comfort. The allowable values for story drift are
shown in Table 20.9 (Table 12.12-1 of ASCE 7-05).

For structures that can be designed based on the simplified analysis procedure described
in Section 20.3.3 the drift can be taken as 1% of the story height unless a more exact analysis
is provided.

A =0.01h, (20.24)

The value of the design story drift should be less than or equal to the value of allowable story
drift, A,, given in Table 20.9.

For all other structures that cannot be analyzed uwsing the simplified analysis procedure, the
drift should be determined as follows:

1. Calculate the deflection &, at level x from the following equation:
Cadye

8
x Iz

(20.25)

where

8¢ = the elastic lateral deflection at floor level x under seismic lateral forces
C,4 = deflection amplification factor from Table 20.7
Ig = occupancy importance factor from Table 20.1

2. The design story drift can then be calculated as the difference between the deflections
of the centers of mass of any two adjacent stories. Definition of story drift is shown in
Fig. 20.3.

A=208; —8; (20.26)

3. Check for the P-delta effect and adjust for magnification factor if needed.

Table 20.9 Allowabie Story Drift, A, (in.)?

Occupancy Category

Building lorll [} v
Buildings, other than masonry shear wall or masonry wall

frame buildings four stories or less in height with interior

walls, partitions, ceilings, and exterior wall system that

have been designed to accommodate the story drift 0.025ksxb 0.020hy 0.015h
Masonry cantilever shear wall buildings® 0.010Ay 0.0104 0.010h,
Other masonry shear wall buildings 0.007h 0.007h 0.007h,
All other buildings 0.020k,x 0.015h, 0.010A,

“There shall be no drift limit for single-story building with interior walls, partitions, ceilings, and exterior wall systems
that have been designed to accommodate the story drift.

Ph is the story height below level x.

“Building in which the basic structural system consist of masonry shear walls designed as vertical elements cantitevered
from their base or foundation support that are so constructed that moment transfer between shear walls (coupling) is
negligible.



20.3 Analysis Procedures 783

Figure 20.4 Definition of drift.

P-Delta Effect. An accurate estimate of story drift can be obtained by the P-delta analysis. In
first order structural analysis the equilibrium equations are formulated for the undeformed shape
of structure. When deformations are significant the second-order analysis must be applied and
the P-delta effect must be considered in determining the overall stability of the structure. The
P-delta effect does not need to be applied when the ratio of secondary to primary moment, 8,
does not exceed 0.1. This ratio is given by the following equation:

P A

f=—"1—
Vxhsxcd

20.27)

where

6 = stability coefficient

P, = total unfactored vertical design load at and above level x (dead, floor live and
snow load)

A = design story drift (in.)
V. = seismic shear force between level x and x-1
hgx = story height below level x (ft)
C4 = deflection amplification factor in Table 20.7 (Table 12.2-1 of ASCE 7-05)

The stability coefficient, 8, should not exceed

_ 05

Omax = 20.28
CiB ( )
where

B = ratio of shear demand to shear capacity for the story between level x and
x — l.break A value 8 = 1 can be used where the ratio is not calculated.
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If & > Omax, then the structure is potentially unstable and must be redesigned. For 0.1 <
0 < Omax, the interstory drift and element forces need to be computed using the P-delta effect.
The design story drift considering P-delta effect, A,, can be calculated from

1
(1-9)
The computed values of story drift should not exceed the allowable values described in Table 20.9.

A,=A (20.29)

20.3.9 Summary: Lateral Deformation of the Structure

Step 1. If the structure satisfies the limitations for the simplified analysis procedure listed in
Section 20.3.3, use Eq. 20.24 to determine the story drift.

Step 2. For structures that do not satisfy the limitations for the simplified analysis procedure
listed in Section 20.3.3, use Egs. 20.24, 20.25, 20.26,and 20.27 to calculate 8y, §;1, A,
@, and & pax. Check whether the P-delta effect must be considered and adjust A to A,
using Eq. 20.29.

Step 3. Determine allowable drift from Table 20.9 and compare with the calculated design drift.
If calculated drift exceeds the allowable drift, redesign the structure.

Example 20.3: Equivalent Lateral Procedure

Determine the design seismic force and seismic shear for a six-story concrete special moment-resisting
frame building located in the area of high seismic risk where S; = 1.5g and $; = 0.6 g, on the soil
class B. The story heights are all 12ft, and the story weights are all 1700k. Check the lateral
deformation of the structure. Building elevation is given in Fig. 20.5.

Solution
1.
Ir =125 (Table 20.1)
S, =15¢g, S =06g (Fig. 20.1a, 20.1b)
W, =1700K
*x
Ws=1700K
W, =1700K
& W, =1700K
®
O
W,=1700K
W, =1700 K
Y
/7777 T777

Figure 20.5 Example 20.3 building elevation.
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Soil class B:

Fa=10, Fu=10 (Table 20.34, 20.3b)
Sms =158 Sm1 =06 g (Eq. 20.2a, 20.2b)
Sps=10g (Eq. 20.1a)

Spr =04 g (Eq. 20.1b)

SDC is D.
2. According to Table 20.7 for special moment-resisting frame, select R = 8.

785

3. Equation 20.18 is not applicable since 2, > 10ft. Period of vibration of structure is calculated

according to Eq. 20.14 as follows:
T,=Crh* =0.030 x (6 x 12)4 =074 s

4. Calculate seismic response coefficient as follows and check for the limits:

Cs = ® = 3 =0.156
Iz 1.25
S 04

Comax = 73— = 7 = 0.084
— T — 1)0.74
(IE ) ( 1-25)
Since §; = 0.6 g, Eq. 20.14 should be used to calculate Cj pin:

0.5 0.5 x (0.6

Csmin = R ! = 8( ) = 0.047

I 1.25
Since Cs > Comax, Cs = 0.084.
5. The total gravity load is calculated as follows:

W=w +w+ ws +ws + ws + we = 6 x (1700) = 10,200 kips

6. Calculate the seismic base using Eq. 20.10:
V= C,W = 0.084 x 10200 = 857 kips

7. Calculation of Fy, V,, and M, (Fig. 20.6). Use Eq. 20.17 to calculate the seismic lateral force,
F, as shown in the following table. The table also calculates the shear force for each floor

level and the overturning moments as described in Eqs. 20.21 and 20.23.

Lateral Shear

Overtuming

Floor Weight Height w; hi Force, Force, Moment My
Level W; (kips) h; (ft) (kips-ft) Cux F, (kips) Vy (kips) {kips-ft)

6 1700 72 204,485 0.30 257 257 0

5 1700 60 166,716 0.24 206 463 3084

4 1700 48 129,849 0.19 163 626 8640

3 1700 36 04,082 0.14 120 746 16,152

2 1700 24 59,743 .09 77 823 25,104

1 1700 12 27.487 0.04 34 857 34,980

0 682,362 857 45,264

*To calculate &, use Section 20.3.1. For T = 0.74 s, using linear interpolation, k¥ = 1.12
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257 6 257
206 ) 463
163 4 €26
120 3 746
77 2 3
34 1 857
/77770 - 857 45264
F, v, M,

857

Figure 20.6 Example 20.3: distribution of lateral seismic force, F, base shear, V., and
overtuming moment, M,.

8. Calculation of drift. According to Table 20.7 for special moment resisting frame C; = 5.5,
Ig =125 (Table 20.1)
hy, = 12 ft = 144 in.

Floor Level 8, (in) & (n)  Afin) P (kip) Vi (kip) ¢
6 1.26 5.54 123 1882 257 0.011
5 0.98 431 1.19 3943 463 0.013
4 0.71 3.12 1.1 6004 626 0.013
3 0.46 2.02 0.96 8065 746 0.013
2 0.24 1.06 0.8 10,126 823 0.012
1 0.06 0.26 0.26 12,187 857 0.005
05 0.5

Omax = CaB = 5.5 % (1.0) = 0.09 > @ in every floor level

Which is o.k. (Eq. 20.28) Also, ¢ < 0.1 in every floor level, which means that the P-delta

effect can be disregarded.

9. Allowable drift, according to the Table 20.9, is A, = 0.010 A, = 0.010 x (12 x 12) = 1.44
in > A in every floor level, which is o.k.

Example 20.4: Simplified Analysis

Calculate the seismic base shear for a two-story concrete building assuming that the first floor weight
is w, = 35 kip and the second floor weight is 40 kip. The height of the first floor is 2, = 15ft, and
of the second floor is 12 ft. Seismic-force— resisting system is ordinary reinforced shear wall system.
Utilize the value of Spg from in Example 20.1. Check the lateral deformation of the structure.
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Solution

1. The building is classified SDC D (from Example 20.1), and is two stories in height. This
building satisfies the conditions for simplified analysis.

2. Sps = 1.35g (Example 20.1).

3. The R factor is chosen from Table 20.7 based on the seismic-force—resisting system of the
structure. For ordinary reinforced concrete shear wall, R is equal to 4.

4. Calculate the total gravity load (Fig. 20.7): W = w + w; = 35 4+ 40 = 75kip
5. For two story building F = 1.1 as desribed in 20.3.3

1.15 1.1(1.35
V= RDS w= 1) s s kip (Eq. 20.19)
6. Calculate the seismic lateral forces acting at the first and second floors using Eq. 20.20,
(Fig. 20.8).
1.1§ L.1(1.35
Fi= RDswl F ¥ x 35 =13 kip (first floor)
1.15 1.1(1.35
Fr= RDS Wy = ;4—) x 40 = 149 kip {second floor)

_ Wy = 40k
N
1 w =35k
L
4 | |

Figure 20.7 Example 20.4 building elevation.

Fy=149k 2 149k 0
Fi=13k t 27.8k 178.8
0
| 278k 597.3
VX MX
V=278k

Figure 20.8 Example 20.4: distribution of lateral seismic force, Fy, base shear, V,, and
overturning moment, M,.
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7. Calculate the story shear force using Eq. 20.20:

Vo = 13 kip (second floor)
Vi = 27.8 kip (first floor)
8. Calculate the overturning moment using Eq. 20.23:
M; =0 (second floor)
M; = 14.9 x 12 = 178.8 kip-ft {first floor)

My = 14.9(12 4+ 15) + 13 x 15 = 597.3 kip-ft {at the base of the structure)
9. Determine the seismic lateral story drift using Eq. 20.24:
Ay =0.01A; =0.01 x 15 =0.15 feet = 0.0125 in. (first floor)
Az = 0.0l =0.01 % 12 =0.12 feet = 0.01 in. (second ftoor)
Check for allowable drift using Table 20.9.

A, = 0.020h,, where hiy is the story height below level x.

Agy = 0.020h = 0.020 x 15=10.3 ft = 0.025 in. > 0.0125 in. (ok.) (first floor)

Ay, = 0.020h; = 0.020 x 12 =0.24 ft = 0.02 in. > 0.01 in. (0o.k.) (second floor)

Example 20.5: Torsional Effect

Determine the shear forces V| and V; acting on the shear wall 1 and 2 of the building with floor plan
shown in Fig. 20.9. Assume that the value of story shear, V;, is 15 kip. Consider torsional effect.

Solution

Center of mass is in the centroid of the rigid diaphragm. The center of rigidity can be determined as
follows (Fig. 20.10):

x=25x30x2+10x120%x2)/(2x25+2x 10) =557 f
e, = 150/2 —55.7 =19.3 ft
For the story shear force Vy, = 15kip and excentricity of 19.3 ft, the torsional moment is
T =15 x 19.3 = 289.5 kip-ft (Eq. 20.22)

251t

Sft ] 4%;5 ‘I'
“T " @”{0 fi

g — 90 fi : X
01 ! "0

Figure 20.9 Example 20.5: floor plan.
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RN
)‘<
Sﬁl
—

e, =19.3ft

Figure 20.10 Example 20.5: torsional effect.

The shear force acting on the wall is the sum of the shear force due to story shear, V,, and shear
force due to torsional moment, 7).
For wall 1, shear force V| is

Vi =15x25/(25+25+ 104+ 10) =54 kip (due to V)

V) =289.5 (25 x 25.7)/(2 x 25 x 25.7> 4+ 2 x 10 x 64.3%) = 1.6 kip-ft (due to 7)
Therefore, Vi = 5.4 + 1.6 = 7kip. For wall 2, shear force V, is

Vo, =15 x10/(25+25+ 10+ 10) = 2.1 kip (due to V)

V= 289.5 (10 x 64.3)/(2 x 25 x 25.7* + 2 x 10 x 64.3%) = 1.6 kip-ft (due to T)
Therefore, V4 = 2.1 + 1.6 = 3.7kip.

20.4 LOAD COMBINATIONS

A structure should be designed to resist the combined effects of the loadings. Basic load com-
binations for strength design are given (IBC 2006, Section 1605.2.1):

4D

1.2 D+ 1.6(L + H) + 0.5(L, or S or R)
1.2D + 1.6(L, or Sor R) + (f1L or 0.8 W)
1.2D + 1.6W + f1L + 0.5(L, or S or R)
1.2D + 1.0E + fLL + f»S§

09D + 1.6W + 1.6H

0.9D + (1.0E or 1.6W)

NSAMmAWb-

where

f1 = 1.0 for the floors in places of public assembly, for live loads in excess of
100 pounds per square foot, and for parking garage live load

f1=20.5 for other live loads
f2 =0.7 for roof configurations that do not shed snow off the structure
f2 =0.2 for the other roof configurations
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D = dead load
L = live load excluding roof live load
L, = roof live load
S = snow load
R = rain load
W = wind load
E = seismic lead effect
Special seismic load combinations for strength design should be used in a case of structures hav-

ing certain plan or vertical irregularities in SDC B or higher. Special seismic load combinations
for strength design are (IBC 2006, Section 1605.4):

1. 12D + fiL + En
2. 09D + E,,

where

Sf1 = 1.0 for floors in places of public assembly, for live loads in excess of 100 psf, and
for parking garage live load
f1 = 0.5 for other live loads

E,, = the maximum effect of horizontal and vertical forces

20.4.1 Calculation of Seismic Load Effect, E

The seismic load effect (ASCE 7-05, Section 12.4) can be determined from the following two
conditions:

1. The seismic load effect E is calculated from
E=pQp+0285psD (20.30)
where
Qg = effect of horizontal seismic forces

o = redundancy coefficient

Sps = the design spectral response acceleration at short periods determined in
Section 20.2.2

D = effect of dead load

2. When the effect of gravity and seismic ground motions are counteractive, the seismic load
effect is calculated from

E=pQp—025psD (20.31)

20.4.2 Redundancy Coefficient, p
Redundancy coefficient can be determined as follows (ASCE 7-05, Section 12.3.4)

1. For structures assigned to seismic design category A, B, or C, the value of the redundancy
coefficient, p, is 1.

2. For structures assigned to seismic design category D, E, or F, the redundancy coefficient p,
shall be taken equal to 1.3.
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20.4.3 Seismic Force Effect, Ep,

When the effects of gravity and seismic forces are additive, the seismic force effect, E,,, should
be calculated using the following equation:

E, = QQr +025psD (20.32)
where
Qo = the system overstrength factor given in Table 20.7

When the effects of gravity and seismic forces counteract the seismic force effect, E,, should
be calculated using the following equation:

E,, = Q0r —0285ps D - (20.33)

20.5 SPECIAL REQUIREMENTS IN DESIGN OF STRUCTURES SUBJECTED TO THE
EARTHQUAKE LOADS

The ACI Code (2008), Section 20.1.1.9.1 and 21.1, define five seismic design categories (SDCs)
for earthquake-resistant structures. These are A, B, C, D, E, and F. The classification of these
zones described in ACI Section R21.1.1 can be given in three different categories:

1. SDC D, E, and F indicate high seismic risk zones with strong ground shaking

2. SDC C indicates moderate/intermediate seismic risk zones with moderately strong ground
shaking.

3. SDC A and B indicate low seismic risk zones with SDC A corresponding to the lowest
seismic hazard zone.

For structures in high seismic risk (SDC D, E, and F) special requitements in flexural design
and detailing are required. Special moment frames (Section 20.5.1) and special structural walls
(Section 20.5.1.0) should be used as the structural system of a building.

For the structures in moderate seismic risk (SDC C) some special provisions are required
for satisfactory intermediate seismic performance (Section 20.5.2). Structure can be designed as
intermediate moment-frame or intermediate structural-walls systems. Structures from a higher
category can also be utilized.

For the structures in low seismic risk (SDC A and B), no special requirements in flexural
design and detailing are required. Ordinary moment frames and ordinary structural walls and
systems should be utilized as the structural system of a building.

20.5.1 Structures in the High Seismic Risk: Special Moment Frames (ACI 2008,
Section 21.5)

A special moment frame is a structural system that is designed and detailed to sustain strong
earthquakes. Special provisions for designing and detailing are given for

1. Flexural members of special moment frames such as members subjected to only bending
2. Special moment frame members subjected to bending and axial load such as columns
3. Joints of special moment frames
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Strong column-weak beam connection.

Flexural members of special moment frame (Section 20.5.1.1).

General requirements (Section 20.5.1.1.1). If factored axial compressive force P, < A, f//10,
then the member is considered to be subjected to bending. A, represents the gross area of
the concrete member. Flexural member should satisfy following the conditions (ACI 2008,
Section 21.5.1):

1.

Clear span /, > 4 x effective depth (d).

2. The flexural member width-to-depth ratio, b,,/d > 0.3.
3
4. Flexural member width (b,,) < width of supporting member (column), bs + (1.5 x depth of

Flexural member width (b,,) > 10in.

the flexural member, h).

Longitudinal Reinforcement Requirements (Section 20.5.1.1.2). According to the ACI Code

(2008), Section 21.5.2, the longitudinal reinforcement at any section should satisfy the following
(Fig. 20.11):

1.

Longitudinal reinforcement for both top and bottom steel (As) should be in the range defined

as follows:
3/ flbd

I < (A;) < 0.025bd (20.34)
200bd
Iy
At least two bars should be provided continuously at both top and bottom. For the statically
determined T-sections with flanges in tension the value of b in the expression 3,/f/bd/f,

should be replaced by either 2b (width of web) or the width of the flange, whichever is
smaller (ACI 2008, Section 10.5.2).
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Figure 20.11 Longitudinal reinforcement requirements.

2. The positive moment strength at joint face should be greater or equal % negative moment
strength at that face of the joint (ACI Section 21.5.2.2):

1

oMy = SoM;  (left joint) (20.35a)
1
oMy = oM, (right joint) (20.35b)

where

M,, = moment strength at left joint of flexural member
M, = moment strength at right joint of flexural member
3. Neither the negative nor positive moment strength at any section along the member should
be less than % the maximum moment strength provided at the face of either joint.

1
(@M, or oM ) > Z(max oM, at either joint) (20.36)

4. Anchorage of flexural reinforcement in support can be calculated using the following equation:
f ydb

65/ f!

84,

6 in.

lgh = (20.37)

where d, is the diameter of longitudinal reinforcement.

5. Lap splices of flexural reinforcement are permitted only if hoop or spiral reinforcement
is provided over the lap length. Hoop or spiral reinforcement spacing should not exceed
d/4 or 4in., whichever is smaller. Lap splices should not be used within a joint, within a
distance of twice the member depth from the face of the joint, or at locations of plastic
hinges.

Transverse Reinforcement Requirements (Section 20.5.1.1.3) For the special moment-
resisting frame, plastic hinges will form at the ends of flexural members. Those locations should
be specially detailed to ensure sufficient ductility of the frame members. Transverse reinforcement
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/ Section yields

1f////

%h "on " oon ! |2h|

Figure 20.12 Areas of the flexural member where hoops are required. (Note: These
areas do not necessarily occur at midspan.)

gives lateral support for the longitudinal reinforcement and assists concrete to resist shear. It
should satisfy the following: (ACI 2008, Section 2.1.5.3)

ll

Hoops are required over a length equal to twice the member depth from the face of the
support at both ends of flexural member. Also, hoops are required over lengths equal to twice
the member depth on both sides of section where flexural yiclding may occur, as shown in
Fig. 20.12.

The spacing of the hoops, s, should not exceed the smallest of the following values:

a. d/4

b. Eight times the diameter of the smallest longitudinal bar

¢. 24 times the diameter of the hoop bars

d. 12in.

The first hoop should be located not more than 2in. from the face of the support.

Where hoops are not required, stirrups with seismic hooks at both ends should be used.
Spacing between stirrups should be less than or equal 1o d/2.

Transverse reinforcement should be designed to resist the design shear force (Figs. 20.13
and 20.14). Design shear force for flexural members of special moment frames can be deter-
mined using the following equation (Fig. 20.15):

My + MS N wyl,

V=t . (20.38a)
n
M+ M-
V= —E w;‘“ (20.38b)
n
§ Ldl2

-

<

Figure 20.13 Transverse reinforcement requirements.

W
‘L/]/j{-z in.

2h
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Figure 20.14 Transverse reinforcement requirements. Courtesy of American Concrete

Institute (ACI 2008).

6d,
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Figure 20.15 Design shear force.

where

Sideways to the left

Sideways to the right

V; = design shear force at left joint of flexural member
V, = design shear force at right joint of flexural member
M, = probable moment strength at the end of the beam determined as strength of the

beam with the stress in the reinforcing steel equal to 1.25 £, and a strength

reduction factor of ¢ = 1.0.

795



796

Chapter 20 Seismic Design of Reinforced Concrete Structures

I, = clear span of flexural member
w, = factored distributed load determined by Eq. 20.47

wy, = 12D+ 1.0L +0.2§ (20.39)
where
D = dead load
L = live load
S = snow load

Probable moment strength at the end of the beam, M ,, can be calculated from the following
equation:

My = A,(125f,) (d - %) (20.40)
where
_A(L254)
T 085fb (20.41)

The shear strength of concrete can be taken to be 0 when the earthquake-induced shear force
is greater than or equal to 50% of the total shear force and the factored axial compressive
force is less than A, f//20, where A, is the gross area of the beam.

Summary: Design of the Special Moment-Resisting Frame Members Subjected to Bending
(Section 20.5.1.1.4)

Step 1. Determine the seismic design category, base shear, lateral seismic force, and seismic
shear according to Sections 20.2 and 20.3.

Step 2. Calculate the member forces, and use the different load combinations to determine the
values of member forces that govern the design (Section 20.4). Design for flexural
reinforcement.

Step 3. Check whether the frame member is a flexural member and check the general require-
ments for the special moment frame member according to Section 20.5.1.1.1.

Step 4. Check the special requirements for the longitudinal reinforcement according to Section
205.1.1.2.

Step 5. Design the transverse reinforcement for confinement and shear resistant using Section
20.5.1.1.3.

Example 20.6

Design a beam AB on the second floor of a building, as shown on Fig. 20.16. The building is
constructed in the region of high seismic risk on soil class B. Additional information:

Material properties: Concrete: f! = 4000 psi, w, = 150 pef
Steel f, = 60,000 psi
Loads: Live loads = 40 psf
Superimposed dead load = 35 psf
Member dimensions: Beams = 20 x 24in.

Columns = 24 x 241in.
Slab thickness = 7in.
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Figure 20.16 Example 20.6:1 building elevation.

Selution

1. Seismic design category, base shear, lateral seismic force, and seismic shear are determined in

Example 20.3.
2. Load combinations are given as follows:
14D ey
12D + 1.6L (D
12D+ 1.0E + il fi = 0.5 according to Section 20.4 (110)
09D + 1.0E av)

Redundancy coefficient, p, can not be taken less than 1. For seismic design catagory D to F use
f=13
Seismic load effect, E, can be determined using Egs. 20.30 and 20.31:

E=pQp+025psD=Qr+02(1.0)D = Qg+ 02D
E=p0p—025psD = Qr —0.2(1.0)D = 0 —0.2D
Replacing the E in Eq. I1I gives
14D 4+ 05L 4 Qg
D+ 05L + Q¢
Replacing the E in Eq. IV gives
1.1D+ Qg
0.7D+ QOf

The member forces for the beam AB on the second floor (Fig. 20.16) are calculated using the
software for load analysis, and the values of required flexural strengths are determined using
different load combinations, as shown in Table 20.10.
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Table 20.10 Calculated Member Forces

Load Cases Location Bending Moment (Kip-ft} Shear (kip)

D Support ~95 24
Midspan —465

L Support 22 11
Midspan 15

Qr Support +290
Midspan 0 +25

Load Combinations

14 D Support —133 336
Midspan 91

12D + 1.6L Support —149 46.4
Midspan 102

14D + 05L + Qf Support —434/146* 64.1
Midspan 98.5

D+ 05L + Qf Support —396/184* 54.5
Midspan —473

1.1D + Qf Support —395/186* 514
Midspan —471.5

07D + Qf Support —357/224* 41.8
Midspan —446

* QO has negative and positive value.

Table 20.11 Calculation of Longitudinal Reinforcement

Location M. (kip-ft) A; (in2) Reinforcement Used oM, (kip-ft)

Support —434 5.20 7 no. 8 (A; = 5.53in.2) —474
224 3.01 6 no. 7 (A, = 3.6in.2) 358

Midspan 102 1.21 2 no. 7 (A; = 1.2in.%) 113

From the previous table the most critical loads are chosen and summarized in Table 20.11.
Longitudinal reinforcement for the beam is also determined in Table 20.11.
Table 20.12 summarizes the reinforcement used for the beam.

3. General requirements for flexural members of special moment frame are checked as follows:
a. Clear span > 4 effective depth

21.
28 ft > 4[—25 =721ft (ok.)

b. Width-to-depth ratio > 0.3
20

7= 0.83>0.3 (ok)
¢. Width = 20in. > 1¢in. (o.k.)
d. Width < width of supporting member + distance on each side of the supporting member
not exceeding three-fourths of the depth of the flexural member
20 in. < 24 in. (0.k.)

20 in. <24 4+ (1.5%26) =63 in. (0.k.)
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Table 20.12 Summary of Reinforcement

Reinforcement Provided

Location Top Bottom
Support 7 no. 8 (5.53in.2) 6 no. 7 (3.6in.2)
Midspan 2 no. 8*(1.58in.%) 2 no. 7 (1.2in.2)

*Two no. 8 bars are extended from seven no. § support bars into the negative moment zone at midspan.

4. Special requirements for longitudinal reinforcement are

a.
3mbwd_3d40mx20x21.5_136in2
_ N 5y 60000 R
(A or A7) =
200bu.d_200x20x21.5_1 43 in2
o 60000 S

max As = 0.025b,d = 0.025 x 20 x 21.5 = 10.75 in.2

Check the reinforcement limits against the required reinforcement, as shown in Table 20.13.
(

b. Positive moment strength at joint face > 5 negative moment strength at that face of the
joint:
f 1
M* = 358 kip-ft > EMn' = 5474 = 237 kip-fi (0.k)
c. (M or M) at any section > }3 (max M, at either joint) (ACI 20.3.2.2)

1
My = 148 Kip-ft > ~474 = 119 kip-ft  (0k)

Anchorage of flexural reinforcement in exterior column is determined as follows:

For no. 8 bars,
60000 x 1.0

65+/4000

8 x 1.0=28in.
6 1n.

= 146 in,

lan =

Therefore, Iy, = 14.61in.

Table 20.13 Longitudinal Reinforcement Requirements According to the Limits of the Reinforcement

Reinforcement Used Limits
As Min A, Max A; Required A, oM,
(in.%) (in.9) (in.%) {in.2) {kip-ft}
Support (joint face) 553 5.53 —474
(7 no. 8 at the top)
36 3.6 358
(6 no. 7 at the bottom) 1.43 10.75
Midspan 1.58 1.58 —148
(2 no. 8 at the top)
1.2* 1.8* 168
(2 no. 7 at the bottom) (3 no.7)

*Since 1.2in.2 < min A, = 1.43in.2, use three no. 7 bars at the bottom (4; = 1.8in.2).
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For no. 7 bars,
60000 x 0.875

654/4000

8 x0.875=71in.
6 in,

=128 1in.

I

Therefore, 14, = 12.81in.
5. Transverse reinforcement is determined as follows:

MEy+ M2, w,l,
= +

My = A;(1.25,) (d - g)

Ve

For six no. 7 bottom bars,

_AJ125£,)  3.6(1.25 x 60)

- —397in.
085/'b  0.85x4x20 n

3.97
My = A,(1.251,) (d - %) = 3.6(1.25 % 60) (21.5 - T) — 5269 kip-in. = 439 kip-ft

For seven no. 8 bars,

_ Ag(1.25f)  5.53(1.25 x 60)

= =6.1 in.
0.85f!b 085 x4 x 20

a 6.1
My = A, (1.25£,) (d - E) = 5.53(1.25 % 60) (21.5 - 7)

= 7652 kip-in. = 638 kip-ft
w, = 1.2wp + 0.5w; = 2.78 kip/ft
Mo+ My N waly _ 638 +439 + 2.78 x 26

Vi = = 77.6 ki
’ L, ) 26 2 P
MG +My wl, 6384439 278 x 26 53k
r = = =0 P
Iy 2 26 2
439 4638 77.6 .
Maximum earthquake induced shear force = —;-_6-—— =41.4 kip > - = 38.8 kip
=V.=0
pVi =V, =V,
77.6
Vim e — 0= i

Ve = 104 K < (Vymax = 8y/f/bud = 84000 x 20 x 21.5 =217.6 kip  (o.k.)
V; = 104 k<4,/fib,,d = 44000 x 20 x 21.5 = 109 kip  (0.k.)

Required spacing for no. 3 stirrups is determined as

Asfod (4 x0.11) x 60 x 21.5
5§ = - —

= 5.51in.
Vs 104
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Maximum spacing of the hoops within a distance of 2k = 2 x 24 = 48in. shall not exceed
the smallest of i 218

z-—T=5.4in.

Eight times the diameter of the smallest longitudinal bar = 8 x 0.875 = 7in.
24 times the diameter of the hoop bars = 24 x 0.375 = 9in.
12in.

Therefore, use 10 no. 3 hoops at each end of the beam at 5in. center-to-center with the first
hoop located at 2 in. from the face of the support.
At the distance 48in. from the face of the support shear strength is

V, = 77.66 — 2.78 x % = 66.48 kip

The shear strength contributed by concrete is

Ve =2 x 1 x /4000 x 20 x 21.5 = 54.4 kip

66.48 .
s =005 54.4 = 34.2 kip
Spacing of the stirrups should not be taken greater than
N
or
_ Asfyd _ (2 x0.11) x 60 x 21.5 - 132 in.
500 50 x 20
or
s = _‘_f; =— =12 in.
2 2

Therefore, use stirrups with seismic hoops spaced 8 in. center-to-center starting at 48 in. from
the face of the support. Figure 20.17 shows reinforcement detailing.

Special moment frame members subjected to bending and axial load (Section 20.5.1.2).

General requirements (Section 20.5.1.2.1) The requirements of this section apply to columns
and other flexural members that carry a factored axial load > A, f//10. These members should
satisfy both of the foltowing conditions (ACI 2008, Section 21.6):

1. Shortest cross-section dimension > 12in.
2. The ratio of shortest cross-sectional dimension to the perpendicular dimension > 0.4

Longitudinal reinforcement requirements (Section 20.5.1.2.2) According to the ACI Code
2008, Section 21.5.2, the flexural strengths of columns should satisfy the following:

> My > g D M (20.42)

where

Y M,, = sum of nominal flexural strengths of the columns framing into the joint,
evaluated at the faces of the joint.
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7No.8 7No. 8
|—* A 2No. 8
|
T h=24"
50“ i 50"
— 6 No. 7 - >
No. 3 stirrups @ 8
o
I__, A 11 No. 3 hoops @ 5"
11 No. 3 hoops @ 5"
[ 28 ft N
[ a l
B ™l
30 ft
A-A
Ny
— 7No. 8
;"5‘, -|~ No. 3 hoops
‘_I_J—— 6 No.7
X

—]

200

Figure 20.17 Example 20.6 reinforcement detailing.

> My, = sum of nominal flexural strengths of the beams framing into the joint,
evaluated at the faces of the joint.

This approach, called strong column—weak beam concept (Fig. 20.18), ensures that
columns will not yield before the beams. The main steel reinforcement should be chosen to
satisfy Eq. 20.61.

The reinforcement ratio should satisfy the following:
0.01 < p, <0.06 (2043)

Transverse reinforcement requirements (Section 20.5.1.2.3) Columns should be properly detailed
to ensure column ductility in the case of plastic hinge formation, and should also have the
adequate shear strength to prevent shear failure.

The following transverse reinforcement requirements need to be provided only over the
length /, greater or equal to depth of the member, % clear span, 18in., from the each joint face
and on both sides of any section where yielding is likely to occur {(ACI code 2008, Section
21.6.4.1). The requirements are
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Mnh Mnb

m (My+ M) 23 (M, + M,) m
b 4

M, Ce e) M, M, Ce <>> M,

— |
\_/

M M

ol n

Subscripts ¢, r, t, and b stand for left support, right support,
top of column, and bottom of column, respectively.

Figure 20.18 Strong column — weak beam concept. Courtesy of American Concrete
Institute (ACI 2008).

Lack of transverse reinforcement.

1. Ratio of spiral reinforcement, p;, should satisfy the following (Fig. 20.19):
0.l2£
Iy

_ (20.44)
0.45 (ﬂ g 1) Je
A(‘ fyl

Ps'=
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<3in.
2 Jarger of 1 in.
or 1.33 (max.

agg. size)
. 0.12 T
_K)S >
! A .
£ —£_,)Le
1 0.45 ( a, D Ton

| hy

Clear space*

Figure 20.19 Transverse reinforcement requirements for spiral reinforcement. Cour-
tesy of Portland Cement Association {notes on ACI 318).

where

fyr = yield stress of transverse reinforcement

A, = area of core of spirally reinforced compression member measured to outside
diameter of spiral

A, = gross area of section
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larger of ) or hy
82 % (Clear span)
18 in.

<, 2,
L-I—
2
h
N Y
el 2 g
T)d i
64,
8,
6db A
sE*L
6in. ¥

3

6inAZs_t=4+<]4;hx>24in. )

Y
03sh, (42} fe
Ash— f?h yn
=<' P4 0.09sh, 7=
Y
X

i ——'— <84 in. (see 20.4.4.1 when cover > 4 in.)

Figure 20.20 Transverse reinforcement requirements for rectangular hoop reinforce-
ment. Courtesy of Portland Cement Association (hotes on ACI 318).

2. Total cross-section area of rectangular hoop reinforcement, Ag,, should satisfy the following

(Fig. 20.20):
shef! ) ( A, )
03— — -1
( fyl Ach

she f]
S

Agp > (20.45)

0.09
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where

s = spacing of transverse reinforcement

h. = cross-section dimension of column core measured center-to-center of the
confining reinforcement.

If the thickness of the concrete outside the confining transverse reinforcement exceeds 4in.,
additional transverse reinforcement should be provided at a spacing < 12in. Concrete cover
on additional reinforcement should not exceed 4 in.

Spacing of the transverse reinforcements should satisfy the following:
h
4
$ = 16 x longitudinal diameter bar (20.46)
[ So
14 - h
Also, 4 in. < 5, =4+ Z < 6in. (20.47)
where

so = longitudinal spacing of transverse reinforcement within the length /,.
hx = maximum horizontal spacing of hoop or crosstie legs on all faces of the column.

The remaining member length should be reinforced with the spiral or hoop transverse rein-
forcement spaced as follows:

6 x longitudinal bar diameter
5 < y (20.48)
in.

Transverse reinforcement should be designed to resist the design shear force. Design shear
force for flexural members of special moment frames can be determined using the following
equation:
_ Mp,, + Mp;,

I,
index ¢ is for top and index b is for bottom of the column) where,
i, = length of the column

Vi (20.49)

Summary: Design of the Special Moment-Resisting Frame Members Subjected to Bending

and Axial Force (Section 20.5.1.2.4)

Step 1. Determine seismic design category, base shear, lateral seismic force and seismic shear

according to Sections 20.2 and 20.3.

Step 2. Calculate the member forces and using the different load combinations determine the

values of member forces that govern the design. Design the reinforcement.

Step 3. Check whether the frame member is a flexural member or whether the member is

subjected to the bending and axial force, and check general requirements for the special
moment frame member according to Section 20.5.1.2.1,
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Step 4. Check the special requirements for the longitudinal reinforcement according to Section
205.1.2.2.

Step 5. Design the transverse reinforcement for confinement and shear resistant using Section
20.5.1.2.3.

Example 20.7
Design the edge column on the second floor of a building from Example 20.6.

Solution
1. The load combinations gave the following results:
P, = 1022 kip (maximum force at the first floor)

P, =935 kip (maximum force at the second floor)

2‘
A fl (24 x24) x4
P, = 1022 > fff =4 x120)x = 230 kip
Member is subjected to bending and axial load. General requirements should be checked as
follows:

a. Shortest cross-section dimension = 24in. > 12in., which is o.k.

. . . . . . .24
b. The ratio of shortest cross-sectional dimension to the perpendicular dimension, 7= 1>

0.4, which is o.k.

3. Longitudinal reinforcement for the column with P, = 1022 kip is eight no. 8 bars.
The reinforcement ratio is p, = 0.011 < 0.06, which is o.k. and > 0.01, which is also o.k.

ZMnc > g‘zMnb

For P, = 1022 kip, M,, = 580 kip-ft. For P, = 935 kip, M, = 528 kip-ft. A minimum nominal
flexural strength of the beam at the joint including the slab reinforcement is M, = 723 kip-ft.

) M, =580+ 528 = 1108 kip-ft
> My, =723 kip-t

, 6 6 _
2 My = 1108 Xip-ft > = S My = B =868kipft  (ok)

4. Length /, is determined as follows:
depth of the member = 24in.

|
> Eclear height = (i2 x 12)/6 = 24 in.

18 in.
Choose I, = 24in.
h 24
2 = 7 =6 in.

4—11
So"—“4+(l 3 )=5in.

Therefore, s = 5in.
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Required cross-section area of reinforcement is

0.3 (M) (_‘9_8_ _ 1) =03 (M) (ﬁ - 1) =0.63 in.2
Ash - f}'f’ Ach 60 441

0.00%0Se _ 092 X205 X4 _ 4 o in2
Fa 60

Choose no. 4 hoops and no. 5 crossties:
Aghy =2 x02+031=071in? > 063 in?

Detailing of the reinforcement can be found in Fig. 20.21.

24"

s=5 in.:t:
24"

No. 5 crossties

o
o Ll |

No. 4 hoops

15
| |
I 24" ]

Figure 20.21 Example 20.7 reinforcement detailing.
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—t

12d,

r—

Lan |
1

Figure 20.22 Standard 90° hooks. Courtesy of American Concrete Institute (ACi 2008).

Joints of the special moment-resisting frame (Section 20.5.1.3). Joint of special moment-
resisting frame should be detailed according to the ACI Code 2008, Section 20.5, as follows:

Longitudinal Reinforcement Requirements (Section 20.5.1.3.1) The development length /45
for a bar with a standard 90° hook using normal-weight concrete, for bar size no. 3 through
no. 11, shouid be determined according to the following (Fig. 20.22):

f ydb

65./f!

lan= {g d, (20.50)

6 in.

where d, is the diameter of longitudinal reinforcement.
The development length, I, for a strait bar for bar size no. 3 through no. 11 should not be
less than

1. 2.5 g, if the depth of the concrete cast in one lift beneath the bar does not exceed 12in.
2. 3.5 igy if the depth of the concrete cast in one lift beneath the bar exceeds 12in.

When the longitudinal reinforcement passes through the joint, the column dimension par-
allel to the beam reinforcement should not be less than 20 times the diameter of the largest
longitudinal bar for normal-weight concrete. For lightweight concrete, this dimension should not
be less than 26 times the bar diameter.

Shear strength requirements (Section 20.5.1.3.2) The nominal shear strength of the joint for
normal-weight concrete should not exceed the following:

1. 20,/f!A; for joints confined on all four faces
2, 15\/T;A ; for joints confined on three faces or on two opposite faces
3. 12,/f!A; for all other joints

where A; is the effective area, as shown in Fig. 20.23.
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Beam-column connection (joint).

/4 7 ;; Effective

joint width< b+ h
Effective area <b+2x

Joint depth = h in plane of _|
reinforcement generating shear

Reinforcement 0000 S oo 5 :
generating shear _{ Note: Effective area of joint for forces in
xf— sesas B
each direction of framing is to be
Direction of foices - ° h considered separately.
generating shear — > " Joint illustrated does not meet
I——l conditions of 21.7.3.2 and

/ 21.7.4.1 necessary to be considered
continued because the training

members do not cover at least 3- of
each joint faces.

Figure 20.23 Effective Aj of joint. Courtesy of American Concrete Institute (ACI 2008).

20.5.2 Structures in the High Seismic Risk: Special Reinforced Concrete Structural
Walls and Coupling Beams (ACI 2008 Section 21.9)

Wall system is a structural system that provides support for all gravity loads and all lateral loads
applied to the structure. A structural wall system is much stiffer than a frame system and its
performance during an earthquake is better than the performance of the frame system.

A structural wall should be properly designed to sustain all loads acting on it. Boundary
elements of structural walls are the areas around the structural wall edges, as shown in Fig. 20.24,
that strengthen by the longitudinal and transverse reinforcement. Boundary elements increase
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Web (wall)
X
Boundary
element
\ &
i
e ar

Boundary
element

Figure 20.24 Boundary elements of structural wall.

Shear wall after an earthquake.

the rigidity and strength of wall panels. The web reinforcement is anchoraged into the boundary
elements.

Figure 20.25 shows the elements of the wall with openings. The vertical wall segment
bounded by two openings is called pier. A horizontal wall section between the openings is
called a horizontal wall segment. When the openings are aligned vertically over the building
height, the horizontal wall segments between the openings are called coupling beams.
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Pier Pier

Coupling beam

Pier Pier
Pier
Horizontal
wall element
/ / / U SA A 7/

Figure 20.25 Elements of the wall with openings.

In the regions of high seismic risk, structural walls with special reinforcement requirements
should be used. The ACI Code (2008) Section 21.9, gives provisions for the design and detailing
of structural walls. These are described in the following sections.

Reinforcement Requirements (Section 20.5.2.1).  Shear reinforcement should be provided in
two orthogonal directions in the plane of the wall. (ACI 2008, Section 21.9.2.1) The minimum
reinforcement ratio for both longitudinal and transverse directions can be determined as follows:

1. If the design shear V, > Acvxﬂ , the distributed web reinforcement ratios, p, and p,,, should
not be less than 0.0025.

p1 = — = pp = 0.0025 (20.51)

where
p: = ratio of area of distributed reinforcement parallel to the plane of A, to gross
concrete area perpendicular to that reinforcement (Fig. 20.26)

pi = ratio of area of distributed reinforcement perpendicular to the plane of A, to
gross concrete area Ay. (Fig. 20.26)

Acy = gross area of concrete section (product of thickness and length of the section in
the direction of shear force)

Agy = Projection on Ay of area of shear reinforcement crossing the plane of A,
A = factor for lightweight aggregate concrete

2. If the design shear (V,) < Acv)\\/ﬁ’ the minimum reinforcement for ordinary structural walls
can be utilized:

Minimum vertical reinforcement ratio, p; = 0.0012 for no. 5 bars and smaller
= (.0015 for no. 6 bars and larger
Minimum horizontal reinforcement ratio, p, = 0.0020 for no. 5 bars and smaller

= 0.0025 for no. 6 bars and larger
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Figure 20.26 Reinforcement requirements.

The spacing of the reinforcement can be calculated as follows:
= 2AS'/Asrequired (per foot of wall)
where
A! = area of one bar (Fig. 20.26)

Maximum spacing of reinforcement is 18 in. each way according to ACI Section 21.9.2.1.

If the in-plane factored shear force assigned to the wall exceeds 2A.yA/f/, at least two
curtains of reinforcement should be provided, as shown in Figure 20.26.

All continuous reinforcement in structural walls should be anchored and spliced as rein-
forcement in tension for special moment frame (Section 21.9.2.3).

Shear Strength Requirements (Section 21.9.2.2). The shear strength of structural wall is
adequate if the following condition is satisfied:

Vi < ¢V, (20.52)
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where

V. = factored axial force
V. = nominal shear strength
¢ = strength reduction factor

According to the ACI Code (2008), Section 9.3.4, the strength reduction factor for shear will be
0.6 for any structural member designed to resist earthquake effects if its nominal shear strength
is less than the shear corresponding to the development of the nominal flexural strength of the
member. For all other conditions reduction factor for shear will be 0.75.

The ACI Code (2008), Section 21.9.4, defines the nominal shear strength of structural walls
as follows:

Vo = Aoy (@ch/fL+ oo fy) (20.53)
where

o, =30 forh—w < 1.5
hw
=20 for}E >2.0

w

b
= linear interpolation between 3.0 and 2.0 for — between 1.5 and 2.0

w
where

hy = height of the wall
I, = length of the wall

For the walls with openings, the value of h,/l,, shall be the larger of the ratios for the entire
wall and the segment of wall considered. This ensures that the assigned unit strength of any
segment of a wall is not larger than the unit strength for the whole wall.

If the ratio h,/l, < 2, reinforcement ratio p, should not be less than po,.

For the walls with openings, the nominal shear strength, V,, for vertical and horizontal
walls segments should satisfy the following:

1. If the factored shear force is resisted several pier, the nominal shear strength, V,, for all wall
segments should be < 8Acv\/7c’, where A., is the total cross-section area of the walls (piers)
and V, < 10A,./ f!, where A is the cross-section area of the pier considered.

2. Nominal shear strength of horizontal wall segment and coupling beams should be

< 10Aqp/ f], where Ag, is the cross-section area of the horizontal wall segment or coupling
beam.

Design for flexure and axial loads (Section 20.5.2.3). Flexural strength of walls should be
determined according to the procedure used for columns subjected to flexure and axial loads
(ACIT 2008, Section 21.9.5). The reinforcement in the whole cross-section of the wall, including
boundary elements and web, should be included in calculations of the capacity of the wall.
Openings in walls should also be considered.

Where the wall sections intersect, they from L-sections, T-sections, or other cross-section
shapes of the flanges (as shown in Fig. 20.27), which need to be considered in design. Flange
width should be determined as follows:

Effective flange width from the face of the web should extend a distance equal to or smaller
than % the distance to an adjacent wall web or 25% of the total wall height (Fig. 20.28), (ACI
Section 21.9.5.2).
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Figure 20.27 Shapes of the wall flanges.
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Figure 20.28 Effective flange width, by.

Special Boundary Elements of Special Reinforced Structural Walls (Section 20.5.2.4). Dur-
ing an earthquake, a structural wall behaves as cantilever beam (Fig. 20.29). Boundary elements
can be very heavily loaded due to earthquake loads. A plastic hinge can form at the base of the
wall, which requires special reinforcement detailing to provide necessary strength and ductility
of the structural wall. According to the ACI Code (2008), Section 21.9.6.1, there are two design
approaches for evaluating the detailing requirements of wall boundary element. These are defined
as follows:

1. Displacement based design (ACT Section 21.9.6.2). For the walls or walls pier that are effec-
tively continuous from the base of the structure to the top of the wall, design to have a single
critical section for flexure and axial load compression zones should be reinforced with special
boundary elements if

!
c> —2% (20.54)

Ou
600 ( -—
(+2)

where

=~|o,

& =
v
<
&
|
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Figure 20.29 Deformation of wall due to earthquake loads.

¢ = the distance from the extreme compression fiber to the neutral axis, calculated
for the factored axial force and nominal moment strength

I, = the length of the wall in the direction of shear force
8, = design displacement

The special boundary reinforcement should extend vertically from a critical section a distance
(Fig. 20.30).

> M (20.55)
4v,

2. Shear based design (ACI Section 21.9.6.3). Structural walls not designed to the displacement
based approach shall have special boundary elements at boundaries and edges around openings
of the structural wall. A special boundary element should be provided where the maximum
extreme fiber compressive stress due to factored forces including earthquake effects exceeds
0.2f!. The boundary elements may be discontinued when the compressive stress becomes
less than 0.15 /.

Detailing of the special boundary elements should satisfy the following:

1. Extend horizontally from the extreme compression fiber a distance (Fig. 20.30).

c—0.1{,
Z1c

2
where

¢ = the largest neutral axis depth calculated for the factored axial force and nominal
moment strength consistent with §,.

2. Transverse reinforcement should be designed by the provisions given for the special moment
frame members subjected to bending and axial forces (Fig. 20.31).
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l P,

"

Figure 20.30 Area where special reinforcement requirements should be provided.

Coupling Beams (Section 20.5.2.5). The coupling beam is the structural element that rigidly
connects two walls. In a properly designed earthquake-resistant coupled wall system, the coupled
beams should yield first, before the base of the wall where the bending moment has the highest
value. Also, the beam should have significant ductility and dissipate the energy through the
inelastic deformation.

According to the ACI Code, Section 21.9.7, the coupled beams should be designed as

follows:

1

2.

If I,/h > 4, where [, is the length and 4 is the height of the coupled beam, design the coupled
beam to satisfy requirements given for flexural members of special moment frame.

If I,/h < 4, the beam should be reinforced with two intersecting groups of diagonally placed
bars symmetrical about the midspan. The diagonal bars are also required for coupling beam
with aspect ratio /,/h < 2 and V,, > 41\/TLfAcw, where A 1s the area of concrete section,
resisting shear, of individual pier or horizontal wall segment.

Two confinement options are described in ACI 318-08 as shown in Figure 20.32. Accord-
ing to ACI Section 21.9.7.4(c) each diagonal element consists of a cage of longitudinal and
transverse reinforcement as shown in Figure 20.32(a). Each cage contains at least four diag-
onal bars and confines a concrete core. The requirement on side dimensions of the cage and
its core is to provide adequate toughness and stability to the core section when the bars are
loaded beyond yielding.

ACI Section 21.9.7.4(d) describes a second option for confinement of the diagonals as
shown in Figure 20.32(b). This second option is to confine the entire beam cross section
instead of confining the individual diagonals. This option can considerably simplify field
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Figure 20.31 Reinforcement details for special boundary elements. Courtesy of Port-
land Cement Association (notes on ACI 318).

placement for hoops, which can be challenging where diagonal bars intersect each other or
entire wall boundary.
Nominal shear strength can be determined using the following equation:

Vi = 2Avafy sina < 10,/ Acw (20.56)
where

Ayq = total area of reinforcement in each group of diagonal bars in a diagonally
reinforced coupling beam
o = angle between the diagonal reinforcement and the longitudinal axis of a
diagonally reinforced coupling beam

Transverse reinforcement for each group of diagonally placed bars should be designed
as transverse reinforcement for the members of a special moment frame subjected to bending
and axial force.

Detailing of coupling beam reinforcement should be in accordance with Fig. 20.32.
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Note:
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(b) Full confinement of diagonally reinforced concrete beam section.

Figure 20.32 Reinforced detailing for coupling beams with diagonally oriented rein-
forcement. Wall boundary reinforcement shown on one side only for clarity. Courtesy of
American Concrete Institute (ACI 2008).
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Summary: Design of Special Structural Wall (Section 20.5.2.6).

Step 1. Determine minimum reinforcement ratio according to Section 20.5.2.1 and design hori-
zontal and vertical reinforcement for wall web.

Step 2. Check the shear strength of the wall according to Section 20.5.2.2.

Step 3. Design the wall for flexure and axial force assuming that the wall behaves as a column
and include all reinforcement in cross-section of the wall and reinforcement in boundary
elements and web in calculations (Section 20.5.2.3).

Step 4. Check whether the boundary elements need to be specially detailed according to Section
20.5.2.4. If conditions are satisfied, design the transverse reinforcement of boundary
elements by the provisions given for the special moment frame members subjected to
bending and axial forces.

Step 5. Design the coupling beams as shown in Section 20.5.2.5

Example 20.8

Design the wall section given in Fig. 20.33 as a special structural wall.

Given: Forces are Pu = 4000 kip, Mu = 45,000 kip-ft, Vu = 900 kip; boundary elements
are 24 x 24in. columns; wall web thickness is 16in.; wall length is 28 ft; wall height is 12ft;
normal-weight concrete with £/ = 4000 psi; normal-weight concrete, and f, = 60,000 psi. Boundary
elements are reinforced with 16 no. 11 bars.

lg:mmx

m 1211,
MM

SIS S S

- V,=900K
Fﬂ:.l
24 ir@: : I : 124 in.
16in.

28 ft.
Figure 20.33 Example 20.8: structural wall.
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Solution

1. Reinforcement requirements. To determine minimum reinforcement ratio check whether V,, >
Acvh/ f!

Acy = 16 x (28 x 12) = 5376 in.?
Acvhy/f2 = 5376 x 1 x ~/4000/1000 = 340 kip < V,, = 900 kip

Agy
= min g = A—s = p, = 0.0025

CV

Minimum reinforcement in both directions, longitudinal and transverse, per foot of wall can be
determined as follows:

Aey = 16 x 12 = 192 in.? per foot of wall
A, = 0.0025 x 192 = 0.48 in.2/ft
Check whether two curtains of reinforcement are needed:
2400/ f] =2 x 1 x 340 = 680 kip < Vu = 900 kip
Two curtains of reinforcement are required.

Choose no. 5 bars:
As =2 x (0.31) = 0.62 in?
0.62
Spacing(s) = 043 x12=155in< 18 in.

Choose s = 15in. (See Fig. 20.34.)

2. Shear strength requirements. Check whether the two curtains of no. 5 bars spaced 15in. on
center can sustain applied shear force at the base. For A/, = 12/28 = 043 < 1.5,

O, = 3.0
0.62
P=Tox 15 - 00026

Ve = A (@A L+ pi fy)
=0.75 x 5376(3 x 1 x +/4000 + 0.0026 x 60000)/1000 = 1394 kip > 900 kip

Two curtains of no. 5 bars spaced 15in. center-to-center can sustain applied shear force at the

base.
3. Design for flexure and axial force. Wall is designed as column subjected to axial load and
bending.
Pu = 4000 kip
Mu = 45,000 kip
Mu 45,000 .
€= 5= 1000 x 12 =135 in.
M, 45,000 .
Pu 4000
Pn=—=—-=6153ki
"= T 065 P
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No. 5 bars
s=15in.
L 4
L)
d \.
L 4
\\\\\\ -
\\
\
S ~ @
\
\\ . No. 5 bars
\
\
[ .
V\\
\
\|\

Figure 20.34 Example 20.8: reinforcement detailing of wall web.

Total area of reinforcement consists of 32 no. 11 bars in boundary elements and 40 no. 5 bars
in the web.

A =32 x 1.56 + 40 x 0.31 = 62.3 in.”

A, = 5760 in.2
62.3
P =575 =00109>001 and <006 (0k)

P, 6,153,000
FlAg 4000 x 5760
From the interaction diagram,
M,
JiAgh
M, = 0.162 x 4000 x 5760 x 28 x 12 = 104,509 kip-ft > 69,230 Kip-ft (0.k.}

= 0.267

= 0.162

4. Special boundary elements requirements. The shear-based approach is used to determine whether
the special boundary elements are required.

Ag = 5376 in?
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No. 4 hoop
No. 4 ties
A

janas!

24in.

¥ ] ._\I | S |

24 in,

Figure 20.35 Example 20.8: boundary element reinforcement.

[ 16 x (28 x 12)°
£ 12

28 x 12
c=

= 50,577,408 in.?

= 168 in.

Maximum compressive stress in the wall
P, M,c 4,000,000 45,000,000 x 12 .
.l = 168 = 2538
A, I 5376 T 50,577,408 pet

0.2f, = 0.2 x 4000 = 800 psi < 2538 psi

A special boundary element is needed. Transverse reinforcement of boundary element shouid
be designed as for members of special moment frame subjected to axial load and bending
(Fig. 20.35).

Use no. 4 hoops and crossties around longitudinal bars in both directions. Maximum
spacing of transverse reinforcement should be determined as follows:

0.25 x {smallest member dimension) = 0.25 x 24 = 6 in.
6 x (diameter of longitudinal bar) = 6 x 1.41 = 8.5 in.

14 — =
sx=4+( 3h‘)=4+(1476)=6.7>6

Smax =

Use s = 6in. (governs).

Required cross-section area:

o 00hefe 009 x6x(24—-Qx15)-051x4 o002

A
sh 7, &0

A ! ( 576 ) 4 ,
Ay = 0.3sh £ 125 =03x6x205 —1)— =0911 in?
sh she [Ach ] fon X 6 x 12035 %0 in. (govems)

No. 4 hoops with crossties around every longitudinal bar provide

Ap =5x02=10in%>0911in? (ok.)
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24 in.

»
Y

J/

"!_'\hlu

No. 4 hoops
24 in. - P

-t
» L | )
No. 4 crossties

» L |

9 o

:%7 No. 5 bars
]

Figure 20.36 Example 20.8: reinforcement detailing.

Development length of no. 5 bars assuming that the hooks are used (ACT Section 21.7.5.1) is
Sydp 60000 x 0.625

— =9 in.
65\/37; 654000
8d, =8 x0.625 =5 in.
6 in.

lan >

Therefore, I, = 9in. Iy = 3.5155 = 3.5 x 9 = 32in. > the dimension of boundary element = 24 in,
Use the hooks to anchor reinforcement (Fig. 20.36).

20.5.3 Structures in the Areas of Moderate Seismic Risk: Intermediate Moment Frames
{ACI 2008, Section 21.3)

In regions of moderate seismic risk (SDC C), the moment frames should be designed as inter-
mediate moment frames. The ACI Code, ACI Section 21.1.1.5, gives provisions for the design
and detailing of intermediate moment frames as follows:

Longitudinal Reinforcement Requirements (Section 20.5.3.1). If the compressive axial load
for the member < A, f//10, the member is considered to be subjected only to bending and the
following is applicable (ACI 2008, Section 21.3.2):
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Positive moment strength at joint face > 3 negatlve moment strength at that face of the

joint.
1
Mnl > 3.M (left joint) (20.57a)
M,"t > 3M - (right joint) (20.57b)

Neither the positive nor the negative moment strength at any section along the length of the
member should be less than % the maximum moment strength provided at the face of either
joint.

(@M or ¢ M) > ! max(q)M at either joint) (20.58)

Transverse Reinforcement Requirements (Section 20.5.3.2).

Beams. It is assumed that the plastic hinges will form at the end of the beams. According to
this, the beam ends should be specially detailed to provide the beam with necessary ductility.
Hoops should also be provided over a length equal to 2d (d is the effective depth of the
beam) measured from the face of support towards midspan. The first hoop should be located at
distance < 2in. from the face of support.
Maximum spacing of transverse reinforcement should not exceed the smallest of:

d

4
Siax < | 8 x (diameters of the smallest longitudinal bar enclosed) (20.59)

24 x (diameter of the hoop bar)
[ 12 in.

When hoops are not required, stirrups should be used. Spacing of stirrups should be < d/2
through the length of the member (ACI Section 21.3.4.3).

Columns. Transverse reinforcement of columns of intermediate moment frame should be de-
signed with spiral reinforcement or with hoops and stirrups as follows: Spiral reinforcement
should satisfy requirements for ordinary compression member (ACI 7.10.4): Hoops should be
provided at both ends of the member over a length I, measured from the face of the joint, spaced
a distance s,. (ACI Section 21.3.5.2). Spacing S, shall not exceed the smallest of the four items
listed below or

8 x (diameter of the smallest longitudinal bar)

24 x (diameter of the hoop bar) (20.60)

§o <
EOf the smallest cross-section dimension of the member 12
Length 1, shall not be less than the largest of the three items listed below or
% of the clear length of the member
lo Z ] Maximum cross-section dimension of the member (20.61)

18 in.
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The first hoop should be located at distance < s5,/2 from the joint face. Outside the length
I, spacing s, should confimm to ACI Section 7.10 and ACI Section 11.4.5.1 or

d

5o <12 (20.62)
24 in.
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PROBLEMS

20.1 Determine seismic design category for a five-story building in the area of northern California if the
soil is hard rock.

20.2 Determine base shear for a two-story building located in the area of high seismic risk where Sg =
1.3g and S| = 0.6 g, on soil class B. Assume that the idealized wetght of the first floor is 50 kip
and of the second floor is 60 kip.

20.3 Determine lateral seismic forces for the five-story building assuming that the idealized mass of each
floor is 1000 kip. Consider the structure a building occupancy category III, site class C.

20.4 Design the longitudinal reinforcement for the beam on the second floor of a special-moment frame
four-story building assuming the clear span of a beam is 24 feet. Each story height is 12 feet. Beam
dimensions are 20 x 24in., and the column is 24 x 24 in. Bending moments acting on the beam are
given in the following table.

Load Location Bending Moment (kip-ft)
Dead Support =70

Midspan 45
Live Support 25

Midspan 18
Earthquake Support +180

Midspan 0
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20.5 Design the transverse reinforcement for the beam of special moment-resisting frame. The beam is
reinforced with five no. 8 bars and is 24 x 30in. Load acting on the beam is Wp = 3.0 kip/ft, Wy
= 1.5 kip/ft, and clear span is 24 ft.

20.6 Design the reinforcement for a column on the first floor of four-story building following the provisions
for special moment-resisting frame reinforcement. The column is 30 x 30in. and 12 ft high. Nominal
flexural strength of the beam framing into the column M, = 650k - ft. Axial load acting on the on
the second-floor column is P, = 1920 kip, axial load acting on the first-floor is P, = 2000 kip, and
minimum axial load in load combination is 1010 kip. The shear force is V,, = 120 kip. Draw the
detail of reinforcement.

20,7 Design the reinforcement for a wall having a total height of 28 ft and span of 35 ft. Total gravity
load acting on the wall is 5200 kip, factored moment (M,,) = 50,000 kip-ft, and base shear is V =
1000 kip. Wall thickness is 20in. and boundary elements are 25 x 25in.



CHAPTER 2 1

BEAMS CURVED
IN PLAN

Curved beams in an office building.

21.1 INTRODUCTION

Beams curved in plan are used to support curved floors in buildings, balconies, curved ramps
and halls, circular reservoirs, and similar structures. In a curved beam, the center of gravity of
the loads acting normal to the plane of curvature lies outside the line joining its supports. This
situation develops torsional moments in the beam, in addition to bending moments and shearing
forces. To maintain the stability of the beam against overturning, the supports must be fixed or
continuous. In this chapter, the design of curved beams subjected to loads normal to the plane
of curvature is presented. Analysis of curved beams subjected to loads in the plane of curvature
is usually discussed in books dealing with mechanics of solids.

Analysis of beams curved in plan was discussed by Wilson [1]. He introduced formulas and
coefficients to compute stresses in curved flexural members. Timoshinko [2], [3] also introduced
several expressions for calculating bending stresses in square and rectangular sections. Tables
and formulas for the calculation of bending and torsional moments, shear, and deflections for
different cases of loadings on curved beams and rings are presented by Roark and Young [4].

21.2 UNIFORMLY LOADED CIRCULAR BEAMS

The first case to be considered here is that of a circular beam supported on columns placed
at equal distances along the circumference of the beam and subjected to normal loads. Due to
828
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q

e

x = (rsin §)/6

(Poemmmmemmm

Figure 21.1 Circular Beam.

symmetry, the column reactions will be equal, and each reaction will be equal to the total load
on the beam divided by the number of columns. Referring to Fig. 21.1, consider the part AB
between two consecutive columns of the ring beam. The length of the curve AB is r(28), and
the total load on each column is P, = w,r(26), where r is the radius of the ring beam and w,
is the factored load on the beam per unit length. The center of gravity of the load on AB lies at

a distance
_ (rsing )
=\

from the center O. The moment of the load P, about AB is

r siné

Map=P,xXy=P,(x—r cosd) =w,r(20) ( -r cosB)

Consequently, the two reaction moments, M4 and Mp, are developed at supports A and
B, respectively. The component of the moment at support A about AB is M4 sin 6 = Mp sin
6. Equating the applied moment, M 4p, to the reaction moments components at A and B,

2My sin® = Map = w,r(20) (’ S;“g —r 0089) QL.1)

My =Mg=uw,r’(1—6 cot)
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The shearing force at support A is

Va= % = w,r8 (21.2)
The shearing force at any point N, Vy, is V4 — w, (ra), or
Vy = w,r(@ — a) (21.3)
The load on AN is w, (ta) and acts at a distance equal to
r sina/2
= «f2

from the center 0. The bending moment at point N on curve AB is equal to the moment of all
forces on one side of o about the radial axis ON.

o
My = Va(r sina) — M, cose — (Joad onthe curve AN) (Z sin 5)

My = w,ré{r sinw) — wur2(1 —8 cot8)cosa

(wura) r sina/2 « sin o
“ o/2 2
= wur2 [9 sina —cosa + (6 cot8 cosa) — 2 sinzg
My = w,r*[0 sina + (0 cotf sina) — 1] (21.4)

(Note that cos & = 1 — 2 sin? «/2.) The torsional moment at any point N on curve AB is equal
to the moment of all forces on one side of N about the tangential axis at N.

ina/2
% X cosa/z)

. wurz(l — 8 cot8)sina — w,r?0(1 — cos«) + wurz(oz —sinw)

Ty = My sine — V4 x r(l —cosa) + wra (r -

T, = wurz(a —04+6 cose — 8 cotfsing) (21.5)

To obtain the maximum value of the torsional moment Ty, differentiate Eq. 21.5 with
respect to o and equate it to 0. This step will give the value of ¢ for maximum 7y.

S /02 _ «inl I
sino = 2 [sm @ £ cos8v 8+ —sin“ @ (21.6)

The values of the support moment, midspan moment, the iorsional moment, and its angle
a from the support can be calculated from Eqgs. 21.1 through 21.6. Once the number of supports
n is chosen, the angle ¢ is known,

2
20=" ad 6="1
n n

and the moment coefficients can be calculated as shown in Table 21.1. Note that the angle « is
half the central angle between two consecutive columns.

2
Load on each column is P, = w,r(20) = w,r (%)

P,
Maximum shearing force is V, = >
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Table 21.1 Force Coefficients of Circular Beams
Number of o’ for T,
Supports, n 0= —:~ K4 Ka Kj {max)
4 90 0.215 0.110 0.0330 19.25
5 72 0.136 0.068 0.0176 15.25
6 60 0.093 0.047 0.0094 12.75
8 45 0.052 0.026 0.0040 9.50
9 40 0.042 0.021 0.0029 8.50
10 36 0.034 0.017 0.0019 7.50
12 30 0.024 0.012 0.0012 6.25
Negative moment at any support = K w,r> 217
Positive moment at midspan = K,w,r> (21.8)
Maximum torsional moment = K3w, > (21.9)

The variation of the shearing force and bending and torsional moments along a typical

curved beam AB are shown in Fig. 21.2.

Shearing
force diagram +

Bending moment /'/I/
diagram

Torsional
moment
diagram +

Figure 21.2 Forces in a circular beam.
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Example 21.1

Design a circular beam supported on eight equally spaced columns. The centerline of the columns
lies on a 40-ft-diameter circle. The beam carries a uniform dead load of 6 K/ft and a live load of
4 K/ft. Use normal-weight concrete with f = 5 Ksi, fy, = 60Ksi, and b = 14in.

Solution

1.

Assume a beam size of 14 x 24in. The weight of the beam is

14 x 24

The factored uniform load is wy, = 1.2(6 + 0.35) + 1.6(5) = 15.7 K/ft.

. Because the beam is symmetrically supported on eight columns, the moments can be calculated

by using Eqgs. 21.7 through 21.9 and Table 21.1 Negative moment at any support is K} w, 2 =
0.052(15.7120)? = 326.6 K-ft. The positive moment at midspan is K2 w, ¢ = 0.216(15.7)(20)
= 163.3 K-ft. The maximum torsional moment is K3 w, 7 = 0.004(15.’7)(20)2 = 25.12 K ft.
Maximum shear is

P, w,r {2 3
= —= — 1 = g =)= .
Vu ) 2 ( p ) (15.7)(20) (8) 1233 K

. For the section at support, M, = 326.6K ft. Let 4 = 21.5in.; then

. M, _ 326.6 x 12,000
“Tbd2 T 14(21.5)2
For f/ =4 Ksi and f, = 60Ksi, p = 0.0126 < pma = 0.018, ¢ = 0.9

= 605 psi

As = 0.0126 x 14 x 21.5 = 3.8 in.?

For the section at midspan, M, = 163.3K-ft.

R = 163.3 x 12,000
“T O 14(21.5)2

p=0006 and A, =0.006x 14 x 21.5 = 1.81 in.?

Use two no. 9 bars.

= 303 psi

. Maximum torsional moment is T, = 25.12K.ft, and it occurs at an angle ¢ = 9.5° from the

support (Table 21.1}. Shear at the point of maximum torsional moment is equal to the shear at
the support minus wy ro.

9.5
V. = 123.3 — 15.7(20) (@ X Jt) =7124 K

The procedure for calculation of the shear and torsional reinforcement for 7,, = 25.12K-ft and

Vi = 71.24 K is similar to Example 15.2
a, Shear reinforcement is required when V, > ¢ V,/2.

Ve = 2/ fobd = 2(0.75)(1.0)v/4000(14 x 21.5) = 286 K
since $V,/2=143K <V, =71.24 K

Shear reinforcement is required.
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b. Torsional reinforcement is required when

2
T, > T. = oA/ ! (—';,i)
cp

Acp = xp¥o = 14 x 24 = 336 in.?
Py = 2(x0 + yo) = 2(14 +24) = 76 in.

3362 ;
T, =0.75 x 1 x +/4000 73 = 70.5 K-in.
since T, =25.12 K-ft = 301.4 K-in. > T,
Therefore torsional reinforcement is required.
¢. Design for shear:
i Vu=¢V.+ ¢V, and ¢V, = 28.6K.71.24 = 28.6 + 0.75V,, so V, = 56.8K
ii. Maximum V; = 8,/f7bd = 8/4000(14 x 21.5) = 1523 K > V,
iii. A,/S = V;/fyd = 56.8/(60 x 21.5) = 0.044 in?/in. (2 legs)
A, /28 = 0.022 in.2/in.(one leg)
d. Design for torsion:
i. Choose no. 4 stirrups and a 1.5-in. concrete cover:
x3=14-35=105in, y; =24-3.5=205in.
Aon = x1y) = 10.5(20.5) = 215.25 in?
A, = 0.854,;, = 183 in.2
pn=20x; + y1) = 2(10.5 + 20.5) = 62 in.
For # = 45°, cot @ = 1.0.
ii. Check the adequacy of the size of the section using Eq. 15.21:

2
Va 2 Ty pr Ve y
J (bwd) + (1.7A§,,) =0 (bwd +8‘/7")

¢V, = 28.6K, Ve =38.12K

71,240 \? [301,400 x 6272
Left-hand side = | { ——2r"_ DLAR X0 -
and sice \/(14 X 21.5) + [ 1.7(215.25)2J 335 psi

38,120

Right-hand side = 0.75 [ o129
1gni-nand side 5(14x21.5

+ 8«/4000) = 558 psi > 335 psi

The section is adequate.

ifi. Determine the required closed stirrups due to 7, from:
A _ T

5 24,fycoté’

_ 3014

T 0.75x 2 x 183 x 60

I, =1,/¢,¢ =0.75cot6 = 1.0

=0.0183 in%/in. (one leg)
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iv. The total area of one leg stirrup is 0.022 + 0.0183 = 0.04in.’/in. For no. 4 stir-
rups, area of one leg = 0.2in.? Spacing of closed stirrups is 0.2/0.04 = 5.0in., say,
5.5in.

- Ay 50b, 50(14) o
M - = = ——— =0.0117 in.”/in.
inimum S 5 60.000 in.“/in
This is less than the A,/s provided. Use no. 4 closed stirrups spaced at 5.5 in.
e. Longitudinal bars A; equal (A,/s) pi (fyo/ fy1) cot’f (Eq. 15.27).

A; = 0.018(62) (60> =1.13 in?

60
5./F A, A, -
M By —Jf - (F) (&)
¥y y
_ (5+/4000)(336)

60 3
- 0. )| — ) =064in"<1.0
60.000 0.018(6 )(60> in.” <
Use A; = 1.13in.2, with one-third at the top, one-third at middepth, and one-third at the
bottom, or 0.33in.2 in each location. For the section at the support, A, = 3.8in.2 + 0.38 =
4.18 in.2 Choose two no. 10 and two no. 9 bars (A, = 4.531in.%) as top bars. At middepth,
use two no. 4 bars (A, = 0.4in.2). Extend two no. 9 bars of the midspan section to the

support. At middepth use two no. 4 bars (A = 0.4in.%). Details of the section are shown in
Fig. 21.3.

Circular beams in an office building.
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r=120fc

249 F r—-—-—a 2#104+ 249

2#4 » o o 2#4 o | 24"

2#9 L__. [ _J 2#9
e R —r—

Seclion 1 Section 2
at midspan at support

Figure 21.3 Example 21.1.

21.3 SEMICIRCULAR BEAM FIXED AT END SUPPORTS

If a semicircular beam supports a concrete slab, as shown in Fig. 21.4, the ratio of the length
to the width of the slab is 2#/r = 2, and the slab is considered a one-way slab. The beamn will
be subjected to a distributed load, which causes torsional moments in addition to the bending
moments and shearing forces. The structural analysis of the curved beam can be performed in
steps as follows.

1. Load on beam: The load on the curved beam will be proportional to its distance from the
support AB. If the uniform load on the slab equals w psf, the load on the curved beam at
any section N is equal to half the load on the area NCDE (Fig. 21.4). The lengths are CN
= r sind, OC = r cosf, and CD = (d/df)(r cos®) = (r sin@ d@), and the arc NE is r d6.
The load on the curved beam per uvnit length is equal to

, _ wirsin®)r sinfdd _ wr sin® @
B 2(r d6) T2

(21.10)
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NE =rdb

oCc =rcost

NC =rsiné

Ccp = d(0C) = d (r cos 8)/df
= rsin 8 48

Bending moment
diagram

Torsional moment
diagram

Figure 21.4 Semicircular beam fixed at the supports.

2. Shearing force at A: For a uniform symmetrical load on the slab, the shearing force at A
is equal to

n/2 2 6 1
Vi=Vg = f (-"';—r sin20) (rdd) = 2 [~ - —sin29] @21.11)
Q

2 1274
_ (%) wr? = 0.39wr?

3. Bending moment at A: Taking moments about the line AB, the bending moment at A is
equal to

njl
Ma=Mg= [ w'(rdf) x (r sin6) (21.12)
0
x/2 3
= /O (% sinzo) (r sin)(r d6) = —3’3’—

4. Torsional moment at support A: T4 can be obtained by differentiating the strain energy of
the beam with respect to T4 and equating it to 0. Considering that T4 is acting clockwise
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at A, then the bending moment at any section N is calculated as follows:
: O wr
My = Valr sin8) — M, cosf + T, sinf —f (—2—— sin 6’) (rda) xr sin(8 — a)
0

1
My = wr? [% sin@ — (6) (1 +cos2e)] + T4 sin® (21.13)

The torsional moment at any station N on the curved beam is equal to

wr

n/2
Ty = —Var(l —cos8)+ M, sinf + T4 cosé +[ ( 2
0

sinzoz) (r da)
x r[1 — cos(6 — a)]
Ty = wr’ | Tcosf — 1)+ & + L sin28 | + Ty cosé (21.14)
v 8 47 24 4 ‘

The strain energy is

M2 d T2d
e f N 93 (21.15)

2El 2GJ

where

ds =r do
G = modulus of rigidity
E = modulus of elasticity
I = moment of inertia of the section
J = rotational constant of the section
= polar moment of inertia

To obtain T4, differentiate I/ with respect to Ty

Su My dMy Ty dTy
——= ] == doy+ | — x — de) =0
5T Er X ar, Ot | G XA, <o
daM
dT: =sind and E%:COSO
Therefore,
8 ro {7 T, 1 .
ﬁ’% = 7 A sin 8 [wr2 |:§ sin@ — 6(l+00826):| + T4 s1n9}d9

I f o wr’ —(cos8 — 1)+ — —l in20 | + 6 8 xdé =0
r
+ 7 + sin T4 cos8}cosf x

2 2
o (Z 22 o (5 ] 2T (222 2, (B)] =
El [wr (32 9)+TA(4)]+GJ [W (32 9)+TA(4)}_0
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Let EI/GJ = A; then

m a2 = 2 =t
T, (Z)(1+A)—wr [(§—§)+A(-§--§)]

= wr’ (% - ’-‘i) (1+2) = —0.0862wr> (1 + A)
9 32
Therefore,
Ta = —0.11wr? (21.16)
Substituting the value of 74 in Eq. 21.13, the bending moment at any point N is equal to
My = wr® [% sing — %(1 +c0s26) — 0.11 sinG] (21.17)

Substituting the value of T4 in Eq. 21.14,

Ty = wrl [%(COSQ -+ 49_1 + %4 sin28 — 0.11 C089:| (21.18)

. The value of G/E for concrete may be assumed to be equal to 0.43. The value of J for a

circular section is (m/2)r*, whereas J for a square section of side x is equal to 0.141x*. For
a rectangular section with short and long sides x and y, respectively, J can be calculated
as follows:

J=K xy3 (21.19)
The values of K’ are calculated as follows:
1 [16 X x4
K'=—|—-336=|1-— 21.20
16 [ 3 735 ( 12y4)] @120

whereas

v= 7= () (%) (m5) = 536 G
S GJ  \043/\ 12 J\K'yx3] 516K \x

Values of K’ and A are both shown in Table 21.2.

Example 21.2

Determine the factored bending and torsional moments in sections C and D of the 10-ft-radius
semicircular beam ADCB shown in Fig. 21.5. The beam is part of a floor slab that carries a uniform
factored load of 304 psf (including self-weight).

Table 21.2 Values of X* and A for Different Values of y/x

y/x 0.5 1.0 1.1 1.2 1.25 L3 14 1.5 1.6
K’ 0473 0.141 0.154 0.166 0.172 0.177 0.187 0.196 0.204
A 0.102 1.37 1.52 1.68 1.76 1.85 2.03 222 2.43
v/x 1.7 1.75 2.0 25 3.0 4.0 5.0 6.0 10
K’ 0.211 0.214 0.229 0.249 0.263 0.281 0.291 0.300 0.312
A 2.65 2.77 3.39 4.86 6.63 11.03 16.5 23.3 62.1
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C

Figure 21.5 Example 21.2.

Selution
1. Factored load w, = 304 psf.
2. For the section at C, 8 = 7/2 and w, r® = 0.304(10)> = 304. From Eq. 21.17,

1
MC=304[£sin7—r—

2 27N _ Ll i
~ sin > 6(1+cos 2) 0.1151n2]—35.3Kft

From Eq. 21.18,

1
T. =304 [% (cos% - 1) + % + 2—48il17l'—0.11008%:| =0
3. For the section at D, @ = 7/4.

2 T

4 T 1 T
- Tant - {1 —)—.11‘— = 152 K-ft
Mp 304[88m4 6( +ecos” 2) ~ 0 sm4] 5

v/ 4 b4 4 1 = i 4
TD=304|:§ (cosz—1)+E+ﬁsm-2——0.llcosz]—-13.7 K-ft

4. Maximum shearing force occurs at the supports.
Va4 = 0.3%w,r* = 0.39(0.304)(100) = 11.9 K
Maximum positive moment occurs at C, whereas the maximum negative moment occurs at the
supports.
_wr 304

Ma = = =101.3 K-ft
A 3 3

S. Design the critical sections for shear, bending, and torsional moments, as explained in
Example 21.1.

21.4 FIXED-END SEMICIRCULAR BEAM UNDER UNIFORM LOADING

The previous section dealt with a semicircular beam fixed at both ends and subjected to a
variable distributed load. If the load is uniform, then the beam will be subjected to a uniformly
distributed load w K/ft, as shown in Fig. 21.6. The forces in the curved beam can be determined as
follows:
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0
A ﬂCl——f) ***** B
Do
|
o NE =rdf
Pl OC" =rcosd
( C'D = rsin 8 d6

Torsional Moment Diagram

Figure 21.6 Semicircular beam under uniform load.

1. Shearing force at A:
nj2 P
Va=Vp =[ wrdf = er = 1.57Twr (21.21)
0
2. Bending moment at A:

n/2
My=Mg= / w(rdo) x (r sin®) = wr? (21.22)
0
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3. Bending moment at any section N on the curved beam when the torsional moment at A
(T4) acts clockwise:

)
My =V, (rsin@) — M, cosf@ + Ty sind —f (wr da)}[r sin(@ — a)]
0

= %wr2 sin@ — wrlcos8 + Ty sinf — [wr? — wr? cos 6]
My = wr? [% sin0 — 1] +T4 sind (21.23)

4. Torsional moment at any section N:

)
Ty = —Var(l—cos@)+ My sin@ + T4 cosf +f (wr da)r[l — cos(f — a)]
0

e —%wrz + %wr2 cos® + Ty cosf + M4 sind + wr26 — wr?siné
Substitute M4 = wr?;
Ty = wr? [%cos& — % + 0] 4+ T4 cosé (21.24)

5. The strain energy expression was given in the previous section:

_ 1’!»"1"1%r ds f Tﬁ ds 2125
~J 2EI 2GJ (21.25)
To obtain T, differentiate U with respect to 74.
Sy MN dMN f
= 4o N2y
3T, X gt 4O+ x dTA X (rd6) =
aM dT;
dT: =siné and d_TE- = cosé (from the preceding equations)
v _ 7 m[ 2(3rr sin 1) +T sine]s‘ 0 do
— = wr” | —sin—
5Ta  EI 2 A =
ro [*r L ym 4
+ Vel A [wr (E cosé — 2 +6) + T4 cos()] cos@ doé =0
The integration of the preceding equation produces the following:
sU r 2 n? b4 2 w2 b4
—_— = — — =1 T —_— —_—— - =
5Ta  EI ["’r (8 )+4 A]+GJ [w’ (s l)’L4T"] 0
2
2 (T 4 El
— =)+ =T (== +1) =
'[“” (8 )+ "](GJ+ )=o

Because EI/GJ is not equal to zero,

4 2
Ty = —wr? (—) (% - l) = —0.3wr? (21.26)
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6. Substitute T, in Eq. 21.23:

2 Z O3
= wr [ 281[19 (2 n)sm@]
2(3 sin@ — ) (21.27)
1
nc039+9—£)— z—i cosf
2 2 n

4
= wr (9 “Ts —cose) (21.28)
2 7

wr2

The values of the bending and torsional moments at any section N are independent of A
(I = EI/GJ).

7. Bending and torsional moments at midspan, section C, can be found by substituting § =
nf2 in Eqs. 21.27 and 21.28:

4
M, = wr? (; - 1) = 0.273wr? (21.29)
L _
T, = wr (2 2+0)_0 (21.30)

21.5 CIRCULAR BEAM SUBJECTED TO UNIFORM LOADING

The previous section dealt with a semicircular beam subjected to a uniformly distributed 1oad.
The forces acting on the beam at any section vary with the intensity of load, the span (or the
radius of the circular beam), and the angle « measured from the centerline axis of the beam.

Considering the general case of a circular beam fixed at both ends and subjected to a uniform
load w (K/ft), as shown in Fig. 21.7, the bending and torsional moments can be calculated from
the following expressions:

1. The moment at the centerline of the beam, M., can be derived using the strain energy
expression, equation 21.25, and can be expressed as follows:

wr?

M, = ?[A(Kl + Ky — K3)+ (K — Ky)] (21.31)
4
where
5 = E1

GJ
Ky =22sing —8)

K> = 2 sin 8 cos 8 = sin 20

K3 =48 cos 0

Ky =2086A + 1) — (A — 1) sin 26

20 = total central angle of the ends of the beam, angle AOB (Fig. 19.7)

The torsional moment at the centerline section, 7, is 0.
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2. The moment at any section N on the curved beam where ON makes an angle o with the
centerline axis (Fig. 21.7) is

My = M. cosa — wr(1 — cos ) (21.32)

3. The torsional moment at any section N on the curved beam as a function of the angle «
was derived earlier:

Ty = M, sina — wr?(a — sin o) (21.33)

4. To compute the bending moment and torsional moment at the supports, substitute 6 for o
in the preceding equations:

My = M. cos@ — wr(l — cos6) (21.34)
Ty = M,sin® — wr’(0 — sin@) (21.35)

Example 21.3

A curved beam has a quarter-circle shape in plan with a 10-ft radius. The beam has a rectangular
section with the ratio of the long to the short side of 2.0 and is subjected to a factored load of 8 K/ft.
Determine the bending and torsional moments at the centerline of the beam, supports, and maximum
values.
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Elevation

C Plan

Figure 21.7 Circular beam subjected to uniform load, showing the bending moment
diagram (BMD} and the torsional moment diagram {TMD).
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Solution

1. For a rectangular section with y/x = 2, A = EI/GJ = 3.39 (Table 21.2).

2. The bending and torsional moments can be calculated using Eqs. 21.31 through 21.35 for 8 =
n/4. From Eq. 21.31,

K =2 (2sin% - %) = 12576, K, = sin% =10

Ky=4 (%) cos % =2214

b4 .
Ki=2 (Z) (3.39+1) - (339 - Dsin 5 = 4.506

2
M, = %[3.39(1.2576 + 1.0 —2.2214) + (1.2576 — 1.0)]

= 0.0844wr?

For w = 8K ftand r = 10ft, M, = 64K-ft; T, = 0.
3. My = M. cos @ — wrl(l — cos a) = wr(1.08 cos @ — 1)

Ty = M, sina — wr¥(a — sine) = wr’(1.08 sina — @)
For the moments at the supports, & = 6 = n/4.
— il T Y= _ 2
My = wr (1.08 cos 7 1) 0.236wr
= —0.236 x 8 x (10)® = —189 K.ft
— a2 L W 2 _ )
Ty = wr (1.08 sin 7 4) =0.022wr? = —17.4 K-ft

For My =0,1.08cosae — 1 =0, or cos o = 0.926 and a = 22.2° = 0.387 rad. To calculate
Tw max, let dTn/da = 0, or (1.08 cos &« — 1) = 0. Then cos @ = 0.926 and o = 22.2°.

Tv(max) = wr2(1.08 sin22.2 — 0.387) = 0.0211wr?
Tn max = 0.0211 — 800 = 16.85 K-ft

21.6 CIRCULAR BEAM SUBJECTED TO A CONCENTRATED LOAD AT MIDSPAN

If a concentrated load is applied at the midspan of a circular beam, the resulting moments
vary with the magnitude of the load, the span, and the coefficient A = EI/GJ. Considering the
general case of a circular beam fixed at both ends and subjected to a concentrated load P at

midspan (Fig. 21.8), the bending and torsional moments can be calculated from the following
expressions:

1. The moment at the centerline of the beam, section C, can be expressed as follows:
M2 —2 cos@ — sin® ) + sin”

M. =
¢ 20(A + 1) — (A — 1) sin 26

(Pr) (21.36)

P
M, = “LOK + Ky
K
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i

P

C B.M.D.

Semicircular beam Circular beam

Figure 21.8 Circular beam subjected to a concentrated load at midspan, showing the
bending moment diagram (BMD) and the torsional moment diagram (TMD).

where
_ EI
T GJ
K1 =2 —2cos® — sin*9)
K2=sin29

Ki=20 (A + 1) — (A — 1) sin%0

The torsional moment at the centerline is 7, = 0.
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2. The bending and torsional moments at any section N on the curved beam where ON makes
an angle o with the centerline axis are calculated as follows:

P

My =M.cosax — (a-r) sin¢ (2L.37)
. P

Ty = M.sin — (Er) (1 —cosa) (21.38)

3. To compute the bending and torsional moments at the supports, substitute 6 for «.

P

My=M.cos — (Er) sin€ (21.39)
) P

Ty = M, siné@ — (Er) (1 —cos®) (21.40)

Example 21.4

Determine the bending and torsional moments of the quarter-circle beam of Example 21.3 if A = 1.0
and the beam is subjected to a concentrated load at midspan of P = 20K.

Solution
1. Given: A = 1.0 and é = n/4. Therefore,

Pr 1 —~cos8
Mi=|—1|——
= (T (=)
(Eq. 21.36) and T, = 0. For 8 = =n/4,
M, =0.187Pr = 0.187(20 x 10) = 374 K-ft
2. From Egs. 21.39 and 21.40,
T Pr 7
M4 =0.187Pr cos -7 sin 7 =—0.22 Pr
= —0.22 x (200) = —44 K-ft
4 b4
Ts =0.187Pr sin 7 — 0.5Pr (1 — cos Z) = ~0.0142Pr
= —0.0142 x 200 = —2.84 K -ft
3. My = 0 when
Pr .
M coso — X sine =0 (Eq. 21.37)

0.187Prcosa — 0.53Prsinag =0

tane = 0.374 and « =20.5°

Tp = 0 when M. sin &« — (P/2) r(1 — cos o) = 0 (Eq. 21.38), from which « = 37.7°.
4, To compute Ty, let dTy/da = 0 (equation (21.38)).

0.187Prcosa — 0.5Prsine =0, tana =0.374
and o = 20.5°. Substitute o = 20.5° in Eq. (21.38) to get Ty = 0.035Pr = 7K ft.
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21.7 V-SHAPE BEAMS SUBJECTED TO UNIFORM LOADING

Beams that have a V shape in plan and are subjected to loads normal to the plane of the beam
may be analyzed using the strain-energy principles. Fig. 21.9 shows typical bending moment
diagram for a V-shape beam subjected to a uniform load w. Considering the general case of
a V-shape beam fixed at both ends and subjected to a uniform load w (K/ft), the bending and
torsional moments can be calculated from the following expressions:

1. The moment at the centerline of the beam, section C, is calculated as follows:

=2
A sin” @
M, = (wa® 21.41

« = (wa )|:6(sin29+7u cos? 9)] ( )

Bending Moment Diagram

Figure 21.9 V-shape beam under uniform load.
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90" V-shape beams, London, Ontario, Canada.

where
__EI
T GJ
a = half the total length of the beam (length AC)
6 = half the angle between the two sides of the V-shape beam.

The torsional moment at the centerline section is

M,

T, = —— xcosf = M.cotf (21.42)
sin 6

2. The bending and torsional moments at any section N along half the beam AC or BC at a

distance x measured from section C are calculated as follows:

x2

My =M‘.—w? (21.43)
M,
Ty =T,= —— xcosf = M.cotf (21.44)
sinf
To compute the moments at the supports, let x = a. Then
2
a
MA — MC = w?

Tp=T.= M_.cotf

Example 21.5

Determine the bending and torsional moments in a V-shape beam subjected to a uniform load of
6 K/ft. The length of half the beam is @ = 10ft and the angle between the V-shape members is 26
= /2. The beam section is rectangular with a ratio of long side to short side of 2.
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Apartment building.

Solution
1. For a rectangular section with the sides ratio, y/x = 2, A = 3.39. For this beam 6 = /4.
wa’ sin® 6
2. M. = .21.41)
6 | (sin®6 + Acos?8) (Eq
2
wa* 0.5 5
M, = = 0.038wa”
6 ((0.5 +3.39 x 0.5)) wa

= 0.038 x 6(10)> = 22.8 K.t

2
My = M, — w% = 0.038wa? — 0.5wa® = —0.462wa>

= =2771.2 K-ft

xz
My = 0 when ML.—w? =0
or 0.038wa? — 0.5wx2 = 0, so x = 0.276a = 2.76 ft measured from c.
3. Ty = Tec = Mccoté

= 0.038wa® = 0.038 x 600 = 22.8 K-t
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21.8 V-SHAPE BEAMS SUBJECTED TO A CONCENTRATED LOAD AT THE CENTERLINE
OF THE BEAM

The general equations for computing the bending and torsional moments in a V-shape beam fixed

at both ends and subjected to a concentrated load P at the centerline of the beam (Fig. 21.10)
are as follows:

1. The moment at the centerline of the beam, section C, for any value of A, is

Pa sin” @
M. = — 21.45
¢ ( 4 ) ((sin26+lc0329)) ( )

Elevation

Figure 21.10 V-shape beam under concentrated load.
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where

L El
GJ

a = half the total length of the beam (part AB or BC)
& = half the angle between the two sides of the V-shape beam

The torsional moment at the centerline section is
M,
T, = —=cosf = M.cotd (21.46)
sin @

2. The bending and torsional moments at any section N along half the beam AC or BC at a
distance x measured from C are calculated as follows:

P
My=M, — _23‘. (21.47)
ITn =T, = M;.cotd (21.48)
The moments at the supports are determined by assuming x = a:
Pa
My=M.— 5 (21.49)
Ty =T,= M_,cotf (21.50)

Example 21.6

Determine the bending and torsional moments in a V-shape beam subjected to a concentrated load
P = 30K acting at the centerline of the beam. Given: § = n/4, y/x = 2.0, and a = 12ft.

Solution
1. For a rectangular section with y/x = 2.0, A = 3.39.

2 M = Pa _ sin® 7 /4
sin® 7 /4 + 3.39 cos? = /4

1 ) = 0.057(Pa)

= 0.057 x 30 x 12 =20.5K-ft

P
My = M, — —23 = (0.057 — 0.5) Pa = ~0.443(Pa)

= —0.0443 x 360 = —159.5Kft

P
My = 0 when Mc—Tx=0

Hence 0.057Pa — 0.5 Px =0 and x = 0.114a = 0.114 x 12 = 1.37 ft measured from c.
3. Ta=T,=Ty=M, cot%— = 0.057(Pa) = 205K-ft

Example 21.7

Determine the bending and torsional moments in the beam of Example 21.6 if the angle 6 is n/ 2 (a
straight beam fixed at both ends).

Solution

Given 6 = m/ 2 and the span L = 2g = the distance between the two supports. The bending moment
at the centerline is
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4 1 4 8
Pa PL P /L PL
MA:MC_Tv_w—é__a(a):_T:_gOK.ﬁ
T‘q:Tc:O

These values are similar to those obtained from the structural analysis of the fixed-end beam
subjected to a concentrated load at midspan.

Example 21.8

The beam shown in Fig. 21.11 has a V shape in plan and carries a uniform dead load of 3.5 K/ft and
a live load of 3 K/ft. The inclined length of half the beam is a = 10ft and 8 = 60°. Design the beam
for shear, bending, and torsional moments using f =4 Ksi and f, = 60Ksi.

w K/ft

372 K-t 372 K-ft

Bending Moment Diagram

Figure 21.11 Example 21.8.
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Solution
L w,=12D+ 16L =12 %35+ 1.6 x 3 = 90K/t

2. Assuming a rectangular section with a ratio of long to short side of y/x = 1.75, the value of
A is 2,77 (from Table 21.2). For 8 = 60° = =/3,

_ watsin’d 9(100)(0.75)
© 7 6(sin?@ + Acos2B)  6(0.75 + 2.77 x 0.25)

=+ 78 K-ft

2
My=M, —wu% =78—9($) =-=-372 K-ft

Tpo=M.cotf =78 x 0.577 = 45 K-ft = 540 K.in.
T (at x =0) = M, cot® =45 K-ft = 540 K-in.
Va=9%x10=90K
The bending moment is zero at My = 0 = M, — w, x%/2. Hence, 78 — 3x? =0 and x =
4.16 ft measured from c¢. The bending moment diagram is shown in Fig. 21.11.

3. Design for a bending moment, M,,, equal to —372K-ft.

a. For f, =4 Ksi, f, = 60Ksi, pmax = 0.0018, choose p = 0.015, R, = 702psi and ¢ =
0.9. (Appendix A)

M, 372 x 12
2 u .3
= — = —— = 6332 in.
bd R 0.705 6332 in
For a ratio,
X b

as assumed, then d = 21.4in. and & = 13.8in. Use a section 14 x 24in.

As = pmaxbd = 0.015(14 x 21.4) = 4.5 in.?

b. For the section at midspan, M, = 78 K-ft and actual d = 21.5in.
M, 78,000 x 12

Ri= 32 = Tax (21.5)

= 145 psi
£ < pmin = 0.0033
Use A; = 0.0033 x 14 x 21.5 = 1.0in.2
¢. Design for torsional moment and shear: 7, = 45 K-ft for all sections.

215
Va (at distance d) = 90 — T x9=740K

The design procedure will be similar to that of Example 21.1. Details of the final section
are shown in Fig. 21.12.

SUMMARY

Sections 21.1- 21.5

In a curved beam in plan, the center of gravity of normal loads lies outside the line joining

the suppotts developing torsional moments. The analysis of uniformly loaded circular beams is
presented in these sections.
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Figure 21.12 Example 21.8.

Section 21.6

Bar details at
section C

The analysis of circular beams subjected to concentrated loads is presented in this section.

Section 21.7

V-shape beams subjected (o gravity loads may be analyzed using the strain energy principles.
Equations to calculate the torsional moments of these types of beams are presented.
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PROBLEMS

21.1 A circular beam is supported on six equally spaced columns, and its centerline lies on a circle 20ft
in diameter. The beam carries a uniform dead load of 9.8 K/ft and a live load of 5 K/ft. Design the
beam using f/ = 4Ksi, f, = 60 Ksi, and b = 14in.

21.2 Design a semicircular beam fixed on both ends. The center of columns lies on a circle 121t in
diameter. The beam carries uniform dead and live loads of 4.9 K/ft and 3 K/ft, respectively. Use
S =4Kisi, f, =60 Ksi, and b = 20in.

21.3 Determine the factored bending and torsional moment at sections C and D of the fixed-end beam
shown in Fig. 21.5 if the diameter of the circle is 30 ft. The beam is part of a floor slab that carries
a uniform dead load (including its own weight) of 126 psf and a live load of 120 psf.

21.4 A quarter-circle cantilever beam has a radius of 8 ft and carries a uniform dead load of 6.4 KAt and
a concentrated live load of 4.25K at its free end. Design the beam using f! = 4 Kisi, f, = 60 Kisi,
and b = 14in.

21.5 Design the beam shown in Fig. 21.11 if the inclined length of half the beam is @ = & ft. The beam
has a 60° V shape in plan and carries uniform dead and live loads of 3.8 K/ft and 4 K/ft. Assume the
ratio of the long to the short side of the rectangular section is 2. Use f/ = 4 Ksi, and f, = 60Ksi.



APPENDIX A

DESIGN TABLES
(U.S. CUSTOMARY UNITS)

Table A.1 Values of R, and f—i for £/ = 3000 psi
Table A.2 Values of R, and S for f = 4000 psi

Table A3 Values of R, and S for f = 5000 psi

Table A.4 Values of ppax, Rumaxs 25> and Pmin
Table A.5 Suggested Design Steel Ratios, p;, and Comparison with Other Values
Table A.6 Minimum Thickness of Beams and One-Way Slabs
Table A.7 Minimum Beam Width (in.} (Using Stirrups)
Table A.8 Values of bd? (in.3)
Table A.9 Rectangular Sections with Compression Steel
Table A.10 Values of Modulus of Elasticity, £, (ksi)
Table A.11 Development Length
Table A.12 Designation, Areas, Perimeter, and Weights of Standard U.S. Bars
Table A.13 Areas of Groups of Standard U.S. Bars in Square Inches
Table A.14 Areas of Bars in Slabs (Square Inches per Foot)
Table A.15 Common Styles of Welded Wire Fabric
Table A.16 Size and Pitch of Spirals



Appendix A Design Tables (U.S. Customary Units)

Table A1 Values of R, and a/d for f, = 3000 psi (¢; > 0.005, ¢ =0.9and d = dy)

o0 f, = 40 ksi f, = 50 ksi f, = 60 ksi f, = 75 ksi
0.2 71 0.031 88 0.039 106 0.047 131 0.059
0.3 105 0.047 131 0.059 156 0.071 192 0.089
04 140 0.062 173 0.078 206 0.094 254 0.118
0.5 173 0.078 214 0.098 254 0.118 310 0.148
0.6 206 0.094 254 0.118 301 0.141 368 0.177
0.7 238 0.110 293 0.138 347 0.165 421 0.207
0.8 270 0.126 332 0.157 391 0.189 475 0.236
0.9 301 0.142 369 0.177 434 0.213 524 0.266
1.0 332 0.157 406 0.196 476 0.238 572 0.295
1.1 362 0.173 441 0.216 517 0.260 620 0.325
1.2 390 0.188 476 0.235 556 0.282 615 0.31%
1.3 420 0.204 510 0.255 594 0.306 {pmax = 1.082)
14 450 0.220 543 0.274 631 0.330
1.5 476 0.236 575 0.294 667 0.353
1.6 504 0.252 607 0.314 700 0.376
1.7 530 0.267 615 0.319
1.8 556 0.282 (Pmax = 1.356)
1.9 582 0.298
2.0 607 0.314
2.1 630 0.330
615 0.319
(Pmax = 1.624)
615 0.319
(pmax = 2.031)

Note: Last values are the maximum for g, = 0.005.
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Table A.2 Values of R, and a/d for f, = 4000 psi (¢; > 0.005, ¢ = 0.9 and d = dy)

fy = 40 ksi fy = 50 ksi fy = 60 ksi fy =75 ksi
100
p R, ald Ry a/d Ry ald R, ald
0.2 71 0.024 39 0.029 106 0.035 132 0.044
0.3 106 0.036 132 0.044 158 0.053 194 0.066
0.4 140 0.047 175 0.059 208 0.071 257 0.088
0.5 175 0.059 217 0.074 258 0.089 317 0.110
0.6 208 0.071 260 0.088 307 0.106 378 0.132
0.7 242 0.083 300 0.103 355 0.123 434 0.154
0.8 274 0.094 340 0.118 400 0.141 490 0.176
0.9 307 0.106 378 0.132 447 0.158 545 0.198
1.0 340 0.118 419 0.147 492 0.176 600 0.220
1.1 370 0.130 455 0.161 536 0.194 650 0.242
1.2 400 0.141 492 0.176 580 0.212 702 0.264
1.3 432 0.153 530 0.191 620 0.230 752 0.286
1.4 462 0.165 565 0.206 662 0.247 801 0.308
L5 492 0.177 600 0.221 700 0.265
1.6 522 0.188 635 0.236 742 0.282 820 0.319
(omax = 1.445)

1.7 550 0.200 670 0.250 780 0.300
1.8 580 0.212 702 0.265 818 0.318
1.9 607 0.224 735 0.280
2.0 635 0.236 768 0.294
2.1 662 0.248 800 0.309
22 690 0.260 820 0.319
23 717 0.271 (Pmax = 1.806)
24 742 0.282
25 767 0.294
2.6 792 0.306
2.7 817 0.318

820 0.319

(Pmax = 2.167)

820 0.319
(pmax = 2715)

Note: Last values are the maximum for &; = 0.005.
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Table A.3 Values of R, and a/d for f, = 5000 psi (z; > 0.005, ¢ = 0.9 and d = d)

p R, ald Ry ald R, ald Ay ald
0.2 71 0.019 89 0.024 106 0.028 132 0.035
0.3 106 0.029 133 0.036 159 0.042 196 0.052
04 141 0.038 176 0.047 210 0.056 260 0.070
0.5 176 0.047 218 0.060 260 0.070 322 0.088
0.6 210 0.056 260 0.071 310 0.085 384 0.106
0.7 244 0.066 302 0.083 360 0.100 442 0.123
0.8 277 0.075 343 0.094 408 0.113 500 0.141
09 310 0.085 383 0.106 455 0.127 556 0.159
1.0 343 0.094 424 0.118 502 0.141 612 0.177
1.1 375 0.104 463 0.130 550 0.155 667 0.195
1.2 408 0.113 500 0.141 593 0.169 722 0.212
1.3 440 0.123 540 0.153 637 0.183 776 0.230
1.4 470 0.132 578 0.165 681 0.198 830 0.247
1.5 502 0.141 615 0.177 724 0.212 875 0.265
1.6 532 0.150 652 0.188 766 0.226 920 0.282
1.7 563 0.160 688 0.200 808 0.240 970 0.300
1.8 593 0.169 724 0212 848 0.254
1.9 623 0.179 760 0.224 890 0.268 975 0.300
2.0 652 0.188 794 0.235 927 0.282 (Pmax = 1.704)
2.1 681 0.198 830 0.247 965 0.292
2.2 710 0.207 862 0.259 1003 0.311
2.3 738 0.217 894 0.271
24 766 0.226 927 0.282
2.5 794 0.235 958 0.294
2.6 821 0.244 990 0.306 975 0.300

(pmax = 2~123)
2.7 848 0.254
28 875 0.263
2.9 900 0.272
3.0 127 0.282
3.1 952 0.292
975 0.300
(Pmax = 2.551)
975 0.300
(Pmax = 3.18)

Note: Last values are the maximum for g, = .005.
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Table A4 Values of pmax, Rumax, £b» Omin
Po = 0.8581(f/1,)[87/(87 + £,)] pmax = (0.003 + 1, /E;)pp/0.008 R, = ppfy[1 — pf, /1.7f.]
f, 100max Rumax 100 100 100 Rymax 100 100
psi Pmax psi Pb Pmin Pmax psi Pb Pmin
3000 2.031 615 37 0.50 1.624 615 2.75 0.40
4000 2715 820 4.96 0.50 2.167 820 3.67 0.40
5000 3.180 975 5.81 0.53 2.551 975 432 042
6000 3.575 1108 6.53 0.58 2.864 1108 4.85 0.47
fy = 60 ksi fy = 75 ksi
£, 100 Ry max 100 100 100 Rymax 100 100
psi Pmax psi Pt Amin Pmax psi Pb Pmin
3000 1.356 615 2.14 0.33 1.082 615 1.55 0.27
4000 1.806 820 2.85 0.33 1.445 820 2.07 0.27
5000 2.123 975 335 0.35 1.704 975 244 0.28
6000 2.389 1108 377 0.39 1.920 1108 2.75 0.31
Note: puax values are for &, = 0.005 and ¢ = 0.9.
Table A.5 Suggested Design Steel Ratios, ps, and Comparison With Other Steel Ratios
f; fy 100 100 100 R, for Ratio Ratio Weight of o,
psi ksi P Prmax Ps pspsl)  pslpp ps/pmax  (Ib/ft® of concrete)
3000 40 371 2.031 1.4 450 0.377 0.689 7
50 275 1.624 1.2 476 0.436 0.739 6
60 2.15 1.356 1.2 556 0.558 0.885 6
4000 40 4.96 2.715 14 462 0.282 0.516 7
50 3.67 2.167 1.4 565 0.381 0.646 7
60 2.85 1.806 14 662 0.491 0.775 7
5000 40 5.81 3.180 1.6 532 0.275 0.503 8
50 432 2.551 1.6 652 0.370 0.627 8
60 3.35 2,123 1.6 766 0.478 0.754 8
Note: pmax values are for &; = 0.005 and ¢ = 0.9.
Table A8 Minimum Thickness of Beams and One-Way Slabs
Yield
Strength Simply One End Both Ends
Member fy (ksi} Supported Continuous Continuous Cantilevel
Solid one-way slabs 40 L125 L/30 L/35 LNn2s
50 Li22 LR7 L31 L1
60 Li20 L24 L/8 L0
Beams or ribbed 40 L0 L/23 L26 L/10
one-way slabs 50 L/18 L{20.5 Li23.5 L9
60 L/16 L/18.5 Li21 L8
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Table A.7 Minimum Beam Width (in.) (Using Stirrups)
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Add For
Size of Number of Bars in Singte Layer of Reinforcement Each Added
Bars 2 3 4 5 6 7 8 Bar (in.)
No. 4 6.1 7.6 9.1 10.6 12.1 13.6 15.1 1.50
No. 5 6.3 79 9.6 11.2 12.8 144 16.1 1.63
No. 6 6.5 8.3 10.0 11.8 135 15.3 17.0 1.75
No. 7 6.7 8.6 10.5 12.4 14.2 16.1 18.0 1.88
No. 8 6.9 8.9 109 129 14.9 16.9 18.9 2.00
No. 9 7.3 9.5 11.8 14.0 16.3 18.6 20.8 2.26
No. 10 7.7 10.2 12.8 15.3 17.8 204 229 2.54
No. 11 8.0 10.8 13.7 16.5 19.3 221 24.9 282
No. 14 8.9 12.3 15.6 19.0 224 25.8 29.2 3.39
No. 18 10.5 15.0 19.5 24.0 286 33.1 376 451
Table A8 Values of ba? (in.2) ba? = [“ﬁ ('b : '_"')]
Ry psi
g Values of b {in.)
(in) 6 7 8 9 10 1 12 13 14 15 16 20
4 96 112 128 144 160 176 192 208 224 240 256 320
45 122 142 162 182 202 223 244 264 284 305 325 405
5 15¢ 175 200 225 250 275 300 325 350 375 400 500
55 182 212 242 273 303 333 364 394 424 455 485 605
6 216 252 288 324 360 396 432 468 504 540 576 720
6.5 255 297 340 382 425 467 510 552 595 637 680 850
7 294 343 392 41 490 539 588 637 686 735 784 980
8 384 4438 512 576 640 704 768 832 896 960 1024 1280
9 486 567 648 729 810 891 972 1053 1134 1215 1296 1620
10 600 700 800 900 1600 1100 1200 1300 1400 1500 1600 2000
11 726 847 968 1089 1210 1331 1452 1573 1694 1815 1936 2420
12 84 1008 1152 1296 1440 1584 1728 1872 2016 2160 2304 2880
13 1014 1183 1352 1521 1690 1859 2028 2197 2366 2535 2704 3380
14 1176 1372 1568 1764 1960 2156 2352 2548 2744 2940 3136 3920
15 1350 1575 1800 2025 2250 2475 2700 2925 3150 3375 3600 4500
16 1536 1792 2048 2304 2560 2816 3072 3328 3584 3340 4096 5120
17 1734 2023 2312 2601 2890 3179 3468 3757 4046 4335 4624 5780
18 1944 2268 2592 2916 3240 3564 3888 4212 4536 4360 5184 6480
19 2166 2527 2888 3249 3610 3971 4332 4693 5054 5415 5776 7220
20 2400 2800 3200 3600 4000 4400 4800 5200 5000 6000 6400 8000
21 2646 3087 3528 3969 4410 4851 5292 5733 6174 6615 7056 8820
22 2904 3388 3872 4356 4840 5324 5808 6292 6776 7260 7744 9680
23 3174 3703 4232 4761 5290 5819 6348 6877 7406 7935 8464 10,580
24 3456 4032 4608 5184 5760 6336 6912 7488 8064 R640 9216 11,520
28 4704 5488 6272 7056 7840 8624 9408 10,192 10,976 11,760 12,544 15,680
30 5400 6300 7200 8100 9000 9900 10,800 11,700 12,600 13,500 14,400 18,000
34 6936 8092 9248 10,404 11,560 12,716 13,872 15,028 16,184 17,340 18496 23,120
40 9600 11,200 12,800 14,400 16,000 17,600 19,200 20,800 22400 24,000 25,600 32,000
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Table A9 Rectangular Sections with Compression Steel Minimum Steel Percentage 100(0 — p’) for
Compression Steel to Yield

, . o 87 . .
(p-p)zo.8551;; X 5 X m (fc and £, in ksi)
fy
f,
(psi) B1 d'/d 40 ksi 50 ksi 60 ksi 75 ksl
3000 0.85 0.10 1.00 1.02 1.16 2.09
4000 0.85 0.10 1.33 1.35 1.55 2.78
5000 0.80 0.10 1.57 1.59 1.81 327
6000 0.75 0.10 1.78 1.81 2.06 371
3000 0.85 0.12 1.20 1.22 1.39 2.51
4000 0.85 0.12 1.60 1.62 1.86 3.34
5000 0.80 0.12 1.88 191 2.17 3.92
6000 0.75 0.12 2.14 2,17 2.47 445
3000 0.85 0.15 1.50 1.53 1.74 3.14
4000 0.85 0.15 2.00 2.03 2.33 4.17
5000 0.80 0.15 2.36 2.39 272 491
6000 0.75 0.15 2.67 2.72 3.09 5.57
Note: Minimum (p — p’) for any value of d'/d = 10 x (d'/d) x value shown in table with ¢'/d = 0.10.
Table A.10 Modulus of Elasticity of concrete, E; (Ksi)
Concrete
Cylinder Unit Weight of Concrete {psi)
Strength
{f) 90 100 110 125 145
3000 1540 1800 2080 2520 3150
4000 1780 2090 2410 2920 3640
5000 1990 2330 2690 3260 4060
6000 2185 2560 2950 3580 4500
7000 2360 2760 3190 3870 4800
8000 2520 2950 3410 4130 5200
Note: E.=33 WS /77
E.=57,000,/f/ = W = 145 psf (normal-weight concrete)
Table A.11{a) Values of £4/d}, for Various Values of ;. and £, (Tension Bars})
fy = 40 ksi f, = 60 ksi
=<No. 6 Bars >No. 7 Bars <No. 6 Bars >No. 7 Bars
A Conditions Conditions Conditions Conditions
(ksi) Met Others Met Others Met Others Met Others
3 293 439 36.6 54.8 439 65.8 54.8 82.2
4 253 38.0 31.7 475 38.0 57.0 47.5 71.2
5 22.7 34.0 28.3 425 34.0 510 425 63.7
6 20.7 31.0 259 38.8 31.0 46.5 38.8 58.1
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Table A.11(b) Development Length £y for Tension Bars and f, = B0 Ksi (y: = e = A = 1)

Development Length {4 (in.) — Tension Bars

f. =3 ksi f, =4 ksi
Bar
Bar Diameter Conditions Conditions
Number {in.) Met Others Met Others

3 0.375 17 25 15 21
4 0.500 22 33 19 29
5 0.625 28 41 24 36
6 0.750 33 50 29 43
7 0.875 48 72 42 63
8 1.000 55 83 48 72
9 1.128 62 93 54 81

10 1.270 70 105 61 92

11 1.410 78 116 68 102

Table A.12 Designations, Areas, Perimeters, and Weights of Standard U.S. Bars

Unit
Cross- Weight
Bar Diameter Sectional Perimeter per Foot Diameter Area
No. {in.) Area (in.?) {in.) {Ib) {mm)}) (mm?)
2 i = 0.250 0.05 0.79 0.167 64 32
3 % =0.375 0.11 1.18 0.376 9.5 71
4 % = 0.500 0.20 1.57 0.668 12.7 129
5 % = 0.625 0.31 1.96 1.043 159 200
6 % =0.750 0.44 2.36 1.502 19.1 284
7 % =0.875 0.60 2.75 2.044 222 387
8 1 = 1.000 0.79 3.4 2.670 254 510
9 13 =1.128 1.00 3.54 3.400 28.7 645
10 1} =1.270 1.27 3.99 4.303 323 820
11 l% = 1.410 1.56 443 5.313 358 1010
14 13 = 1.693 225 5.32 7.650 43.0 1450
18 2% = 2.257 4,00 7.09 13.600 57.3 2580
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Table A.13 Areas of Groups of Standard U.S. Bars in Square Inches
Number of Bars
Bar
Number 1 2 3 4 5 6 7 8 9 10 11 12
3 011 022 033 044 055 066 077 088 100 110 121 1.32
4 020 039 058 078 098 118 137 157 177 196 216 236
5 031 061 091 123 153 184 215 245 276 307 337 368
6 044 088 132 177 221 265 309 353 398 442 484 530
7 060 120 180 241 3.01 361 421 4.81 541 6.0l 6.61 7.22
8 079 157 235 314 393 471 550 628 707 785 864 943
9 100 200 300 400 500 600 700 800 900 1000 11.00 12.00
10 127 253 379 506 633 759 886 10.12 11.39 1266 1392 15.19
11 1.56 312 468 625 7.81 937 1094 1250 14.06 1562 17.19 18.75
14 225 450 675 900 1125 1350 1575 18.00 2025 2250 2475 27.00
18 400 800 1200 1600 2000 24.00 2800 3200 36.00 4000 4400 48.00
Table A.14 Areas of Bars in Slabs (square inches per foot)
Bar Number
Spacing
(in.) 4 5 6 7 8 10 11
3 0.44 0.78 1.23 1.77 240 3.14 4.20 5.06 6.25
3% 0.38 0.67 1.05 1.51 2.06 2.69 343 4.34 5.36
4 0.33 0.59 0.92 1.32 1.80 2.36 3.00 3.80 4.68
4% 0.29 0.52 0.82 1.18 1.60 2.09 2.67 3.37 4.17
5 0.26 047 0.74 1.06 1.44 1.88 240 3.04 3.75
5% 0.24 043 0.67 0.96 1.31 1.71 2.18 2.76 341
6 0.22 0.39 0.61 0.88 1.20 1.57 2.00 2.53 3.12
6% 0.20 0.36 0.57 0.82 1.11 1.45 1.85 2.34 2.89
7 0.19 0.34 0.53 0.76 1.03 1.35 1.71 2.17 2.68
71 0.18 0.31 0.49 0.71 0.96 1.26 1.60 2.02 2.50
8 0.17 0.29 046 0.66 0.90 1.18 1.50 1.89 2.34
9 0.15 0.26 041 0.59 0.80 1.05 1.33 1.69 2.08
10 0.13 024 0.37 0.53 0.72 0.94 1.20 1.52 1.87
12 0.11 0.20 0.31 0.44 0.60 0.79 1.00 1.27 1.56
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Table A.15 Common Styles of Welded Wire Fabric

Steel Area {in.? ft) Weight
Approx.
Style Designation Longitudinal Transverse Ib/100 f2
6 x 6—W14 x W14 0.03 0.03 21
6 x 6—W2 x W2 0.04 0.04 29
6 X 6—W2.9 x W29 0.06 0.06 42
6 x 6—W4 x W4 0.08 0.08 58
6 x 6—W5.5 x W55 0.11 0.11 80
4 x 4—W14 x W14 0.04 0.04 31
4 x 4—W2 x W2 0.06 0.06 43
4 X 4—W29 x W29 0.09 0.09 62
4 x 4—W4 x W4 0.12 0.12 86
Table A.16 Size and Pitch of Spirals
Outside to f.{psi)
fy Diameter of Outside of
(ksi) Column (in.) Spiral (in.) 3000 4000 5000
s 1 3
40 14, 15 11, 12 3-13 3 —24 3—13
3 3 1 b 1
16 13 g —13 23— 23 ? -2
3 3 1 t
17-19 14-16 £—13 3 =23 ?~2
3 3 1 !
20-23 17-20 g~ 1% 3 —23 7—2
3 1 t 1
24-30 21-27 £—2 3—23 7 23
3 3 3 1
60 14, 15 11, 12 5 —27 §—2 5—2§
3 3 3 1
16-23 13-20 3 — 2% §—2 3 —23%
3 L 1
24-29 21-26 3-3 3 -2 3-3
3 3 L 1 H
30 27 $—3 323 3 — 33




APPENDIX B
DESIGN TABLES (Sl UNITS)

Table B.1 Values of R, and S for f =21 MPa (R, in MPa)
Table B.2 Values of R, and f-i for f! =28 MPa (R, in MPa)

Table B.3 Values of R, and g for f, =35 MPa (R, in MPa)

Table B.4 Values of pmax. Rumaxs £5, a0d Omin
Table B.5 Suggested Design Steel Ratios, p, and Comparison with Other Steel Ratios
Table B.6 Minimum Thickness of Beams and One-way Slabs
Table B.7 Rectangular Sections with Compression Steel
Table B.8 Values of Modulus of Elasticity, E,
Table B.9 Development Length
Table B.10 Designation, Areas, and Mass of Bars
Table B.11 ASTM Standard Metric Reinforcing Bars
Table B.12 Areas of Group of Bars (mm?)

867



Appendix B Design Tables (S| Units)

Table B.1 Values of R, and a/d for f, = 21 MPa (R, in MPa), (¢ > 0.005,¢ =09 and d =d))

100 f, = 280 MPa f, = 350 MPa f, = 420MPa f, = 520MPa
P Ru a/d Ru a/d Hu 8/d Ru 8/d
0.2 0.50 0.031 0.62 0.039 0.75 0.047 0.92 0059 .
0.3 0.74 0.046 0.92 0.059 1.10 0.071 1.35 0.089 |
0.4 0.98 0.062 1.22 0.078 1.45 0.094 1.79 0118 |
0.5 1.21 0.078 1.50 0.058 1.79 0.118 2.18 0.148 |
0.6 1.45 0.094 1.79 0.118 2.12 0.141 2.59 0.177 !
0.7 1.68 0.110 2.06 0.138 2.44 0.165 2.96 0207 |
0.8 1.90 0.126 2.33 0.157 2.75 0.189 3.34 0.236
0.9 2.12 0.142 2.59 0.177 3.05 0213 3.68 0.266
1.0 2.33 0.157 2.84 0.196 3.35 0.238 4.02 0.295
1.1 2.55 0.173 3.10 0.216 3.64 0.260 436 0.325
1.2 2.74 0.188 3.35 0.235 3.91 0.280 432 0.319
1.3 2.95 0.204 3.59 0.255 4.18 0.306 (Pmax = 1.085)
1.4 3.16 0.220 3.82 0.274 4.44 0.330
1.5 3.35 0.236 4.04 0.294
1.6 3.54 0.252 4.27 0.314
1.7 3.73 0.267 4.32 0.319
1.8 3.91 0.282 (Pmax = 1.37)
1.9 4.09 0.298
2.0 4.27 0.314
2.1 4.43 0.330 432 0.319
{pmax = 1.63)
432 0.319
(pmax = 204)

Note: Last values are the maximum for &, = 0.005.
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Table B.2 Values of R, and a/d for f, = 28 MPa (R, in MPa), (¢; > 0.005, ¢ = 0.9 and d = i)
100 f, = 280MPa fy = 350 MPa fy = 420 MPa f, = 520MPa
p R, a/d R, a/d R, a/d R, a/d
0.2 0.50 0.024 0.63 0.029 0.75 0.025 0.93 0.044
0.3 0.74 0.036 0.93 0.044 111 0.053 1.36 0.066
04 0.98 0.047 1.23 0.059 1.46 0.071 1.81 0.088
05 1.23 0.059 1.53 0.074 1.81 0.089 2.23 0.110
0.6 1.46 0.071 1.83 0.088 2.16 0.106 2.66 0.132
0.7 1.70 0.083 2.11 0.103 2.50 0.123 3.05 0.154
0.8 1.93 0.094 2.39 0.118 2.81 0.141 345 0.176
0.9 2.16 0.106 2.66 0.132 2.14 0.158 3.83 0.198
1.0 2.39 0.118 295 0.147 3.46 0.176 422 0.220
1.1 2.60 0.130 3.20 0.161 3.77 0.194 4.57 0.242
1.2 2.81 0.141 3.46 0.176 4.08 0.212 4.94 0.264
1.3 3.04 0.153 373 0.191 4.36 0.230 5.29 0.286
14 3.25 0.165 3.97 0.206 4.65 0.247
1.5 346 0.177 422 0.221 492 0.265
1.6 3.67 0.188 4.46 0.236 5.22 0.282 5.77 0.319
(Pmax = 1.49)
1.7 3.87 0.200 4.71 0.250 5.48 0.300
1.8 408 0212 494 0.265 5.75 0.318
19 4.27 0.224 5.17 0.280
2.0 4.46 0.236 540 0.294
21 4.65 0.248 5.62 0.309
22 4.85 0.260 5.77 0.319
2.3 5.04 0.271 (Pmax = 1.82)
24 522 0.282
2.5 5.39 0.294
2.6 5.57 0.306
27 5.74 0.318
2.8 5.92 0.330 5.77 0.319
(pmax = 2-18)
5.77 0.319
(Pmax = 2.73)

Note: Last values are the maximum for g, = 0.005.
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Table B.3 Values of A, and a/d for f;, = 35 MPa (R, in MPa), {¢; > 0.005, ¢ = 0.9 and d = di)

e riiio e Tl

00 f, = 350MPa f, = 4220MPa f, = 520 MPa
P Ru a/d Ru a/d Ru a/d
0.2 0.63 0.024 0.75 0.028 0.93 0.035
0.3 0.93 0.036 L.12 0.042 1.38 0.052
04 1.24 0.047 1.48 0.056 1.83 0.070
0.5 1.53 0.060 1.83 0.070 2,26 0.088
0.6 1.83 0.071 2.18 0.085 2.70 0.106
0.7 2.12 0.083 2.53 0.100 3.11 0.123
0.8 241 0.094 2.87 0.113 3.52 0.141
0.9 2.69 0.106 3.20 0.127 3.91 0.159
1.0 2.98 0.118 3.53 0.141 4,30 0.177
1.1 3.26 0.130 3.87 0.155 4.69 0.195
1.2 3.52 0.141 4.17 0.169 5.08 0.212
1.3 3.80 0.153 4.48 0.183 546 0.230
1.4 4.06 0.165 4,79 0.198 5.34 0.247
1.5 4.32 0.177 5.09 0.212 6.15 0.265
1.6 4.58 0.188 5.39 0.226 6.47 0.282
1.7 4.84 0.200 5.68 0.240 6.82 0.300
1.8 5.09 0.212 5.96 0.254
1.9 5.34 0.224 6.26 0.268 6.85 0.3192
2.0 5.58 0.235 6.52 0.282 (Pmax = 1.71)
2.1 5.84 0.247 6.78 0.296
2.2 6.06 0.256
23 6.29 0.271
24 6.52 0.282
235 6.74 0.294
6.85 0.319
(Pmax = 2.16)
6.85 0.319
(Pmax = 2.57)

Note: Last values are the maximum for £, = 0.005.
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Table B.4 Values of pmax, Ry max, o6, Pmin
b = 0.858{f/1,)I87/(87 + )] pmax = (0.008 + 1,,/E¢)pp/0.008 R, = $pfy[1 — pf,, /1.7]
fy = 280 MPa fy = 350MPa
ffMPa 100 pyax  Bumex MPa 100 0, 100 ppmin 100 pmax  Bumax MPa 100 o, 100 pmin
21 2.031 4.32 371 0.50 1.624 4.32 2.5 0.40
28 2.715 5.77 4.96 0.50 2.167 577 3.67 0.40
35 3.180 6.85 5.81 0.53 2.551 6.85 4.32 0.42
42 3.575 7.78 6.53 0.58 2.864 7.78 4.85 047
fy = 420 MPa fy = 525 MPa
fflMPa 100 pmax Rumax MPa 1005 100pmin 100 pmax Rumax MPa 100 p5 100 piin
21 1.356 432 2.14 0.33 1.082 4.32 1.55 0.27
28 1.806 5.77 2.85 0.33 1.445 577 2.07 0.27
35 2.123 6.85 3.35 0.35 1.704 6.85 2.44 0.28
42 2.389 7.78 3.77 0.39 1.920 7.78 275 0.31
Note: pmax values are for ¢, = 0.005 and ¢ = 0.9,
Table B.5 Suggested Design Steel Ratios, ps, and Comparison with Other Steel Ratios
Weight of p;
f fy 100 100 100 R, for Ratio Ratio (kg/m?® of
MPa MPa Pb Pmax Ps ps (MPa) ps/pb ps/ pmax concrete)
21 280 37 2.04 14 3.16 0.377 0.689 112
350 2.75 1.63 1.2 3.35 0.436 0.739 96
420 2.15 1.37 1.2 3.9 0.558 0.885 96
28 280 4.96 2.73 14 3.25 0.282 0.516 112
350 3.67 2.18 1.4 397 0.381 0.646 112
420 2.85 1.81 14 4.65 0.491 0.775 112
35 280 5.81 320 1.6 3.72 0.275 0.503 128
350 4,32 2.57 1.6 4.58 0.370 0.627 128
420 3.35 2.16 1.6 5.39 0478 0.754 128
Note: pmax values are for &, = 0.005 and ¢ = 0.9.
Table B.6 Minimum Thickness of Beams and One-Way Slabs
Yield
Strength Simply One End Both Ends
Member fy (MPa} Supported Continuous Continuous Cantilever
Solid one-way slabs 280 Li25 L/30 L/35 LNn2s
350 Li22 Li27 L/31 L1
420 Li20 L24 L7128 L/10
Beams or ribbed one-way slabs 280 L20 L7123 L7126 L/10
350 L/18 L/20.5 L7235 L9
420 L/16 L/18.5 L21 L8
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Table B.7 Rectangular Sections with Compression Steel. Minimum Steel Percentage 100 (o — p') for
Compression Steel to Yield

4 da’ 600
- p L - - ’ 3
p—0)= 0.85;31(") x (d) x 1600 fy),(fy,fc in MPa)
f; f, fy fy
MPa 81 d'/d 300MPa 400 MPa 500 MPa
21 0.85 0.10 1.20 1.35 2.16
28 0.85 0.10 1.45 1.63 2.60
35 0.80 0.10 1.59 1.80 2.85
42 0.75 0.10 1.70 1.91 3.06
21 0.85 0.12 1.45 1.63 2.60
28 0.85 0.12 1.73 1.95 3.12
35 0.80 0.12 2.02 2.27 3.64
42 0.75 0.12 2.04 2.29 3.67
21 0.85 0.15 1.81 2.03 3.25
28 0.85 0.15 217 244 3.90
35 0.80 0.15 2.38 2.68 4.28
42 0.75 0.15 2.55 2.87 4.59
Note: Minimum (p — p") for any value of d'/d = 10 x (d'/d) x value shown in table with &'/d = 0.10.
Table B.8 Modulus of Elasticity of Normal-Weight Concrete
General: E, = 0.043W'5 /. MPa
For Normal-Weight Concrete, W = 2350 kg/m*:
E. = 4730,/f.MPa
f.MPa E. (kN/mm?)
17.5 20.0
21.0 225
28.0 250
35.0 29.0
42.0 320
49.0 335
56.0 36.5
Table B.9(a) Values of £q4/d}, for Various Values of f; and f, (Tension Bars)
fy = 300MPa fy = 400 MPa
<20 M Bars >25M Bars <20M Bars >25M Bars
f. Conditions Conditions Conditions Conditions
MPa Met Others Met Others Met Others Met Others
20 34,0 50.5 42.0 63.0 45.0 67.0 56.0 84.0
30 27.5 41.5 34.5 51.5 36.5 55.0 46.0 68.5
35 25.5 38.5 320 47.5 34.0 51.0 425 63.5
40 23.5 355 29.5 445 31.5 47.5 39.5 59.5




Appendix B Design Tables (S! Units) 873

Table B.9(b) Development Length ¢4/d), for Tension Bars and f, = 400 MPa (@ = 8 = 1 = 1.0)

Development Length ¢3/dy (mm) — Tension Bars

f. =20 MPa f. =30 MPa
Bar Number Bar Diameter (mm} ConditionsMet Others Conditions Met Others
10M 11.3 E510 E765 E415 E620
15M 16.0 E720 1080 E585 E875
20M 19.5 E880 1320 E710 1070
25M 25.2 1410 2120 1160 1740
30M 29.9 1675 2510 1375 2065
35M 35.7 2000 3000 1640 2465

Table B.10 Designations, Areas, and Mass of Bars

Nominal Dimensions

Bar No. Diameter {mm) Area {mm?) Mass (kg/m)
#10 95 71 0.560
#13 12.7 129 0.994
#16 15.9 199 1.552
#19 19.1 284 2.235
#22 222 387 3.042
#25 25.4 510 3.973
#29 28.7 645 5.060
#32 323 819 6.404
#36 358 1006 7.907
#43 43.0 1452 11.38
#57 573 2581 2024

ASTM A615M Grade 300 is limited to sizes #10 through #19; otherwise, grades are 400 or 500 MPa, (These bars are
soft conversion of #3 to #18 in U.S. customary units.)

Table B.11 ASTM Standard Metric Reinforcing Bars

Nominal Dimensions

Bar-size Designation (number) Diameter (mm) Area (mm?) Mass (kg/m)
10M 11.3 100 0.785
15M 16.0 200 1.570
20M 19.5 300 2.355
25M 25.2 500 3.925
30M 29.9 700 5.495
35M 35.7 1000 7.850
45M 437 1500 11.775
55M 56.4 2500 19.625

ASTM A615M grade 300 is limited to size 10M through 20 M; otherwise, grades are 400 or 500 MPa.
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Table B.12 Areas of Group of Bars (mnm?) — Metric

Number of Bars

Bar No. Metric 1 2 3 4 L3 6 7 8 9 10
#10 71 142 213 384 355 426 497 568 639 710
#13 129 258 387 516 645 774 903 1032 1161 1290
#16 199 398 597 796 995 1194 1393 1592 1791 1990
#19 284 568 852 1136 1420 1704 1988 2272 2556 2840
#22 387 774 1161 1548 1935 2322 2709 3096 3483 3870
#25 510 1020 1530 2040 2550 3060 3570 4080 4590 5100
#29 645 1290 1935 2580 3225 3870 4515 5160 5805 6450
#32 819 1638 2457 3276 4095 4914 5733 6552 71371 8190
#36 1006 2012 3018 4024 5030 6036 7042 8048 9054 10060
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STRUCTURAL AIDS

Table C.1 Simple Beams (Cases 1-20)

Table C.2 Cantilever Beams (Cases 21-24)

Table C.3 Propped Beams (Cases 25-32)

Table C.4 Fixed End Beams (Cases 33-40)

Table C.5 Moments in Two Unequal Spans and Values of the Coefficient X (Cases 1-3)
Table C.6 Moments in Three Unequal Spans and Values of the Coefficient K (Cases 4-6)
Table C.7 Maximum and Minimum Moments in Equal Spans Continuous Beams (Cases 7-8)

Table C.8 Moments in Unequal Spans Continuous Beams Subjected to Unequal Loads
(Case 9)

Note: $.S. stands for shearing force diagram. B.D. stands for bending moment diagram.
Bending moments are drawn on the tension sides of beams.
Moments, shearing forces and deflections, for any combination of loadings, are obtained by superposition.

875
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Table C.1  Simple Beams (w = Load/Unit Length)

1. Uniform load w
RAAII[IIIILlllllHiln.
W = total load = wlL
. - . N
RA=R3=VA=VB=?
Ra
Wx X
M, = - (1 - z) $O. ! R
WL -ro--—L/2 ot L {2 |
Mmax = —  (at center) l I_‘.
8 M I max
i ¥
A > wL? (at center) °°
_—— X ——
384 T EL
b X
2. Uniform partial load _.[*1“;
AL Qs
W = total load = wb e Ol D oyt "
l ¢
rmn= (24d) s
a=Va=— | s+c¢
LAz wl [N |
W /b SD. 1o+ _ R
Re=ve= (L) o raw N ([THTTIT%
[}
'
W Rub o
Mux = — (x> —a?) when x = a4+ —2— ® | T
2b W "‘°’|
Amax = —11 (8L ~4Lb” +b*) whena=c L
M 384K Xy
3. Uniform partial load at one end
W = total load = wa 4 W=wa

Ra=Va=W (1—%)

Wa a \2 a R m
Mmax = T (1 - ‘EL“) when X =a (1 - i) 0. Itl‘{-l-lj:[-[-[-[-[ ['In.
wL*
- SaaET n2[2m3 _ 6m2 +m(4 +ﬂ2) _ nZ] a0.
m= xfL
when x > g n=all
WELm

[n2(2 — m? —2nm*(2 —n)+m>] whenx <a

= 24aEl
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Table C.1 (continued)

4. Triangular load on span with maximum value at one end w ‘#_w
W = total load = 2 y B = °
=10 oad = 2 . . ]

R — W k‘m

A= VA

<

EY s0. I x |
2W ! A
Rg=Vg = — :
3 80. 1
o= (1% S
T3 L? ¥
Muax = 0.128WL  when x = 0.5774L
0. )
Amax = % when x = 0.5193L

5. Triangular load with maximum value at midspan

L
W = total load = "’7

Ri=Rp=Vy=Vg=

1 2x?
MFW“(E“EE)

w
2

WL
Moax = —6‘— (ﬂt midspan)

3

Ampax = S0ET (at midspan)
6. Moments at ends I L |
Ms—M o
‘R;‘=Rﬂ=VA=‘A"'B=u AlS éﬂ
L M‘ ®M4= M’ M‘
. ML2 Mo HIL LTI ETT T LT[ M
Amax (at midspan) = SET when M4 = Mp BD.
El QM. > M,
2
A(atmidspan):1 ; when Mp =0 Ma Hﬂ]H[IHTlTﬂ]Ms
6F 80D @MA>*M. M,
A (at mid _ ML hen M4 = 0 M
midspan) = Teg7  When Ma = BD. " (M, counterciockwise)
Ra H Ry
S.D.

(continued)
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Table C.1 {continued)
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7. External moment at any point

M
Ry=—Rg=V4=Vg=—
L
Ma
Mea=—-
Mb
Mes =T
—Mab
= _b
<= 3gr @9
8. Concentrated Joad at midspan
P
RA=RB=VA=VB=E

PL
Muyax = T (at midspan)
3

Bmax = 2057

(at midspan)

Ry
SD.

9. Cencentrated load at any point

Pb
Ra=Va=—T
Pa
Re=Ve=-7"
Pab
Mmax = —-g— (at point load)
Pa’b? .
. AETL (at point load)

PL® [3a ay3
Amax = 18E] [f -4 (E) ] {when a > b)

at x = /ab + L)/3

y’
AL c nt
-.-a—-in——b—--——-
- L >
Ra
$O. IEBESERNEEIE

o QI X
.
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Table C.1 (continued)
10. Two symmetrical concentrated loads r lp
Ri=Rp=V,=Vpg=P AL 8
A B . A N |-Q-O—--! ’4—0-—-"
Mmax = Pa - L -
PL? [3a 3 Rl |
Apnx=— | ——(— t mids
mex = SE1 [4L (£) ] (at midspan) sD. TTl%,
aD. + m
¥
11. Two concentrated loads P p
P +20) |c \o
Ra=Va= L AL 8
4—0—.-'-—0——.444:-#
- L -
Rg =V = M a>c
L Al
Pa(b + 2¢) $D. T LT
M= —F— =1 | Ra
L
Pc(b + 2a)
Mp=-——r— o.
L & 4 —‘mc;
M i
c Mo
12. Two concentrated loads at one-third points r r
Ri=Rp=Vy=Vg=P AL 8
PL -1-1/3—.{-4—!./3——!-0— {73
Mmax == - ¢ o
3
_wer ML
max = ey {at midspan) $D. ] Re
o HP” =
—1

(continued)



Appendix C Structural Aids
Table C.1 {continued)

p P P
13. Three concentrated loads at one-fourth points lC l, o l P
P
Ri=Rp=Va=Vp=5 til"’{ﬂ-LﬂTLM-b-'--t/d-w
3PL
=Mr=— P
HemME= giluEnnn;

PL 50. .LL.L.LI = P
MD = 7 ; 8
A 19PL (at midspan) 8 ‘..!ill'lilliﬂ"r max.
max — £
384E] e g ~1

14. Three concentrated loads as shown r g P
3P A C ‘D #5 5
RA=R3=VA=VB=— 4 /3 3
L=t AN N 171}
SPL e RN
SD.
Mp = — {1 R,
D 12 8
53pL? ]
max = ooy (at midspan) 8D. + "I
M. {
MD M‘
15. Uniformly distributed load and variable end moments M’( u j"z
A 8
W = total load = wl
W My — M,
Ri=Vy=—++ ——m—
ATIAT S L
Rg=Vg = % - y‘%MZ
):NP—D—»*Q—D—D{A M,
M_E_M1+M2+(M1~M2)2 aD. _L ]
T8 2 2WL -
atx—£+M1_M2 "
2 W

%% 2 2
x [x3 N (2L L 4M; 4M2)x2+ 12g,L et SMILT 4MsL ]

A, = —_ e —
* T 24EIL w w w W
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Table C.1 (continued)

16. Concentrated load at center and variable end moments

RA=VA=§ u%
M, - M,
L

_E~M1+M2

M; = n — (at midspan)

P M -M L
Mx=(—+—»l—*—2)x—M1 whenx<5

"

Rg=Vg=——

[

2 L

M) — My)
———— X

P ( L
x:—z-(wa)-i- 7 — M whenx>5

Px

_ 8(L —x)
T 48E]

PL

[3:} —dx? - (ML ~ x) + My(L + x)l] when x < =

17. One concentrated moving load —’i
X
Rymax=Vymax=°FP atx =90 |-7

Rgmax=Vymax=P atx=1L ?

R t R,
PL L | e
Mma;;:T atx=§

P
Mx:f (L—x)x

18. Two equal concentrated moving loads [“" o
RAmax=VAmax=P(2—%) atx =0 [OLAIN O L)

A? 1 2 ?8
Mma,(=P (L—a—)2 Rafe t

2L 2

1
when a < 0.586L under load 1 at x = 3 (L - %)

Munax = T when @ > 0.5L with one load at midspan

{continued)
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Table C.1 (continued)

19. Two unequal concentrated moving loads

_ -o--x—-—td-o
L a) atx =0 ’1

Rymax = Viamax =P+ P» ( 2 . (:)g ?p, %B
2
x 1 R,
Mwe = (P + P o ‘ ®
under load P; at x = l L— Faa
2 P+ P
P L i
Mpay = —4~ may occur with larger load at center of span and other load off span
20. General rules for simple beams carrying moving concentrated €
loads Vjyax occurs at one support and other loads on span |
(trial method) For M. :place center line of beam midway P P,
between center of gravity of loads and nearest concentrated n ‘E’E‘ ®
load. M, occurs under this load (here P;) AK bib| 8
Ry l=::l Ry
--— 0
R e |
- t -
C>2
Table C.2 Cantilever Beams
21. Uniform load W
W = total load = wl 2””[[”’/””““]“8
44
Ra=Vi=W 7 t -
WL
2 Li
) SD.
w
Mx = _x
2L M, |-.——-X-—D|
Apmax = WL3 80D. T ,
5 T ET !
W

(x* —4L3x +3L%

x

= 24EIL
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Table C.2 (continued)

22. Partial uniform load starting from support W
W = total load = wa Z'I'l'l'lz;'l"l"l'n'l -
Ra=Vi=W g.f_a e b
We I-o—————— S—
My = _2_a (at support A) ¢
" mTT‘I}\
2
M, = % sD. H
M
A Wa3 A }-—X—-‘
€~ 8EI 8o ||}
Wa® 4b
A = — —
BIAX = 3E1 (1 + 3a)
23. Concentrated load 4 r
Ra=Vu=P Ta C 8
e O et ) — o
Muyax = Pa  (at support A) -
Mx 3 PX RA -!-
Ac = Pa’/3E] ) L —_
Pa? 36
A = — — t free end M
BMAX = o (1+2a) (a end) il }g—x—.i m‘
Uy
24. Concentrated load at free end .
Ry=Vy=P~P .IJL *8
A
Mpax = PL (at A) e ¢ .
_ X p—]
M, = Px . P
o « T
A =— :
B = 3ET e
Ay = L(2L3—3L2x +x3) B‘D'm

T BEI




Table C.3 Propped Beams
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i
i

25. Uniform load
W = total load = wi

DN
>
~ £
-0
o

S5W k14 - t »l
Ra=Va=—4g Re=Vp=- 2 y -
" l-q——x——-l
M——E’ M—9WL atx—3L S0 R
A 8 ¢T38 3 Ma i ‘
]
WL3 3 4 x ap.|~ 1
YT {(m —3m” + 2m " ywherem = A |
; it
max — i = V. ¢ =3t 84
TS BT at a distancex = 0.4215L(from support B) |-¢H /
26. Partial uniform load starting from hinged support
w
b ’
W=wb = — 51 0 0 O O
wo n L A c D ?
Wn R -o—o—.-'-o-———b————r-
RA=VA=T(6*—H) t =
Ry bIW
w R |-.-——|
Rp=Vp =40 —6n+8) oo LU T T o
e 2-r i R
Wb Wb G ’
My=——Q=nd) Mc==(6n—n’—4) e e
BM. .
%" 1
A =0 L [(n* — 6)m> — (3n* — 6)m®] when x < a |,_.M° M = n=b/l
T 48EI = X °
wiL* L—x
A, = 2P — 33 — 200,2 _
48bEI[ p'nin® —6n+4+8) + Pn*(3n“ —8rn+6)] whenx > a and P 7
27. Partial uniform load starting from fixed end w
We=wa n=2 91Tn'r('|-m-rn 8
L AA C -

Ri=Va=
Rp=Vp=
W,
My = —Ta
Wa
Mmax= T
Wa?

Ac

~ 48E]

%[s—nzm—n)]

2
WT”(4-n) Y =b+an’(4—n)

2 —n)?

l_ (8 — n?(4 —n)?
16

+4—n(4—n)}

(6 —12n+7n% —n%
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Table C.3 (continued)
28. Triangular load on all span L
w
wL 7 W= wij2
W = total load = - A7 g

4 W
Ra=Vy==-W Rg=-—=V
A 475 5 5 5 Vy=
2 271774
My =—-—WL
4 s $D.
3 M,
Me =+—WL A
50 8D. T
3 I +
Bmax = 5oy @ x = 0447L) Mc= 006
29. Triangular load on part of the span w W= wo/2
wa
Wa 2 .-Q——O——-Ia—b
Ry =Vg = —=(5L—0a) ‘ ™
20L X .q——.i
Ry=W-R R T'\n\h\
l -—
My = (3a* — 15aL + 20L%) L] v,
601[.2 I Vi &
Maximum positive moment at Ma S\ I S I
8D T
a2 a I+
S=b+— {1 - — !
LETA AT "5
Mpax (positive at) D:
WL
Mp = RS — —(—b+5)
3a
30. Concentrated load at midspan
11P A ’
Ry=Vy= BT Ax 1'%
sp |~—L[2—+——— 2 ——
Re=Vy= E Ra X —t—
SD. H
b 3PL [T
A —
16
__5PL m{ :
32 BD. ]
7PL3 Mc
¢~ 768E1
3
A = t x = 0. B
max = 0727 (at x = 0.447L from B)

{continued)
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31. Concentrated load at any point
Pa®

Ry=V4,=P—R Rg=Vp=—(b+2L

Aa=Vs B Rg=Vp=-30b+2L)
Pb(LZ—bz)

Ma = 212

Mamax = 0.193PL when b = 0.577L

Pb 3 b
=P (222 2

2 L L3
Mcmax =0.174PL when b = 0.366L
Pa’b?
Ac = 4L —a
T TN )
32. Two concentrated loads at one-third points r r
4P ?
2p r-—t/?.——}-ua——l-«t/&
Rpg=Vg=— Ra |
3 +
PL SD. | { [ 11 .
My=—— [T}
PL 2PL b i
Me = — Mp= = BD
c=73 D 5 . I
i i
A o pL3 ¥ie
T 65.8E1

occurs at point = 0.423L from support B




Appendix C Structural Aids 887
Table C.4 Fixed End Beams
33. Uniform load

7 W=t 7

W = total load = wL 7ﬂl[Hll!lIHllllll;

w 4 A ¢ )74

Ra=Vi=Rp=Vsg=— l_‘, : >
Ra i
WL sD.
My=Mz= 12 (at support) : = Ry

WL )
Mc max = o (at midspan)

3

M,
A M,
8.0.

Mc

max — 3R4E] {at midspan)
A, = Wl (L —x)* (from A or B)
24FIL
34. Uniform partial load at one end
a

W = total load = wa m=z

_ W -2m*+2)

RA=V3— 2
Wm2(2 —

Rp=Vp= '“2 ™ o W-R,
WL

My= 222 3m? — 8m +6)
12
W Lm?

My = > 4 = 3m)
WLm? / 3

M =

m 12 (2

when x = %(m3 —mt42)

wL?
M T 333E]
Ap = wiL?
384E1

—Zm® +6m* — 6m> — 6m* + 15m - 8)

ot

A (o4 B

h— O —tf——— 5 ————

I S—

X
. “‘
SD.
E[]}*NJ.u.l_—_u_u_u.l R

M, |

\\N\N\]

NN\

M,

Mo m=oft

(continued)
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35. Triangular load

W= wi/2
= wl 2:8]1[]1[1/[[[3:::_.2
T2 AA ] ]
RA = VA =0.7W Vo= 2 g —
RB= VB=0.3W s.o._ C
WL WL : V'= Rl
My = i)— Mg T M. \ r—DﬁéL-«-———-— ,
- C - 8
3 i T 1
max = ———(at x = 0.55L from B) eo. Uik
= 382EI Me = 0043WL
WL
M (maximum positive moment) = +m(at0 .55L from B)
36. Triangular load on part of the span
w
wa ’ W= wa/2
T A —
A BY.
Wa 2 roia b
Rg=Vyg= ——(5L —2a) Lot L
10L3 Va
o X ——
Ry=W-—-R SD. .
A B E v,
105L Ma p— S —=
My = 30L2(3a + 106L) D\ b! m,
1 T
Mp = ——(~3a® + 5aL) 80 Rl
30L2 Mo
Maxi iti CatS—bt o [s_2@
m = - =
mum positive moment a 316L 7
WL
Mp=RpS——Sa+S-Ly -
3a
37. Triangular load, maximum intensity at midspan
W= wi/f2
W = total load = "’TL 2 iy
8
w ‘—L}?—bc-;—l.li’—ri
RA = RB = — R,
2 ) m}ltm ¢
sD. |
5 ,’m Ra
My=Mpg=——WL i
48 i
M, < 2| Ms

M (maximum positive) =

16 BD.

1.4wL?

384E1

max = (at midspan)
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Table C.4 (continued)

889

38. Concentrated load at midspan P
p 4 v 2
RA=VA=RB=VB=5 aA 17
oL <-——L/2——|~—L/2—-1
= = = —— R v
My = Mg =Mc = g SIIENRIHI
SO. T R
Amax = m(at mjdspan)
Mal ! M,
a =2 a1 an L ) |
= —aXx < —
Ty *<32 8.
Mc
39. Two symmetrical concentrated loads
Ry=V4=Rg=Vg=2"P +P +P
_ 4 7
My=mp=—ral-a 4x—<¢ ]
L -+0*+.———b———tha—b
Pa* - -
Mc=Mp=—— t
L R,[T1
PLY [3a®  say3 SD. 1 y
o= £ 35 (2] o it i -
[
Ifa=— Mal D\, o too ! af LN
ap. AULITINE+]]IDC
2 Mo Mo
My =Mg= §PL
3
Amax = CIRET {at centerline)
Ifa=-—
My = Mg = —PL
a=Mp=1¢
3
Apax = {at centerline)

192E1

(continued)



Table C.4 (continued)

Appendix G Structural Aids

40. Concentrated load at any point

b\? 2a
Ri=Vi=P[=} [1+=
A=V (L)(+L)

h:%:p@f@+%)

Pab? Pba® 2Pa’p?
o= M= Me=—p
P
= at point C
€= Som3 (at point C)
2Pa*h? 2b
A = = db
nax = 3FTGL - 2a) when x 3L — %% and b > a

Table C.5 Moments in Two Unequal Spans and Values of the Coefficient K {w = Unit Load/Unit Length)

1. Load on short span

3 2 a c
wl wlL A 8
Ms = 2 = 2
PT8Li+Ly K L—_Li—i—lz—nj
Lr/Lg I 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
K l 46.0 40.0 34.7 28.0 24.0 214 19.5 18.0 16.9 15.9
w
2.Loadonlongspan Allllllllllllllllllll c
3 2 A 8
Mp = wii c wl I..__L, f Lg—-i
8(L1+ Ly) K |
LafLy | 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
K | 96 10.0 10.4 11.2 12.0 12.8 13.6 14.4 15.2 159

3. Both spans loaded with w; on L, and w; on L;
w|L{' + sz;

FT R+ Ly
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Table C.6 Moments in Three Unequal Spans and Values of the Coefficient K (w = Load/Unit Length)

4. Load on span CD

w

WL§ wL§ 8 A 8 acC fo
Mp = e Mc = K I-o—la Lo ——tmi—1;
Lo/l (positive) (negative) . N
0.25 100.0 9.9 S . T tmw
0.30 90.9 10.3 N
0.40 76.3 11.0 B.D.
0.50 70.4 11.7 il
0.60 65.8 12.3
0.70 62.9 13.0
0.80 61.7 13.7
1.00 56.9 14.9
5. Load on middle span rn..[-i:rm
&S A N8 Qc D
Mg =Mc = ’C—(q—bﬂ——L;——-—La
Lo/l (negative) so. . . ] T
0.25 43.5 X <
.30 38.5
0.40 323 8o, ~illl T [T,
0.50 27.8 *
0.60 25.6
0.70 233
0.80 22.2
1.00 20.0
6. Load on span AB v
WL% WL% Ei %B AC- D
Mg = K Mc = K L—Lg—-q—tz——-o—tg—q
Ly/L egati itiv ' P
2 (negative) positive) so. . afl [N
0.25 9.9 100.0 7 HIEHT
0.30 10.3 90.9
040 11.0 76.3
0.50 11.7 704
0.60 12.3 65.8
0.70 13.0 62.9
0.80 13.7 61.7
1.00 14.9 599
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Table C.7 Maximum and Minimum Moments in Equal Spans Continuous Beams

7. Uniform loads

where w = (D.L. + L.L) per unit length

w?

K

NG

D.L. = Uniform dead load
Values of coefficient K

L.L. = Uniform live load

First span AB Second support B
(positive moment) {negative moment)
Ratio Number of spans Number of spans
D.L/w 2 3 4 5 2 3 4 5
0.0 10.5 10.0 10.2 10.1 8.0 8.6 8.3 83
0.1 10.8 10.2 10.4 10.3 8.0 8.7 84 85
0.2 11.1 104 10.6 10.6 8.0 8.8 8.5 8.6
0.3 114 10.6 10.9 10.8 8.0 9.0 8.6 87
0.4 11.8 10.9 11.1 11.0 8.0 2.1 8.6 88
0.5 12.1 11.1 114 11.3 8.0 9.2 8.8 8.9
0.6 12.5 11.4 11.7 11.6 8.0 9.4 8.9 9.0
0.7 129 11.6 12.0 11.9 8.0 95 9.0 9.1
0.8 13.3 11.9 12.3 12.2 8.0 9.7 9.1 92
09 12.8 12.2 12.6 12.5 8.0 9.8 9.2 94
1.0 14.3 12.5 13.0 12.8 8.0 9.9 9.3 9.5
Third
support C Third span CD
Second span BC (negative (positive
(;os;t;:e moment) moment) moment) Interior Interior
Ratio umBer of spans Spans Span (pf)g?t’i:re (rslgga??ige
D.L.iw 3 4 5 4 5 5 moment) moment)
0.0 134 124 12.7 9.3 9.0 11.7 12.0 8.8
0.1 14.3 13.2 13.5 9.7 9.3 12.3 12.6 9.1
0.2 154 14.0 14.3 10.0 9.6 129 13.3 9.8
03 16.7 14.9 15.3 104 9.9 13.6 14.1 9.5
04 18.2 16.0 16.5 10.8 10.2 14.3 15.0 99
0.5 20.0 17.2 17.9 11.5 10.5 152 16.0 10.1
0.6 22.2 18.7 19.5 11.7 10.9 16.2 17.2 10.5
0.7 250 204 214 12.2 11.3 17.3 184 10.8
0.8 28.6 224 23.8 12.7 11.7 18.5 20.0 11.2
0.9 333 249 26.6 13.3 12.2 20.0 21.8 11.6
1.0 400 283 30.0 14.0 127 21.7 24.0 12.0




Appendix C Structural Aids

Table C.7 (continued)

Example: X values

91 94 86 108 86
DL. & 74) L IPAES fa) 743 P Q-
. —— =04 109 182 109 119 16 16 M4
w
DL. 929 99 93 14 93
2. —=1.0 Fay B A A a X a D
w 125 40 125 13 283 283 13
8. Concentrated loads
p P
P’ = concentrated dead load . + *
a BA AC
P" = concentrated live load - /2 l-n— [P p——
¥y ¥
Mo P + P N AL ! L
C\Ki K —{t/3 fa— B‘F'_‘—“ic
P 1P P P P (P
L EEE
-—-c-lL/A[a— fe—t—nq
First Span AB Second Support B
Spans 2 3 4 2 3 4 2 3 4 2 3 4
Central load | 640 571 589 (492 470 476 | 535 6.67 622 533 571 553
One-third-
point loads | 450 409 420 |360 346 350|300 375 3.50| 3.00 321 3.11
One-fourth-
point loads | 3.67 320 334 |[261 246 250 (213 267 249 213 228 221
Third Y osor ¥ eor }
Second span BC Support C £ & w0 zg s 5
Number of K1 K2 Ki K>
Spans 3 4 3 4 4 4 { s § sn |
Central load | 10.00 861 | 571 546 | 933  6.22 A A
One-third-
point loads | 1500 900 | 500 4.50 | 5.25 3.50
One-fourth-
point loads 800 605 | 320 3.01 | 3.72 2.49

Example: X values

K (dead load)

P/ P!’
M = — L
ap(max) (5.71+4.7)
Pl Pl!
L
1)

—Mpzg(max) = (— +
Pl Pl/
Mpc(max) = (E + 5.71) L

6.67

Ks(live load)
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Table C.8 Moments in Unequal Spans Continuous Beams Subjected to Unequal Loads

9. Unequal spans and unequal loads. For approximate bending moments in continuous beams, use

L’ = 0.8L for spans continuous at both ends
L’ = L for spans continuousatonly one end

1. Uniform loads (load on two adjacent spans):

3 ’3
w L7+ w,L%

£A ks ac
l——t,-—-—-—-‘-——l.,—ul

MB = ’ ’
SS(LI + L 2) P‘Il‘.a.u..aﬁpz
2. Concentrated loads: - -y v
KPL?
MB = % due to IOQdP] 4—‘.1—.‘"4——-[2—4
L+ L
KP,L}?
Mg = —22 duetoloadP,
Li+L,
a’L | 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0
K I 0.080 0.136 0.168 0.182 0.176 0.158 0.128 0.09 0.050 0.000

3. Moments within span:

¢ Maximum positive moment is obtained by superposing B.M. due to D.L. + L.L. and the negative

moments at supports due to D.L. only.

¢ Maximum negative moment is obtained by superposing B.M. due to D.L. only and the negative

moments at supports due to D.L. + L.L.

Example:

M. _ . 3008x 5P +40(0.8x6)*
5= 8.5(08x5+08x6)

Mo 40¢0.8 x 6)° + 25(0.8 x 6)
c- 8.5(0.8 x4 +0.8 x 6)

wil?

1
M = (at centerline of BC) = + 3 + 3 (Mp+ Mp) =

-84.8kN m

= -77.1kNm

40 kN/m

30 kN/m 25 kN/m

E

ASm 8 C|4m0|
I-q—-‘-bm

40 % 36
8

1
+ 2 (—84.8 —77.1) = +99kN-m



AASHTO, 4, 6, 42
ACI Code, 4, 8

design concept, 5

design handbook, 4

system of units, 5
ACI 209 Model, 28

creep calculation, 29

shrinkage calculation, 28
Active soil pressure, 463
Admixtures, 16, 25
Aggregates, 16, 25

maximum size, 25
Alignment charts, 399
Alternate method, 5
Amplification factor, 402
Anchorage of bars, 221
Anchorage bond stress, 221, 222
ANSI, 6
Areas of reinforcing bars, 56, 865, 866, 874
Assumed concrete strain, 18, 19
ASTM, 4, 56, 58
Axial compression, 318

with bending, 331

formula, 324
Axial tension, 352

Balanced section, 71, 81, 337
B3 Model, 30
creep calculation, 31
shrinkage calculation, 30

Balanced strain condition, 81

Bar cutoff, 242
restrictions, 232

Bar dimensions and weights, 56, 864,

873

Bar grades, 56, 58, 59
sizes, 862, 874
splices, 239

Bars, areas, 56, 58
English units, 5, 857
metric units, 5, 867
in slabs, 305

Bars, bundles, 95, 230

Beams, 64, 134, 875
analysis, 64, 76
balanced, 81
compressive reinforcement, 98
compressive stress distribution, 77
control of cracking, 211
cracking moment, 189, 734
curved, 826
deflection, 190
design procedure, 134, 172
design tables, 857, 867
doubly reinforced, 98, 145, 253
effective flange width, 109
failure, 65, 69
irregular shapes, 80, 119
L-sections, 119



Beams, (continued)
maximum steel ratio, 83
minimum steel ratio, 90
neutral axis, 75, 77, 99, 112
shallow, 262, 586

shear and diagonal tension, 65, 251

singly reinforced, 79, 96, 127
spandrel, 119
special shapes, 119
stress distribution, 77, 99, 112
T-section, 109
Bearing capacity, 418, 429, 436
Bearing strength, 429
Biaxial bending, 373
Bresler equation, 376
Billet steel, 58
Block, 77, 749
end, 749
stress, 77
Bond, 221
anchorage, 225
critical sections, 232
design for, 225
development length, 225
Bresler equation, 376
British Code, 4
Buckling, columns, 394, 403
Building code, 4

CEB 90 Model, 35

creep calculation, 37

shrinkage calculation, 35
CEB 90-99 Model, 38

creep calculation, 40

shrinkage calculation, 38
Cement, 15, 25, 26
Circular beam 842, 845
Circular columns, 319, 323, 356
Circular secttons, 356

balanced, 356

beam, 828

compression controls, 359

tension controls, 361

torsion, 493

Whitney equation, 350, 361
Codes, 4

ACL 4, 8

British, 4

others, 4

Columns, 318, 331, 394
axially loaded, 320
balanced condition, 337, 356
biaxial bending, 373
braced system, 399
capital, 581
circular, 356
circular, spirally reinforced, 323
code requirements, 320
composite, 319
compression failure, 345
design charts, 361
eccentricity of load, 340
effective length factor, 395
Euler buckling load, 403, 413
interaction curves, 333, 351
lateral ties, 322
long, 326
maximum steel ratio, 321
minimum cover, 137
minimum eccentricity, 333, 401
minimum steel ratio, 321
moments, 333
pedestal in footings, 431
percentage of steel, 321
plastic centroid, 331
radius of gyration, 395
rectangular, Whitney equation,
350
reduction factor, 320
slenderness ratio, 319, 401
spacing of bars, 137
spacing of ties, 322, 328
spiral columns, 323
strength, 324
axially loaded, 324
balanced, 337, 356
tied columns, 322, 328
trial computation, 346
types of, 318
unbraced, 399
Coefficient of expansion, 25
Combined footings, 418, 441
Combined shear and torsion, 499
Compression reinforcement, 98, 145,
320
beams, 98, 145
columns, 320

Index



Compressive stress, 17, 19

in cubes, 17

in cylinders, 17, 19
Compressive stress distribution, 77
Concrete, 15

admixtures, 15, 25

bond strength, 221

coefficient of expansion, 26

compressive strength, 17

constituents, 15

cover, 137

creep, 26

cube strength, 16

curing, 16

cylinder strength, 16

definition, 15

Fibrous, 55

high-density, 53

high-performance, 53

lightweight, 53, 54

maximum strain, 18, 65, 69

modular ratio, 24

modulus of elasticity, 22

modulus of rupture, 21

normal weight, 53

normal weight, modulus of elasticity, 22

plain, 53

Poisson’s ratio, 23

shear modulus, 23

shrinkage, 25

stress-strain diagram, 18, 23

tensile strength, 20

ultimate strain, 21

waler content, 15

weight, 53
Continuous beams, 525, 568
Continuous one-way slabs, 300
Coulomb theory, 466
Cracking load, 192
Cracking moment, 192
Cracks, 207

code equations, 209

control of, 209

main, secondary, shrinkage, 207

maximum width, 209
Creep, 26

coefficient, 26

definition, 26

factors affecting, 26
magnitude, 26
strain, 26
Crushing strain, 17
Cube strength, 16
Curvature, 401
double, 401
single, 401
Cylinder strength, 17

Dead load factor, 8
Deep beam, 282
critical section, 284
flexural reinforcement, 285
maximum shear strength, 284
shear reinforcement, 285
Deflection, 190
compression steel effect on, 197
cracked section for, 192
creep and shrinkage, 26, 711
effective moment of inertia, 194
equations to compute, 216
instantaneous, 191
limitations, 192
long-time, 197
maximum allowable, 201
thickness to control, 191
Design loads, 6, 73
Detailing of bar reinforcement, 305,
819
Development length, 221
anchorage length, 222
bundled bars, 230
compression bars, 228
critical sections, 233
tension bars, 225
top bars, 227
Diagonal tension, 251
Differential settlement, 430
Direct design method, 602
coefficients, 606
effect of pattem loading, 609
Limitations, 602
longitudinal distribution of moment, 603
moments in columns, 333
transverse distribution of moment, 605
Doubly reinforced sections, 98, 145, 253
Dowels in footings, 430, 436
Drainage, 472

897



898

Drop panel, 581, 642
Ductility index, 560

Earthquake, 758
Earth pressure, 462
active soil pressure, 463
passive soil pressure, 463
theories, 463
Eccentric compression, 340, 448
Effective depth, 83
Effective flange width, 109
L-sections, 119
T-sections, 110
Effective length of columns, 396,
398
Effective moment of inertia, 194
End anchorage, 749
End bearing, 429
Equilibrium conditions, 81, 134
Equivalent frame method, 651
Equivalent stress block, 77
Euler formula, 403
European concrete committee, 4
Expansion, 25

Factored loads, 73
Failure, 65, 69
balanced section, 69, 81, 337
bending, 69
diagonal tension, 253
punching shear, 431, 634
torsion, 500
Flat plate, 581, 594
Flat slab, 581, 640
Flexural bond, 225
Flexural capacity, 83
Flexural stiffness, 397
Floor system, 300, 581
concrete joist, 311
flat plate, 582
flat slab, 582, 640
one-way joist, 311
one-way slab, 302
ribbed slab, 311, 644
slab-beam, 581, 594
two-way slab, 581
Footings, 416
allowable soil pressure, 421
bearing stress, 429

Index

one-way shear, 424
on piles, 453
punching shear, 425
soil pressure, 421
Footings, types, 418
combined, 418, 441
exterior beam, 447
interior beam, 447
isolated, 418, 433
pile, 453
plain, 431
rectangular, 418, 436
trapezoidal, 418
wall, 418, 432
Frames, 399, 531
braced, 399
unbraced, 399
Friction coefficient, 469
Friction losses in prestressing force,
712

GL 2000 Model, 33
shrinkage calculation, 33
creep calculation, 34
Gravity retaining wall, 460, 473
Gross moment of inertia, 197

High-Performance concrete 53
Hooks, 235
Hoop reinforcement, 323, 503, 794

Impact, 6

Inclined cracking, 253, 256
Inclined stirrups, 258

Inertia, moment of, 194

Inflection points, 232

Initial modulus, 22

Interaction diagram, 334, 352, 362
Interaction surface, 374

Interior panel, 604, 607

Joints, 26, 809

Joist construction, 311
design, 311
one-way, 311
two-way, 583

Lateral ties, 320
Limit analysis, 553



Index

Load factors, 8, 73
dead load, 8, 73
live load, 8, 73
wind load, 6

Longitudinal reinforcement (torsion),

512, 514
LRFD, 8
L-shaped sections, 119

Magnification factor, 402
Metric bars, 58, 873
Middle strip, 590
Modes of failure, 18, 65
Modular ratio, 24, 192
Modulus of elasticity, 22, 192
in direct compression, 22
normal weight concrete, 22
steel, 57, 59
Modulus of rupture, 21
Moment coefficients, 303
Moment of inertia, 194
effective, 194
gross, 194
polar, 498, 633, 637
Moment magnification factor, 402,
404
Moment redistribution, 568

Neutral axis, 68, 75, 101
Nominal moment capacity, 8, 81
Nominal strength, 75

column strength, 324

flexural strength, 21, 83

shear strength, 22

One-way slabs, 300
Overreinforced sections, 550
Overturning moment, 469
Parme contour method, 377
Passive soil pressure, 460, 463
Pattern loading, 609
Pedestal footing, 431

Pile caps, 421

Plastic centroid, 332

Plastic design, 549

Plastic hinges, 549, 552
Plastic moment, 550

Polar moment of inertia, 498, 633, 837

Posttensioning, 750

Prestress, 696

advantages, 698

concept, 696

design approach, 717, 728

losses, 709

partial, 702

strands, 57, 696, 708
Pretensioning, 698, 749
Principal stresses, 253, 282

Radius of gyration, 326, 395
Rectangular sections, 79, 134,
337
analysis, 79
balanced, 81
compression control case, 345
doubly reinforced, 98, 145
tension confrol case, 342
torsion failure, 500
Redistribution of moments, 568
Reinforcing steel, 55
anchorage, 225
areas, 55, 864, 876
balanced ratio, 81
bar sizes, 55, 864, 876
closed stirrups, 505, 507
deformed bars, 55
development length, 225, 430
flexural bond, 222
grades, 55
hooks, 235
maximum percentage, bending,
83
maximum percentage, columns,
321
modulus of elasticity, 57
sizes, 58
slab shrinkage, 304
spacing, 137, 187, 212, 266
spiral, 323
splices, 239
stirrups, 262, 266, 292
strands, 57, 708
temperature, steel, 304
tie spacings, 322
web, 258
wire fabric, 56
yield stress, 58

899



Retaining walls, 460
base key, 477, 480, 483
cantilever, 461
gravity, 461, 473
Rotation capacity, 560

Safety provisions, 8
capacity reduction factors, 8, 73, 336
load factors, 73, 336
Secant modulus, 22
Seismic design:
acceleration, 759
base shear, 775
boundary elements, 815
category, 767
coupling beam, 817
design category, 767, 773
design response spectrum, 765
equivalent lateral force method, 775,
779
flexural design, 791
fundamental period, 765
intermediate moment frame, 824
International Building Code (IBC), 758
longitudinal reinforcement, 792, 801 809,
824
redundancy coefficient, 790
seismic response coefficient, 776
shear walls, 777
simplified analysis, 779
special moment frames, 791
strong column-weak beam, 792
transverse confining reinforcement, 793,
802, 825
Semicircular beam, 835, 839
Serviceability, 191
control of cracking, 211
control of deflection, 191
prestressed, 707
Shear, 251
ACI Code equations, 261
combined with torsion, 499
failure, 255
footings, 424, 425
formulas, 261
punching, 425
stirrups, 263, 266, 292
stress, 251
thickness, footings, 424, 427

varying depth members, 276
wall footing, 417, 432
Shearhead, 598, 600
Shear modulus, 22
Shear reinforcement, 261
in beams, 262
design procedure, 266, 292
inclined stirrups, 258, 292
minimum reinforcement area, 261
torsion, 499
truss action, 258
Shear strength of beams, 251
ACI Code equations, 261, 292
critical section, 261
diagonal tension, 253
nominal strength, 257
stress distribution, 253
Short-time deflection, 191
Shrinkage, 25
in concrete, 25
and creep, 26
reinforcement, 304
SI units, 6, 867
Sidesway, 398
Singly reinforced sections, 79
Slabs, 300
bending moments, 303
concrete cover, 137
continuous, 303
design, 303, 602, 651
flat, 581, 587, 598, 607
hollow, 311, 583
jotst floors, 311, 583
minimum steel ratio, 304
minimum thickness, 303, 592
one-way, 300
reinforcement, 305
ribbed slab, 311, 644
solid, 302
thickness, 191, 592
two-way, 581
waffle, 583, 644
Slenderness ratio, 319, 395
ACI Code limitations, 401
Soil pressure, 421
Spacings of reinforcement, 303, 322,
324
Spandrel beam, 119

Index



Index

Spirals, 323
Splices, 239
Split-cylinder, 18
Square footings, 418, 433
depth, 424, 427
design procedure, 422
moments, 428
reinforcement, 428
Steel, 55, 864, 876
bars, areas, 55, 864, 876
modulus of elasticity, 57, 59
percentages, 83, 321
shrinkage and temperature, 304
Stirrups, 258, 261
ACI Code, minimum, 261
closed. 265
design, vertical, 261, 266, 292
inclined, 266
maximum spacing, 263
minimum ratio, 261
spacing curve, 267
spacing formula, 266
types, 265
vertical, 266
Strength design method, 134
Strength reduction factor, 8, 74, 336
Stress-strain curve, 18, 23
concrete, 19, 23
steel, 57
Strut and tie¢ method, 181
design procedure, 183
design requirements, 184
Sustained loads, 197

Tables:
Appendix A, 857
Appendix B, 867
Appendix C, 875
T-beams, 109
analysts, 112
ultimate strength, 112
Temperature and shrinkage reinforcement,
304
Tension (axial), 325
Ties (columns), 322

801

Time-dependent deftection, 197
Time-dependent losses, 711
Top bar (development length), 226
Torsion, 493
analysis, elastic, 495
analysis, ultimate, 499
in circular sections, 495
combined with shear, 499
equations, 505, 510, 511
longitudinal reinforcement, 510
moment (torsional), 494, 498
reinforcement, 511
in spandrel beam, 517
stirrup design, 511
strength, 505
stresses, 495
Transverse reinforcement, 793, 802
T-section, 109
Two-way action (shear), 425, 635
Two-way slabs, 581

Ultimate-strength design, see Strength design
method
Unbraced frames, 396, 399
Underreinforced sections, 704, 733
Units, 5
metric, 5, 867
U.S. customary, 6, 857

Virtval work method, 553
V-shape beam, 848, 851
Waffle slab, 584, 585
Wall footings, 417, 432
Walls, 417

basement walls, 483

retaining walls, 460
Water-cement ratio, 15
Web reinforcement, 259, 309, 811
Welded wire fabric, 56
Whitney equation, 78, 350
Wind load factor, 6

Yield line theory, 589
Yield point, 58
Yield strength, 58
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