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This is because the exterior surface of the wall is normally exposed to different weather
conditions and temperature changes.

For interior wall surfaces, the balance of the required reinforcement in each direction
should have a minimum concrete cover of % in. but not more than % of the wall thickness.

The minimum steel area in the wall footing (heel or toe), according to the ACI
Code, Section 10.5.3, is that required for shrinkage and temperature reinforcement, which
is 0.0018bh when f, = 60 ksi and 0.0020b~ when f, = 40 ksi or 50 ksi. Because
this minimum steel area is relatively small, it is a common practice to increase it to that
minimum A; required for flexure:

Ag min = (3‘/f_’) bd > (@) bd (14.16)
fy b

14.10 DRAINAGE

The earth pressure discussed in the previous sections does not include any hydrostatic pressure.
If water accumulates behind the retaining wail, the water pressure must be included in the design.
Surface or underground water may seep into the backfill and develop the case of submerged
soil. To avoid hydrostatic pressure, drainage should be provided behind the wall. If well-drained
cohesionless soil is used as a backfill, the wall can be designed for earth pressure only. The
drainage system may consist of one or a combination of the following:

1.

2.

3.

Weep holes in the retaining wall of 4in. or more in diameter and spaced about 5ft on
centers horizontally and vertically (Fig. 14.9a).

Perforated pipe 8in. in diameter laid along the base of the wall and surrounded by gravel
(Fig. 14.9b).

Blanketing or paving the surface of the backfill with asphalt to prevent seepage of water
from the surface.

Any other method to drain surface water.

" AT T Gravel
cep P o Inclined
.1 v Crovel Perforated N
holeswp:-$ .
0 ( pipe drain
\ I :.,§$
a4 - )

(a) (®) © (@)

Figure 14.9 Drainage systems.
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Example 14.1

The trial section of a semigravity plain concrete retaining wall is shown in Fig. 14.10. It is required
to check the safety of the wall against overturning, sliding, and bearing pressure under the footing.
Given: Weight of backfill is 110 pcf, angle of internal friction is ¢ = 35°, coefficient of friction
between concrete and soil is & = 0.5, allowable soil pressure is 2.5 ksf, and f = 3 ksi.
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Figure 14,10 Example 14.1.
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Solution

l.

N

~1
.

Using the Rankine equation,

C. = —sing 1-0.574
‘T 14sing  1+0.574
The passive pressure on the toe is that for a height of 1ft, which is small and can be neglected.

=0.271

C.wh® 0271
H, = ;’ = 022 (110)(11)? = 1804 Ib
H, acts at a distance h/3 = XX = 3.67 ft from the botiom of the base.

The overturning moment is Mg = 1.804 x 3.67 = 6.62 K-fi.

Caiculate the balancing moment, M,, taken about the toe end 0 (Fig. 14.10):

Weight (Ib) Arm {ft) Moment {K.ft)
w, =1 x 10 x 145 = 1450 1.25 1.81
wy =3 x 2.5 x 10 x 145 = 1812 2.60 471

w3 =525 x 1 x 145 =725 2.625 2.00

Wq = % x 2.5 x 10 x 110 = 1375 342 4.70

ws =13 x 10 x 110 = 1100 4.75 5.22

> w=R=650K Mb=ZM= 18.44 K.ft

. The factor of safety against overturning is 18.44/6.50 = 2.82 > 2.0.
- The force resisting sliding, F = @R, is F = 0.5(6.50) = 3.25 K. The factor of safety against

sliding is F/H, = 3.25/1.804 = 1.8 > 1.5.

. Calculate the soil pressure under the base:

a. The distance of the resultant from toe end 0 is
_My—My, 18.44-6.62
TTR T T 650
The eccentricity is ¢ = 2.62 — 1.82 = 0.80ft. The resultant R acts just inside the middle

third of the base and has an eccentricity of e = 0.8 ft from the center of the base (Fig. 14.10).
For a 1-ft length of the footing, the effective length of footing is 5.25 ft.

b. The moment of inertiz is 7 = 1.0(5.25)*/12 = 12.1 ft*. Area = 5.25 fi2.

¢. The soil pressures at the two extreme ends of the footing are ¢,, g» = R/A + Mc/i. The
moment M is Re = 6.50(0.8) = 5.2 K-ft; ¢ = 2.62ft.

_ 650 5.2(2.62)
T 525 12.1
g2 = 1.24 — 1.12 = 0.12 ksf

=1.82f1

=124+ 1.12 =2.36 ksf

g1

Check the bending stress in concrete at point A of the toe.
a. Soil pressure at A (from geometry) is
4.5
=0.12 —— ) (2.36 — 0.12) = 2.04 ksf
qa + ( 5.25) ( )
b. M, is calculated at A due to a rectangular stress and a triangular stress.
_2.04(0.75)

My 2

= 0.63 K-ft

+(0.32 < 0.75 x 0.5) (0.?5 X %)
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¢. The flexural stress in concrete is

Mc/1 =0.63(12,000)(6)/1728 = 26 psi
where ¢ = /2 = 12/2 = 6in. and 1 = 12(12)*/12 = 1728 in.*

d. The modulus of rupture of concrete is 7.54,/f; = 410 psi > 26 psi. The factor of safety

against cracking is 410/26 = 16. Therefore, the section is adequate. No other sections need
to be checked.

Example 14.2

Design a cantilever retaining wall to support a bank of earth 16.5 ft high. The top of the earth is to be
level with a surcharge of 330 psf. Given: The weight of the backfill is 110 pcf, the angle of internal
friction is ¢ = 35°, the coefficient of friction between concrete and soil is s = 0.5, the coefficient
of friction between soil layers is g = 0.7, allowable soil bearing capacity is 4 ksf, f! = 3 ksi, and
Sy = 60 ksi.

Solution

1. Determine the dimensions of the retaining wall using the approximate relationships shown in
Fig. 14.8.

a.

b.

c.

Height of wall: Allowing 3 ft for frost penetration, the height of the wall becomes 2 = 16.5
+3 = 19.51t.

Base thickness: Assume base thickness is 0.08% = 0.08 x 19.5 = 1.56ft, or 1.5ft. The
height of the stem is 19.5 — 1.5 = 18ft.

Base length: The base length varies between 0.44 and 0.672. Assuming an average value of
(0.53h, then the base length equals 0.53 x 19.5 = 10.3 ft, say, 10.5 ft. The projection of the
base in front of the stem varies between 0.17h and 0.1254. Assume a projection of 0.17A
=0.17 x 19.5 = 3.3ft, say, 3.51t.

. Stem thickness: The maximum stem thickness is at the bottom of the wall and varies

between 0.084 and 0.14. Choose a maximum stem thickness equal to that of the base, or
1.5 ft. Select a practical minimum thickness of the stem at the top of the wall of 1.0ft.
The minimum batter of the face of the wall is }lin./ft. For an 18-ft-high wall, the minimum
batter 1s % x 18 = 4,5in., which is less than the 1.5 — 1.0 = 0.5 ft (6in.) provided. The trial
dimensions of the wall are shown in Fig. 14.11.

2. Using the Rankine equation:

_1-sing 10574

= = =0.271
1+sin¢ 140574

Ca

3. The factor of safety against overturning can be determined as follows:

Calculate the actual unfactored forces acting on the retaining wall. First, find those acting
to overturn the wall:

hs(due to surcharge) = il = @ =3ft
w 110
D1 = Cawh; = 0.271 x (110 x 3) = 90 psf
Py = Cowh = 0.271 > (110 x 19.5) = 581 psf
H; =90x195=17551b arm = % =975 ft

1 .
H,,2=§><581x19‘5=5665 b alm=19T5=6.5 ft
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Figure 14.11 Example 14.2: trial configuration of retaining wall.

b. The overturning moment is 1.755 x 9.75 + 5.665 x 6.5 = 53.93 K ft.

¢. Calculate the balancing moment against overturning (see Fig. 14.12):

Force (Ib) Arm (ft} Moment (K.ft)
wi =1 x 18 x 150 = 2,700 4.50 12,15

wr =1 x 18 x 1 x 150 = 675 3.83 2.59

w3 = 10.5 x 1.5 x 150 = 2,363 5.25 12.41

ws = 5.5 x 21 x 110 = 12,705 7.75 98.46

D w=R=1844K > M=12561Kft
. . 125.61
Factor of safety against overturning = 5303 = 2.33>2.0

4. Calculate the base soil pressure. Take moments about the toe end O (Fig. 14.12) to determine

the location of the resultant R of the vertical forces.

_2M—3 Hy balancing M — overturning M

X

12561 —53.93

The eccentricity is ¢ = 10.5/2 — 3.89 = 1.36ft. The resultant R acts within the middle third
of the base and has an eccentricity of ¢ = 1.36ft from the center of the base. For a 1-ft length

R

18.44

R

10.5
= 3.89 ft > 3 or 35ft
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18' 0"

11 6#4

Qy = 313 Ksf

Figure 14.12 Example 14.2: forces acting on retaining wall.

of the footing, area = 10.5 x 1 = 10.5fi2.

(10.5)*

I=1x = 96.47 fi*

_R. (Re)C _ 18.44 (18.44 x 1.36) x 5.25
Nn=4 7 105 96.47
= 1.76 + 1.37 = 3.13 ksf < 4 ksf

g2 = 1.76 — 1.37 = 0.39 ksf

Soil pressure is adequate.

5. Calculate the factor of safety against sliding. A minimum factor of safety of 1.5 must be
maintained.

Force causing shding = H,) + H,; = 1.76 +5.67 =743 K
Resisting force = uR = 0.5 x 1844 =922 K
. . 9.22
Factor of safety against sliding == 743 =124 < 1.5

The resistance provided does not give an adequate safety against sliding. In this case, a
key should be provided to develop a passive pressure large enough to resist the excess force
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that causes sliding. Another function of the key is to provide sufficient development length for
the dowels of the stem. The key is therefore placed such that its face is about 6in. from the
back face of the stem (Fig. 14.13). In the calculation of the passive pressure, the top foot of
the earth at the toe side is usually neglected, leaving a height of 2ft in this example. Assume
a key depth of r = 1.5ft and a width of b = 1.5ft.

¢, o ltsme 1 1

1 1
Hp = 5Cpw(h +1) = 5 x 3.69 x 1102+ 1.5 = 2436 Ib

The sliding may occur now on the surfaces AC, CD, and EF (Fig. 14.13). The sliding
surface AC lies within the soil layers with a coefficient of internal friction = tan ¢ = tan 35°
= 0.7, whereas the surfaces C D and E F are those between concrete and soil with a coefficient
of intemal friction of (.5, as given in this example. The frictional resistance is F = p R +

Ha Ry,

R; = reaction of AC = ( x4.5=1144 K

3.13 + 1.96)

Ry=R—-—R;=1844—-1144=70K
1.96 + 0.39

R = reaction of CDF = (—; ) x6=705K

F=0.7(11.44)4+0.5(7.00) = 1150 K

4
'1?1 : : ?; ! 0.39 Ksf
3143 Ksf |
509 1.96 Ksf

-c—-1.%'44-¢—t
/,’——-i | d=185"
Critical V 0.3¢
section

for shear

in toe 222
313 262

Figure 14.13 Example 14.2: footing details.
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The total resisting force is
F+H,=11504+249=1399K

The factor of safety against sliding is

13.99 11.5
The factor is greater than 1.5, which is recommended when passive resistance against sliding

is not included.

6. Design the wall (stem). The design of the different reinforced concrete structural elements can

be performed now using the ACI Code alternative design method, Appendix B and C.

a. Main reinforcement: The lateral forces applied to the wall are calculated using a load factor
of 1.6. The critical section for bending moment is at the bottom of the wall, height = 18 ft.
Calculate the applied ultimate forces:

Py = 1.6(C,whs) = 1.6(0.271 x 110 x 3) = 143 Ib
Py = 1.6(Cowh) = 1.6(0.271 x 110 x 18) = 858.3 Ib
Hy=0143x18=257K am=%=9f
Hpo=1x0858x18=7712K am=$ =61t
M, (at bottom of wall) = 2.57 x 9+ 7.72 x 6 = 69.45 K-ft

The total depth used is 18in., b = 12in., and d = 18 — 2 (concrete cover) — 0.5 (half the
bar diameter) = 15.51n.

M,  69.45 x 12,000

y_— = —] 2 i
bd? = 12(15.5) 8 psl
The steel ratio, p, can be obtained from Table A.1 in Appendix A or from
0.85f! 2R
p=I8e |y [ 2R 1 o007
Iy ¢0.85f]

As = 0.007(12)(15.5) = 1.3 in.2

Use no. 8 bars spaced at 7in. (1.35 in.?). The minimum vertical A, according to the ACE
Code, Section 14.3, is

A min = 0.0015(12)(18) = 0.32 in.? < 1.35 in.2

Because the moment decreases along the height of the wall, A; may be reduced according
to the moment requirements. It is practical to use one A; or spacing, for the lower half and a
second A, or spacing, for the upper half of the wall. To calculate the moment at midheight
of the wall, 9t from the top,

P =16(0271x110x3)=1431b
P; =1.6(0.271 x 110 x 9) =429 Ib

9
Hy =0143x9=129K arm=§=4.5ft

1
Ha2=§x0.429x9=l‘9K arm=§=3ft
M, =129%x45+19x3=115K-ft
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The total depth at midheight of wall is

12+ 18
2

=15in

d=15-2-0.5=125in.
R M, 115 x 12,000
“Tbhd? T 12 x (1252

p =0.0017 and A, = 0.0017(12)(12.5) = 0.25 in.2
As min = 0.0015 x 12 x 15 =027 in.2 > 0.25 in.?

Use no. 4 vertical bars spaced at 8 in. (0.291in.?) with similar spacing to the lower vertical
steel bars in the wall.

b. Temperature and shrinkage reinforcement: The minimum horizontal reinforcement at the
base of the wall according to ACI Code, Section 14.3, is

As min = 0.0020 x 12 x 18 = 0.432 in.2
(for the bottom third), assuming no. 5 bars or smaller.
As min = 0.0020 x 12 x 15 = 0.36 in.”

(for the upper two-thirds). Because the front face of the wall is mostly exposed to temperature
changes, use one-half to two-thirds of the horizontal bars at the external face of the wall
and place the balance at the internal face.

0.5A, = 0.5 x 0.432 = 0.22 in.?

Use no. 4 horizontal bars spaced at 8in. (A; = 0.29in.2) at both the internal and external
surfaces of the wall. Use no. 4 vertical bars spaced at 12in. at the front face of the wall to
support the horizontal temperature and shrinkage reinforcement.

¢. Dowels for the wall vertical bars: The anchorage length of no. 8 bars into the footing must
be at least 22in. Use an embedment length of 2 ft into the footing and the key below the
stem.

d. Design for shear: The critical section for shear is at a distance & = 13.5in. from the bottom
of the stem. At this section, the distance from the top equals 18 — 15.5/12 = 16.7 ft.

P, =143 IbP) = 1.6(0.271 x 110 x 3) =143 Ib

P, = 1.6(0.271 x 110 x 16.7) = 796 Ib
H, =0.143 x 167 =239K
1
Hy, = 3 x 0,796 x 16.7 =6.6 K
Total H =239+ 6.6 =9.0 K
0.7 x2x1
Ve = ¢ 20/ fHbd = oo * V3000 x 12 x 15.5
=1528 K> 9.0K

7. Design of the heel: A load factor of 1.2 is used to calculate the factored bending moment
and shearing force due to the backfill and concrete, whereas a load factor of 1.6 is used for
the surcharge. The upward soil pressure is neglected, because it will reduce the effect of the
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backfill and concrete on the heel. Referring to Fig. 14.12, the total load on the heel is

Vi = [1.2{(18 x 5.5 x 110) + (1.5 x 5.5 x 150)]
+ 1.6(3 x 5.5 x 100)]/1000
=175K

55
M, (at face of wall) = V,, x =5 = 48.1 K-t

The critical section for shear is usually at a distance d from the face of the wall when the
reaction introduces compression into the end region of the member. In this case, the critical
section will be considered at the face of the wall, because tension and not compression develops
in the concrete.

Vy=172K

oV, = ¢ (20 Fbd = % « /3000 x 12 X 14.5

=143 K

¢V, is less than V, of 17.2 K, and the section must be increased by the ratio 17.5/14.3 or shear
reinforcement must be provided.

. 17.2 .
Required d = 123 x 145 =174 in

Total thickness required = 17.4 + 3.5 = 20.9 in.

Use a base thickness of 221in. and 4 = 18.5in.

M, 48.1 x 12,000 ,
=My _ 28I x L0 405 = 0.0027
b2~ 12 x (18.5)2 pstp

A; = pbd = 0.60 in?
Min, shrinkage A; = 0.0018(12)(22) = 0.475 in.’
Min. flexural A, = 0.0033(12)(18.5) = 0.733 in.”

Ry

Use no. 6 bars spaced at 7in. (A; = 0.76in.?). The development length for the no. 6 top bars
equals 1.4l; = 35in. Therefore, the bars must be extended 3 ft into the toe of the base.

Temperature and shrinkage reinforcement in the longitudinal direction is not needed in
the heel or toe, but it may be preferable to use minimal amounts of reinforcement in that
direction, say, no. 4 bars spaced at 12in.

. Design of the toe: The toe of the base acts as a cantilever beam subjected to upward pressures,

as calculated in step 4. The factored soil pressure is obtained by multiplying the service load
soil pressure by a load factor of 1.6, because it is primarily caused by the lateral forces. The
critical section for the bending moment is at the front face of the stem. The critical section for
shear is at a distance 4 from the front face of the stem, because the reaction in the direction
of shear introduces compression into the toe.

Referring to Fig. 14.13, the toe is subjected to an upward pressure from the soil and
downward pressure due to seif-weight of the toe slab.

3.13+2.62 22
V, = 1.6 (+) % 1.96—1.2 ("15 X 0.150) % 1.96

=837K
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This is less than ¢ V. of 14.3 K calculated for the heel in step 7.

M,=16 {% x (3.5 +(3.13—222) x 3.5 x 0.5 (% X 3.5)]

2
-1.2 [(% x 0.150) X (35) ] =257 K-t

2

25.7 2, .
Ru*%_w=75p81 p=0‘m17

As = 0.0017(12)(18.5) = 0.377 in.2

Min. shrinkage A; = 0.0018(12)(22) = 0475 in2
Min. flexural A = 0.0033(12)(18.5) = 0.733 in.?

Use no. 6 bars spaced at 7in., similar to the heel reinforcement. Development length of no. 6
bars equals 25 in. Extend the bars into the heel 25in. The final reinforcement details are shown

in Fig. 14.14.

. Shear keyway between wall and footing: In the construction of retaining walls, the footing is
cast first and then the wall is cast on top of the footing at a later date. A construction joint

18 0

1107

Y - 1 & 1_ 5: 6» -

#4@8"< b #a@eﬂ
171
F 1| #aes
#4@12"\%,
L
Toe ‘ Y Ya Heel
L
e " —» ’/-_,Rouohsulfoce rHwey
#4.@ 12 N &04@12"
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Figure 14.14 Example 14.2: reinforcement details.
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< 2" X 4" or £,
2" X & keyway

Figure 14.15 Example 14.2: keyway details.

is used at the base of the wall. The joint surface takes the form of a keyway, as shown in
Fig. 14.15, or is left in a very rough condition (Fig. 14.14). The joint must be capable of
transmitting the stern shear into the footing.

10. Proper drainage of the backfill is essential in this design, because the earth pressure used is

for drained backfill. Weep holes should be provided in the wall, 4in. in diameter and spaced
at 5ft in the horizontal and vertical directions,

BASEMENT WALLS

It is a common practice to assume that basement walls span vertically between the basement-floor
slab and the first-floor slab. Two possible cases of design should be investigated for a base-
ment wall.

First, when the wall only has been built on top of the basement floor slab, the wall will
be subjected to lateral earth pressure with no vertical loads except its own weight. The wall in
this case acts as a cantilever, and adequate reinforcement should be provided for a cantilever
wall design. This case can be avoided by installing the basement and the first-floor slabs before
backfilling against the wall.

Second, when the first-floor and the other floor slabs have been constructed and the building
is fully loaded, the wall in this case will be designed as a propped cantilever wall subjected to
earth pressure and to vertical load.

For an angle of internal friction of 35°, the coefficient of active pressure is C, = 0.271.
The horizontal earth pressure at the base is o, = Cowh. For w = 110 pcf and an average height
of a basement of £ = 10ft, then

P, =0.271 x 0.110 x 10 = 0.3 ksf
100
H; =0.271 x0.110 x - = 1.49 K/ft of wall

H, acts at A/3 = 10/3 = 3.33ft from the base. An additional pressure must be added to allow
for a surcharge of about 200 psf on the ground behind the wall. The equivalent height to the
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surcharge is

200
T 110
0s = Cawhs = 0271 x 0.110 x 1.82 = 0.054 ksf

H; = (Cawhy) x h = 0.054 x 10 = 0.54 K/ft of wall
H; of the surcharge acts at #/2 = 5 ft from the base.

hg =182 ft

In the preceding calculations, it is assumed that the backfill is dry, but it is necessary to
investigate the presence of water pressure behind the wall. The maximum water pressure occurs

when the whole height of the basement wall is subjected to water pressure, and p,, = wh =
62.5 x 10 = 625 psf.

wh?
H, = ~5~ =0.625 x 5 = 3.125 K/ft of wall

The maximum pressure may not be present continuously behind the wall. Therefore, if the ground
is intermittently wet, a percentage of the preceding pressure may be adopted, say, 50%:

P, 0.625
H, h  3.125
Ht:, . - . (O.Swh)i = — = 1.56 K/ft of wall

H) acts at h/3 = 1—30 = 3.33 ft from the base. Water may be prevented from collecting against
the wall by providing drains at the lower end of the wall.

In addition to drainage, a waterproofing or damp-proofing membrane must be laid or
applied to the external face of the wall. The ACI Code, Section 14.5.3, specifies that the
minimum thickness of an exterior basement wall and its foundation is 7.5in. In general, the
minimum thickness of bearing walls is & of the supported height or length, whichever is

25
shorter, or 4in.

Example 14.3

Determine the thickness and necessary reinforcement for the basement retaining wall shown in
Fig. 14.16. Given: Weight of backfill = 110 pcf, angle of internal friction = 35°, f/ = 3 ksi, and
fy = 60 ksi.

Solution

1. The walt spans vertically and will be considered as fixed at the bottom end and propped at the
top. Consider a span of L = 9.75ft, as shown in Fig. 14.16. For these data, the different lateral
pressures on a 1-ft length of the wall are as follows: Due to active soil pressure, p, = 0.3 ksf
and H, = 1.49 K. Due to water pressure, p,, = 0.31 ksf and H,, = 1.56 K. Due to surcharge,
ps = 0.054 ksf and H; = 0.54 K. H, and H,, are due to triangular loadings, whereas Hj is due
to uniform loading. Referring to Fig. 14.16 and using moment coefficients of a propped beam
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subjected to triangular and uniform loads, and a load factor = 1.6 (ACI Code, Appendix C)

L L
M (Hq + w)7_5+ 53

= 1.6 (3£ % 9.75 4+ 0.54 x 9%) =741 K-t

75
305 054\ 7.4l
= 1. — =1
Rg 6( = 2) 575 = 13K
Ry =445K

Maximum positive bending moment within the span occurs at the section of 0 shear.
2
Vi = 1.3 — 1.6(0.054x) — 1.6 (0.063%) =0

x =43 ft

054 i 3)2
M.=13%x43—-1.6 [07(4.3)2+ g“; ]

= +3.45 K-ft

2. Assuming 0.01 steel ratio and R, = 332 psi,

M, T4 % 12 ,
d= =% = =472 in.
Rb_ V0332x12 =
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#4@ 12"
?
0 0"
#5@ 10"
, R
1o 8"

Uniform Trianguiar
load load Ry = 138K
§\ B %\‘B B
. I 4 4;3'
w ™™ 7.4 C e
W 5] _ - 9.75
Hy =
| w_ 149K +3.66 K-t
A A H é—- A
777, 77 77 Ra= 473K

Ma=wl/8 M.=wl/75 030Ksf 031 Ksf 0054 Ksf —7.87Kft
w = Total load

Figure 14.16 Example 14.3: basement wall.

Total depth = 4.72 + 1.5 (concrete cover) 4+ 0.25 = 6.47in. Use a 7% in. slab. d = 5.751n.

_ M, _ 741 x12,000
T obd? T 12 % (5.75)2

The steel ratio is p = 0.0054 and A; = 0.0054 x 12 x 5.75 = 0.369in.?
Minimum A, = 0.0015 bk = 0.0015(12)(7.5) = 0.135 in2 (vertical bars)
Minimum A, (flexure) = 0.0033(12)(5.75) = 0.23 in.?
Use no. 5 bars spaced at 10in. (A; = 0.37 in?).

R, = 226 psi
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Figure 14.17 Example 14.3: adjustment of wall base.

For the positive moment, M, = 3.45 X ft:
R, = 3.45 x 12,000
12 x (5.75)2
A; =0.002 x 12 x 5.75 = 0.14 in.? < 0.33 in.2
Use no. 4 bars spaced at 10in. (A; = 0.24 in?).

=105 psi p = 0.0020

4, Zero moment occurs at a distance of 7.6 ft from the top and 2.15 ft from the base. The devel-

opment length of no. 5 bars is 14in. Therefore, extend the main no. 5 bars to a distance of
2.15 + 1.2 = 3.35ft, or 3.5 ft, above the base; then use no. 4 bars spaced at 12 in. at the exterior
face. For the interior face, use no. 4 bars spaced at 10in. throughout,

Longitudinal reinforcement: Use a minimum steel ratio of 0.0020 (ACI Code, Section 14.3),
or A, = 0.0020 x 7 x 12 = 0.17 in®. Use no. 4 bars spaced at 12in. on each side of the wall.
If the bending moment at the base of the wall is quite high, it may require a thick wall slab,
for example, 12in. or more. In this case a haunch may be adopted, as shown in Fig. 14.17.
This solution will reduce the thickness of the wall, because it will be designed for the moment
at the section exactly above the haunch.

The basement slab may have a thickness greater than the wall thickness and may be extended
outside the wall by about 10in. or more, as required.

Sections 14.1-14.3

1. A retaining wall maintains unequal levels of earth on its two faces. The most common
types of retaining walls are gravity, semigravity, cantilever, counterfort, buttressed, and
basement walls.

2. For a linear pressure, the active and passive pressure intensities are

P,=Cowh and P, =C,wh

According to Rankine’s theory,

1 —sing 14 sin¢g
Co= (%) and c,= (209
“ (l+sin¢) and o (1—sin¢)

Values of C, and C, for different values of ¢ and § are given in Tables 14.2 and 14.3.
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Sections 14.4-14.5

1. When soil is saturated, the submerged unit weight must be used to calculate earth pressure.
The hydrostatic water pressure must also be considered.

2. A uniform surcharge on a retaining wall causes an additional pressure height, ks = w,/w.
Sections 14.6-14.8

1. A total frictional force, F, to resist sliding effect is

F=uR+H, (14.13)
Factor of safety against sliding = é—i— > 1.5 (14.14)
ah
2. Factor of safety against overturing is
My, > wx
— = >2.0 14.15
My Hh/3 ™ ( )

3. Approximate dimensions of a cantilever retaining wall are shown in Fig. 14.8,
Sections 14.9-14.10

1. Minimum reinforcement is needed in retaining walls.

2. To avoid hydrostatic pressure on a retaining wall, a drainage system should be used that
consists of weep holes, perforated pipe, or any other adequate device.

3. Basement walls in buildings may be designed as propped cantilever walls subjected to

earth pressure and vertical loads. This case occurs only if the first-floor slab has been
constructed. A surcharge of 200 psf may be adopted.
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PROBLEMS

14.1 Check the adequacy of the retaining wall shown in Fig. 14.18 with regard to overtuming, sliding,
and the allowable soil pressure. Given: Weight of backfill. = 110 pcf, the angle of internal friction is
¢ = 30°, the coefficient of friction between concrete and soil is i = 0.5, allowable soil pressure =
3.5 ksf, and f] = 3 ksi.
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Figure 14.18 Probiem 14.1: gravity wall.

—~| f20

TN,

P Y
' - “0\'.\'_0( J

130

N
A\
~\
V.
L4

+
'2'

¥ Or—w

Figure 14.19

14.2 Repeat Problem 14.1 with Fig. 14.19.

fe—¢' 0"——' fe—1' 0"

Problem 14.2: semigravity wall.

14.3 For each problem in Table 14.4, determine the factor of safety against overturning and sliding. Also,
determine the soil pressure under the wall footing and check if all calculated values are adequate
(equal or below the allowable values). Given: Weight of soil = 110 pcf, weight of concrete = 150 pcf,
and coefficient of friction between concrete and soil is 0.5 and between soil layers is 0.6. Consider
that the allowable soil pressure of 4 ksf and the top of the backfill is level without surcharge. Neglect
the passive soil resistance. See Fig. 14.20. (¢ = 35°)

14.4 Repeat Problems 14.3¢—k, assuming a surcharge of 300 psf.
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Table 14.4 Problem

Problem No. H hy A B C L
(a) 12 1.00 2.0 1.0 4.0 7
(b) 14 1.50 2.0 1.5 4.5 8
(c) 15 1.50 2.0 L.5 4.5 8
(@ 16 1.50 3.0 1.5 45 g
©) 17 1.50 3.0 1.5 4.5 9
6] 18 1.75 3.0 1.75 5.25 10
(g} 19 1.75 3.0 1.75 5.25 10
(h) 20 2.00 3.0 2.0 6.0 11
@) 21 2.00 35 2.0 6.5 12
G 22 2.00 3.5 2.0 6.5 12

Refer to Fig. 14.20. All dimensions are in feet.

ro] |

A AT rad
EEA ORGP 4

3o j

Figure 14.20 Problem 14.3.

14.5 Repeat Problems 14.3¢—#, assuming that the backfill slopes at 10° to the horizontal. (Add key if
needed.)

14.6 For Problems 14.3¢-#, determine the reinforcement required for the stem, heel, and toe, and choose
adequate bars and distribution. Use f! = 3 ksi and f, = 60 ksi.

14.7 Determine the dimensions of a cantilever retaining wall to support a bank of earth 16 ft high. Assume
that frost penetration depth is 4ft. Check the safety of the retaining wall against overturning and
sliding only. Given: Weight of backfill = 120 pef, angle of internal friction = 33°, coefficient of
friction between concrete and soil = 0.45, coefficient of friction between soil layers = 0.65, and
allowable soil pressure = 4 ksf. Use a 1.5 x 1.5-ft key if needed.

14.8 A complete design is required for the retaining wall shown in Fig. 14.21. The top of the back-
fill is to be level without surcharge. Given: Weight of backfill soil = 110 pcf, angle of internal
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Figure 14.21 Problem 14.8: cantilever retaining wall.
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Figure 14.22 Problem 14.9: cantilever retaining wall.

friction = 35°, the coefficient of friction between concrete and soil is 0.55, and that between soil
layers is 0.6. Use f. = 3 ksi, and f, = 60 ksi, and an allowable soil pressure of 4 ksf.

14.9 Check the adequacy of the cantilever retaining wall shown in Fig. 14.22 for both sliding and
over-turning conditions. Use a key of 1.5 x 1.5fi if needed. Then determine reinforcement needed for
the stem, heel, and toe, and choose adequate bars and distribution. Given: Weight of soil = 120 pcf,
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Figure 14.23 Problem 14.11: basement wall,

the angle of internal friction is ¢ = 35°, the coefficient of friction between concrete and soil is 0.52
and that between soil layers is 0.70. Use f! =3 ksi, f, = 60 ksi, an allowable soil pressure of
4 ksf, and a surcharge of 300 psf.

14.10 Repeat Problem 14.9, assuming the backfill slopes at 30° to the horizontal.

14.11 Determine the thickness and necessary reinforcement for the basement wall shown in Fig. 14.23.
The weight of backfill is 120 pcf and the angle of intemal friction is ¢ = 30°. Assume a surcharge
of 400 psf and use f! =3 ksi and £, = 60 ksi.

14.12 Repeat Problem 14.11 using a basement clear height of 14 ft.
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DESIGN FOR
TORSION

Apartment Building, Habitat 67, Montreal, Canada.

15.1 INTRODUCTION

Torsional stresses develop in a beam section when a moment acts on that section parallel to
its surface. Such moments, called torsional moments, cause a rotation in the structural member
and cracking on its surface, usually in the shape of a spiral. To illustrate torsional stresses, let
a torque T be applied on a circular cantilever beam made of elastic homogeneous material, as
shown in Fig. 15.1. The torque will cause a rotation of the beam. Point B moves to point B’ at
one end of the beam, whereas the other end is fixed. The angle 6 is called the angle of twist.
The plane AO" OB will be distorted to the shape AO’ OB’. Assuming that all longitudinal
elements have the same length, the shear strain is
(BB") r6

L L
where L is the length of the beam and r is the radius of the circular section.

In reinforced concrete structures, members may be subjected to torsional moments when
they are curved in plan, support cantilever slabs, act as spandrel beams (end beams), or are part
of a spiral stairway.

Structural members may be subjected to pure torsion only or, as in most cases, subjected
simultaneously to shearing forces and bending moments. Example 15.1 illustrates the different
forces that may act at different sections of a cantilever beam.

Example 15.1

Calculate the forces acting at sections 1, 2, and 3 of the cantilever beam shown in Fig. 15.2. The
beam is subjected to a vertical force Py = 15K, a horizontal force P, = 12K acting at C, and a
horizontal force P; = 20K acting at B and perpendicular to the direction of the force P;.

Solution

Let N = normal force, V = shearing force, M = bending moment, and 7 = torsional moment. The
forces are as follows.

493
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Figure 15.1 Torque applied to a cantilever beam.

N My M, Vi v, T
Section (K) (K-ft) (K.ft) (K) (K) (K-ft)
1 0 —135 +108 +12 +15 0
(15 x 9) (12 x 9)
2 -12 0 +108 +20 +15 135
Compression (15 x 9)
3 -12 —180 +348 +20 +15 135
Compression (15 x 9)

If P, P», and P; are factored loads (P, = 1.2Pp + 1.6P.), then the values in the table will be the
factored design forces.

15.2 TORSIONAL MOMENTS IN BEAMS

It was shown in Example 15.1 that forces can act on building frames, causing torsional moments.
If a concentrated load P is acting at point C in the frame ABC shown in Fig. 15.3q, it develops
a torsional moment in beam AB of T = PZ acting at D. When D is at midspan of AB, then
the torsional design moment in AD equals that in DB, or %T. If a cantilever slab is supported
by the beam AB in Fig. 15.3b, the slab causes a uniform torsional moment m, along AB. This
uniform torsional moment is due to the load on a unit width strip of the slab. If S is the width
of the cantilever slab and w is load on the slab (psf), then m, = wS%2 Kft/ft of beam AB.
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P,=15K
(vertical)

N
, =12 K

(horizontal)

(b) ()
Figure 15.2 Example 15.1.

The maximum torsion design moment in beam AB is T = %m,L acting at A and B. Other
cases of loading are explained in Table 15.1. In general, the distribution of torsional moments
in beams has the same shape and numerically has the same values as the shear diagrams for
beams subjected to a load m, or T.

15.3 TORSIONAL STRESSES

Considering the cantilever beam with circular section of Fig. 15.1, the torsional moment T will
cause a shearing force dV perpendicular to the radius of the section. From the conditions of
equilibrium, the external torsional moment is resisted by an intermal torque equal to and opposite
to T. If dV is the shearing force acting on the area dA (Fig. 15.4), then the magnitude of the
torque is 7 = [ r dV. Let the shearing stress be v; then

dV =vdA and T=frva‘A
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Figure 15.3 Torsional moments on AB.

The maximum elastic shear occurs at the external surface of the circular section at radius
r with thickness dr; then the torque T can be evaluated by taking moments about the center 0
for the ring area:

dT = Qnrdr)vr

where (27 r dr) is the area of the ring and v is the shear stress in the ring. Thus,

R R
T = f Qrrdrvr = f 2nrt vdr (15.1)
0 0

For a hollow section with internal radius R,

R
T =f 27r? vdr (15.2)
R1

For a solid section, using Eq. 15.1 and using v = vpax /R,
R R
_ 2 { Ymax? {2z 3
T—j(; an( R )drm(R)vmaxfordr

e (Z_Rz-r_) Vmax X RT4 = (%) vma,(R3

2T
Vmax = —= (15.3)
nr
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Table 15.1 Torsion Diagrams
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Table 15.1 (coniinued)
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Figure 15.4 Torque in circular sections.

The polar moment of inertia of a circular section is J = 7 R4/2. Therefore, the shear stress can
be written as a function of the polar moment of inertia J as follows:

TR

Vmax =~ (15.4)

16.4 TORSIONAL MOMENT IN RECTANGULAR SECTIONS

The determination of the stress in noncircular members subjected to torsional loading is not as
simple as that for circular sections. However, results obtained from the theory of elasticity in
dicate that the maximum shearing stress for rectangular sections can be calculated as follows:

T
axly

(15.5)

Umax =
where

T = the applied torque

x = short side of the rectangular section

y = the long side of the rectangular section

a = coefficient that depends on the ratio of y/x; its value is given in the following table.
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Figure 15.5 Stress distribution in rectangular sections due to pure torsion.

y/x 1.0 1.2 1.5 2.0 4 10
P 0.208 0.219 0.231 0.246 0.282 0.312

The maximum shearing stress occurs along the centerline of the longer side y (Fig. 15.5).

For members composed of rectangles, such as T-, L-, or I-sections, the value of @ can
be assumed equal to be %, and the section may be divided into several rectangular components
having a long side y; and a short side x;. The maximum shearing stress can be calculated from

3T

Extyi

(15.6)

Umax

where )Dxiz y; is the value obtained from the rectangular components of the section. When y/x
< 10, a better expression may be used:

3T
Y x2y (1 - 0.635)
y

(15.7)

Umax =

15.5 COMBINED SHEAR AND TORSION

In most practical cases, a structural member may be subjected simultaneously to both shear and
torsional forces. Shear stresses will be developed in the section, as was explained in Chapter 8,
with an average shear = v; in the direction of the shear force V (Fig. 15.6a). The torque T
produces torsional stresses along all sides of the rectangular section ABCD (Fig. 15.6a), with
vy > vp. The final stress distribution is obtained by adding the effect of both shear and torsion
stresses to produce maximum value of (v; + v3) on side CD, whereas side AB will have a final
stress of (v; — v3). Both sides AD and BC will be subjected to torsional stress v, only. The
section must be designed for the maximum v = (v; + v3).
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Figure 15.6 Combined shear and torsional stresses: {a) solid sections and {b) hollow
sections, ’

15.6 TORSION THEORIES FOR CONCRETE MEMBERS

Various methods are available for the analysis of reinforced concrete members subjected to
torsion or simultaneous torsion, bending, and shear. The design methods rely generally on two
basic theories: the skew bending theory and the space truss analogy.

15.6.1 Skew Bending Theory

The skew bending concept was first presented by Lessig in 1959 [2] and was further developed
by Goode and Helmy [31], Collins et al. in 1968 [4], and Below et al. in 1975 [5]. The concept
was applied to reinforced concrete beams subjected to torsion and bending. Expressions for
evaluating the torsional capacity of rectangular sections were presented by Hsu in 1968 [6,7] and
were adopted by the ACI Code of 1971. Torsion theories for concrete members were discussed
by Zia [8). Empirical design formulas were also presented by Victor et al. in 1976 [9].

The basic approach of the skew bending theory, as presented by Hsu, is that failure of a
rectangular section in torsion occurs by bending about an axis parallel to the wider face of the
section y and inclined at about 45° to the longitudinal axis of the beam (Fig. 15.7). Based on
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Figure 15.7 Failure surface due to skew bending.

this approach, the minimum torsional moment, 7, can be evaluated as follows:

2
T, = (%) 1, (15.8)

where f, is the modulus of rupture of concrete; f,. is assumed to be 5,/ f/ in this case, as

compared to 7.51,/ f! adopted by the ACI Code for the computation of deflection in beams.
The torque resisted by concrete is expressed as follows:

24\ , -
T. = (J_E)x v fe (15.9)
and the torque resisted by torsional reinforcement is
_ oy A fy)

s
Thus, T, = T. + T, where T, is the nominal torsional moment capacity of the section.

T, (15.10)

15.6.2 Space Truss Analogy

The space truss analogy was first presented by Rausch in 1929 and was further developed by
Lampert [10,11], who supported his theoretical approach with extensive experimental work. The
Canadian Code provisions for the design of reinforced concrete beams in torsion and bending
are based on the space truss analogy. Mitchell and Collins [12] presented a theoretical model for
structural concrete in pure torsion. McMullen and Rangan [13] discussed the design concepts
of rectangular sections subjected to pure torsion. In 1983, Solanki [14] presented a simplified
design approach based on the theory presented by Mitchell and Collins.

The concept of the space truss analogy is based on the assumption that the torsional capacity
of a reinforced concrete rectangular section is derived from the reinforcement and the concrete
surrounding the steel only. In this case, a thin-walled section is assumed to act as a space truss
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Figure 15.8 Forces on section in torsion (space truss analogy).

(Fig. 15.8). The inclined spiral concrete strips between cracks resist the compressive forces,
whereas the longitudinal bars at the corners and stirrups resist the tensile forces produced by the
torsional moment.

The behavior of a reinforced concrete beam subjected to pure torsion can be represented
by an idealized graph relating the torque to the angle of twist, as shown in Fig. 15.9. It can be
seen that prior to cracking, the concrete resists the torsional stresses and the steel is virtually
unstressed. After cracking, the elastic behavior of the beam is not applicable, and hence a sudden

Uncracked
section

Torque T

4

|

If{
il
¥

2

Angle of twist per unit length ¥

Figure 15.9 Idealized torque versus twist relationship.
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change in the angle of twist occurs, which continues to increase until the maximum torsional
capacity is reached. An approximate evaluation of the torsional capacity of a cracked section
may be expressed as follows:

T, =2(A—;fl)x;y1 (15.11)

where

A; = of one leg of stirrups
s = spacing of stirrups

x1 and y; = short and long distances, center to center of closed rectangular stirrups or corner
bars

The preceding expression neglects the torsional capacity due to concrete. Mitchell and
Collins [12] presented the following expression to evaluate the angle of twist per unit length :

_ Py £l Py(ep tan ) ﬁ
V= (E) [(tana) + ( Py ) + sinoz] (15.12)

gy = strain in the longitudinal reinforcing steel

£;, = strain in the hoop steel (stirrups)

&4 = concrete diagonal strain at the position of the resultant shear flow
Py = hoop centerline perimeter

« = angle of diagonal compression = (&g; + 81)/ [Sd + & (%)]
A¢ = area enclosed by shear, or

= torque/2g where ¢ = shear flow)
Py = perimeter of the shear flow path (perimeter of Ag).

where

The preceding twist expression is analogous to the curvature expression in flexure (Fig. 15.10):
Ec+ &
d

where ¢, and & are the strains in concrete and steel, respectively. A simple equation is presented
by Solanki [14] to determine the torsional capacity of a reinforced concrete beam in pure torsion,
based on the space truss analogy, as follows:

1/2
o= an | (Z502) « (222)] (15.14)

Py K}

¢ = curvature =

(15.13)

where Ag,Pp, and s are as explained before and

T A; fsy = yield force of all the longitudinal steel bars
A fny = yield force of the stirrups

The ACI Code adapted this theory to design concrete structural members subjected to
torsion or shear and torsion in a simplified approach.
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Figure 15.10 (g} Torsion and (b) flexure.

15.7 TORSIONAL STRENGTH OF PLAIN CONCRETE MEMBERS

Concrete structural members subjected to torsion will normally be reinforced with special tor-
sional reinforcement. In case that the torsional stresses are relatively low and need to be calculated
for plain concrete members, the shear stress, v, can be estimated using Eq. 15.6:

3T
PpTxly <6/

and the angle of twist is § = 3T L/x3yG, where T is the torque applied on the section (less than
the cracking torsional moment) and G is the shear modulus and can be assumed to be equal
to 0.45 times the modulus of elastic of concrete, E.; that i1s, G = 25,700\/70’. The torsional
cracking shear, v, in plain concrete may be assumed equal to 6\/70’ . Therefore, for plain concrete
rectangular sections,

Ve =

T. = 2¢x%y /! (15.15)
and for compound rectangular sections,
T, = 2¢/ f/5x%y (15.16)

15.8 TORSION IN REINFORCED CONCRETE MEMBERS (ACI CODE PROCEDURE)}

15.8.1 General

The design procedure for torsion is similar to that for flexural shear. When the factored torsional
moment applied on a section exceeds that which the concrete can resist, torsional cracks develop,
and consequently torsional reinforcement in the form of closed stirrups or hoop reinforcement
must be provided. In addition to the closed stirrups, longitudinal steel bars are provided in the
corners of the stirrups and are well distributed around the section. Both types of reinforcement,
closed stirrups and longitudinal bars, are essential to resist the diagonal tension forces caused by
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torsion; one type will not be effective without the other. The stirrups must be closed, because
torsional stresses occur on all faces of the section.

The reinforcement required for torsion must be added to that required for shear, bending
moment, and axial forces. The reinforcement required for torsion must be provided such that
the torsional moment strength of the section ¢7, is equal to or exceeds the applied factored
torsional moment 7, computed from factored loads.

oT, > T, (15.17)

When torsional reinforcement is required, the torsional moment strength ¢7,, must be

calculated assuming that all the applied torque, T, is to be resisted by stirrups and longitudinal

bars with concrete torsional strength, 7, = 0. At the same time, the shear resisted by concrete,
v, is assumed to remain unchanged by the presence of torsion.

15.8.2 Torsional Geometric Parameters

In the ACI Code, Section 11.5 the design for torsion is based on the space truss analogy, as
shown in Fig. 15.8. After torsional cracking occurs, the torque is resisted by closed stirrups,
longitudinal bars, and concrete compression diagonals. The concrete shell outside the stirrups
becomes relatively ineffective and is normally neglected in design. The area enclosed by the
centerline of the outermost closed stirrups is denoted by Aop, the shaded area in Fig. 15.11.
Because other terms are used in the design equations, they are introduced here first to make the
equation easier to comprehend. Referring to Fig. 15.11, the given terms are defined as follows:

A¢p = enclosed by outside perimeter of concrete section, in.?

Fp = perimeter of concrete gross area, Acp, in.

Aoy, = area enclosed by centerline of the outermost closed transverse torsional
reinforcement, in.2 (shaded area in Fig. 15.11)

Ao = gross area enclosed by shear flow path and may be taken equal to 0.85 Aq, (Ao
may also be determined from analysis [18,19].)

P, = perimeter of concrete of outermost closed transverse torsional reinforcement
6 = angle of compression diagonals between 30° and 60° (may be taken equal to 45°
for reinforced concrete members)

In T- and L-sections, the effective overhang width of the flange on one side is limited to
the projection of the beam above or below the slab, whichever is greater, but not greater than
four times the slab thickness (ACI Code, Sections 11.5.1 and 13.2.4).

15.8.3 Cracking Torsional Moment, T,

The cracking moment under pure torsion, 7, may be derived by replacing the actual section,
prior to cracking, with an equivalent thin-walled tube, t = 0.75 A,/ FPep, and an area enclosed by
the wall centerline, Ap = 2 A.p/3. When the maximum tensile stress (principal stress) reaches

4xr./ 1, cracks start to occur and the torque 7' in general is equal to
T =2Aptt (15.18)
where 7 = the torsional shear stress = 41\/76’ for torsional cracking.
Replacing 7 by 4}»\/5_’ ,
A%

T = 4A\/Tg(P ) =T, and T, =¢Ty (15.19)
cp
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Figure 15.11 (a) Torsional geometric parameters; (b) effective flange width for T- and
L-sections and component rectangles.
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Assuming that a torque less than or equal to T,,/4 will not cause a significant reduction
in the flexural or shear strength in a structural member, the ACI Code, Section 11.5.1, permits
neglect of torsion effects in reinforced concrete members when the factored torsional moment
T, < ¢T/4, or

2
A%

T, < ¢/ f! (P_) =T, (15.20)
cp

When 7, exceeds the value in Eq. 15.20, all 7, must be resisted by closed-stirrup and longitudinal
bars. The torque, T}, is calculated at a section located at distance d from the face of the support
and T, = ¢T,, where ¢ = 0.75.

Example 15.2
For the three sections shown in Fig. 15.12, and based on the ACI Code limitations, it is required to
compute the following:

a. The cracking moment ¢T¢;

b. The maximum factored torque ¢7,, that can be applied to each section without using torsional
web reinforcement
Assume f! = 4ksi, fy = 60ksi, a 1.5-in. concrete cover, and no. 4 stirrups.

21.5"

N l | 5#9 l

I ——] R

(a) (b)

< 48"

18"

—
w
=
—— O —> O

(c)
Figure 15.12 Example 15.2.
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Solution
1. Section 1

a. Cracking moment, ¢7,, can be calculated from Eq. 15.19.
2

A
T = 940/ f} (ﬁ)

Pcp

For this section, A, = xgyp, the gross area of the section, where xp = 16in. and y; =
24in.

Acp = 16(24) = 384 in?
Pep = perimeter of the gross section
= 2{xp + yo) = 2(16 + 24) = 80 in.

0.75(4)(1)+/4000(384)>
o7 =~ _ 3497 Kim
b. The allowable ¢ T, that can be applied without using torsional reinforcement is computed

from Eq. 15.20:

7, 49.7
= ¢ = & = 8§74 K-in.

T,
T4 4

2. Section 2

a. First calculate A, and P, for this section and apply Eq. 15.19 to calculate ¢ T ;. Assuming
flanges are confined with closed stirrups, the effective flange part to be used on each side
of the web is equal to four times the flange thickness, or 4(4) = 16 in = h, = 16in.

A¢p = web area (b,h) + area of effective flanges
= (14 x 20) + 2(16 x 4) = 408 in.2
Pop=2(b+h)=2(14+2x16+20) = 132 in?

0.75(4)(1)~/(4000)(408)>
$T = ~2QOERDEN. _ 393K in.
Note: If the flanges are neglected and the torsional reinforcement is confined in the web

only, then
Agp = 14(20) = 280 in.2 Pop = 2(14 4+ 20) = 68 in. ¢T =219 Kiin.
b. The allowable ¢, that can be applied without using torsional reinforcement is

¢Te /4 = 239.3/4 = 59.8 K-in.
3. Section 3

a. Assuming flange is confined with closed stirrups, effective flange width is equal to b, =
15in. <« 4 x 6 = 24in.

Acp = (14 x 21} + (15 x 6) = 384 in.
Pop=2(b+h)=2(14+ 15+ 21) = 100 in.

0.75(4)(1)/(4000)(384)?
¢Ter = 100

Note: If the flanges are neglected, then A, = 204in.2, Pyp = 70in., and ¢7, =
234.3 K.in.

b. The allowable ¢7T, = ¢pT/4 = 279.8/4 = 70 K.in.

= 279.8 K-in.
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15.8.4 Equilibrium Torsion and Compatibility Torsion

Structural analysis of concrete members gives the different forces acting on the member, such
as normal forces, bending moments, shear forces, and torsional moments, as explained in the
simple problem of Example 15.1. The design of a concrete member is based on failure of the
member under factored loads. In statically indeterminate members, a redistribution of moments
occurs before failure; consequently, design moments may be reduced, whereas in statically
determinate members, such as a simple beam or a cantilever beam, no moment redistribution
occurs.

In the design of structural members subjected to torsional moments two possible cases may
apply after cracking.

1. The equilibrium torsion case occurs when the torsional moment is required for the structure
to be in equilibrium and 7', cannot be reduced by redistribution of moments, as in the case
of simple beams. In this case torsion reinforcement must be provided to resist all of 7.
Figure 15.13 shows an edge beam supporting a cantilever slab where no redistribution of
moments will occur [18,19].

2. The compatibility torsion case occurs when the torsional moment, T, can be reduced by
the redistribution of internal forces after cracking while compatibility of deformation is
maintained in the structural member. Figure 15.14 shows an example of this case, where
two transverse beams are acting on an edge beam producing twisting moments. At torsional

End
beam

_i.AV.._. i

Figure 15.13 Design torque may not be reduced. Moment redistribution is not possi-
ble [19].

N ~E
| a,,,/ I i

Figure 15.14 Design torque may be reduced in a spandrel beam. Moment redistribu-
tion is possible [19].
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cracking, a large twist occurs, resulting in a large distribution of forces in the structure
[18,19]. The cracking torque, T, under combined flexure, shear, and torsion is reached
when the principal stress in concrete is about 41\/76’. When T, > T, a torque equal to
Ter (Eq. 15.19), may be assumed to occur at the critical sections near the faces of the
supports.

The ACI Code limits the design torque to the smaller of 7, from factored loads or ¢pT
from Eq. 15.19.

15.8.5 Limitation of Torsional Moment Strength

The ACI Code, Section 11.5.3, limits the size of the cross-sectional dimension by the following
two equations:

1. For solid sections,

Vu 2 TuPh 2 Vc ,
(bwd) * (1.?Agh) =9 [(bwd) + 8\/f_c] (15.21)

2. For hollow sections,

Vi T, Py Ve ;
(bwd) " (1.7Agh) =¢ [(;,w ) + 3\/3] (1522)

where V, = 21,/ f/b,,d = shear strength for normal-weight concrete. All other terms were
defined in Section 15.8.2.

This limitation is based on the fact that the sum of the stresses due to shear and torsion
(on the left-hand side) may not exceed the cracking stress plus 8\/70’. The same condition
was applied to the design of shear without torsion in Chapter 8. The limitation is needed to
reduce cracking and to prevent crushing of the concrete surface due to inclined shear and torsion
stresses.

15.8.6 Hollow Sections

Combined shear and torsional stresses in a hollow section are shown in Fig. 15.6, where the wall
thickness is assumed constant. In some hollow sections, the wall thickness may vary around the
perimeter. In this case, Eq. 15.22 should be evaluated at the location where the left-hand side
is maximum. Note that at the top and bottom flanges, the shear stresses are usually negligible.
In general, if the wall thickness of a hollow section ¢ is less than A.u/Py, then Eq. 15.22

becomes
Vu Tu VC
< ! 15.23
b,d + 1.7A,5 — ¢ [(bwd) + 8‘/}:] ( )

(ACI Code, Section 11.5.3).
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15.8.7 Web Reinforcement

As was explained earlier, the ACI Code approach for the design of the members due to torsion is
based on the space truss analogy in Fig. 15.8. After torsional cracking, two types of reinforcement
are required to resist the applied torque, 7,: transverse reinforcement, A,, in the form of closed
stirrups, and longitudinal reinforcement, A;, in the form of longitudinal bars. The ACI Code,
Section 11.5.3, presented the following expression to compute A, and A;:

1. Closed stirrups A; can be calculated as follows.

2AgA,; fyicotd
T, = S

(15.24)

T,
T, = ?" and ¢ = 0.75

A; = area of one leg of the transverse closed stirrups
fy = yield strength of A, < 60ksi
s = spacing of stirrups
Ag and @ were defined in Section 15.8.2. Equation 15.24 can be written as follows:
Ay T,

g 15.2
s 2Ap fyrcoté (15.25)
If 6 = 45°, then cot & = 1.0, and if fy, = 60ksi, then Eq. 15.25 becomes
A, T,
s 1204 (15.26)

where T, is in kip in. Spacing of stirrups, s, should not exceed the smaller of P,/8 or 121in.
For hollow sections in torsion, the distance measured from the centerline of stirrups to the
inside face of the wall shall not be less than 0.5 A/ Py.

2. The additional longitudinal reinforcement, A;, required for torsion should not be less than
the following:

A
A= (—‘) P, (@) cot* (15.27)
S fy
If 6 = 45° and fx = f, = 60ksi for both stirrups and longitudinal bars, then Eq. 15.27
becomes
A A
A= (?) Py=2 (?) (x1 + 1) (15.28)

P, was defined in Section 15.8.2. Note that reinforcement required for torsion should be

added to that required for the shear, moment, and axial force that act in combination with

torsion. Other limitations for the longitudinal reinforcement, A;, are as follows:

a. The smallest bar diameter of a longitudinal bar is that of no. 3 or stirrup spacing s/24,
whichever is greater.

b. The longitudinal bars should be distributed around the perimeter of the closed stirrups
with a maximum spacing of 12in.
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¢. The longitudinal bars must be inside the stirrups with at least one bar in each corner of
the stirrups. Comer bars are found to be effective in developing torsional strength and
in controlling cracking.

d. Torsional reinforcement should be provided for a distance (b; + d) beyond the point
theoretically required, where &, is the width of that part of the cross-section containing
the stirrups resisting torsion.

15.8.8 Minimum Torsional Reinforcement
Where torsional reinforcement is required, the minimum torsional reinforcement may be com-
puted as follows (ACI Code, Section 11.5.5):

1. Minimum transverse closed stirrups for combined shear and torsion (see Section 8.6):
50b,s

yt

> 0.75/f! (3%) (for ! > 4.5ksi) (15.29)
yt

A, + 24, >

(for f < 4.5ksi)

A, = area of two legs of a closed stirrup determined from shear

A, = area of one leg of closed stirrup determined from torsion
s = spacing of stirrups

Syt = yield strength of closed stirrups < 60ksi

Spacing of stirrups, s, should not exceed P;/8 or 12in., whichever is smaller. This spacing
18 needed to control cracking width.

2. Minimum total area of longitudinal torsional reinforcement:
5/flA
Afmin = —\/TC 21 - (ﬁ) Py (*@) (15.30)
Iy s Ly
where A,/s shall not be taken less than 25 b,/ fy;.

The minimum A; in Eq. 15.30 was determined to provide a minimum ratio of the volume of
torsional reinforcement to the volume of concrete of about 1% for reinforced concrete subjected
to pure torsion.

15.9 SUMMARY OF ACI CODE PROCEDURES
The design procedure for combined shear and torsion can be summarized as follows:

1. Calculate the factored shearing force, V,, and the factored torsional moment, 7,, from
the applied forces on the structural member. Critical values for shear and torsion are at a
section distance d from the face of the support.

2. a. Shear reinforcement is needed when V,, > ¢ V./2, where V, = 2]&\/Tc’bwd .
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b. Torsional reinforcement is needed when
2
Acp

Ty > oA/ fl (P—c.,) (15.20)

If web reinforcement is needed, proceed as follows.
3. Design for shear:

a. Calculate the nominal shearing strength provided by the concrete, V.. Determine the
shear to be carried by web reinforcement:

Vu - ¢Vc
¢
b. Compare the calculated V; with maximum permited value of (8,/f/byd) according to

the ACI Code Section 11.4.7.9. If calculated V; is less, proceed with the design; if not,
increase the dimensions of the concrete section.

¢. The shear web reinforcement is calculated as follows:
Vs
Jud

Ve=9¢V.+V,0r V; =

A, =

where
A, = area of two legs of the stirrup
s = spacing of stirrups.
The shear reinforcement per unit length of beam is
A, Y

s fud

d. Check A,/s calculated with the minimum A,/s:

. Ay bu by
(min)— = 0.75/ f! (—) > 50 (_)
5 Z Sy fn
The minimum A, specified by the code under the combined action of shear and torsion,
is given in step 5.
4. Design for torsion:

a. Check if the factored torsional moment, T,,, causes equilibrium or compatibility torsion.
For equilibrium torsion, use 7,. For compatibility torsion, the design torsional moment
is the smaller of 7, from factored load and

AZ
T2 = ¢40/f! (ﬁ) (15.19)

b. Check that the size of the section is adequate. This is achieved by checking either
Eq. 15.21 for solid sections or Eq. 15.22 for hollow sections. If the left-hand-side value
is greater than ¢(V./b,d + 8,/ f7), then increase the cross-section. If it is less than that
value, proceed. For hollow sections, check if the wall thickness ¢ is less than Ao/ Py.
If it is less, use Eq. 15.23 instead of Eq. 15.22; otherwise, use Eq. 15.22.
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¢. Determine the closed stirrups required from Eq. 15.25:

AI - Tn
s 2Ap fyrcot @

Ay/s should not be less than 25 b,/ fy,. Also, the angle ¢ may be assumed to be 45°,
T, = T./¢, and ¢ = 0.75.

Assume Ag = 0.85 Ayn = 0.85 (x1 y1), where x; and y, are the width and depth
of the section to the centerline of stirrups; see Fig. 15.11. Values of Ap and € may be
obtained from analysis [18]. For & = 45° and f, = 60ksi,

(15.25)

A‘ Tn
== 15.26
s 1204, ( )
The maximum allowable spacing, s, is the smaller of 12in. or P,/8.
. Determine the additional longitudinal reinforcement:
A
A= (-1) P, (@) cot* 6 (15.27)
§ 5
but not less than
5./fA A
Afmin = _\/._TC_CP — (_') P, (f!_‘) (15.30)
f ¥y s f Yy
For ¢ = 45° and fy,, = 60ksi, then A; = (A,/s)F;. (15.28)

Bars should have a diameter of at least stirrup spacing, s/24, but not less than no.
3 bars. The longitudinal bars should be placed inside the closed stirrups with maximum
spacing of 12in. At least one bar should be placed at each corner of stirrups. Normally,
one-third of A; is added to the tension reinforcement, one-third at midheight of the
section, and one-third at the compression side.

5. Determine the total area of closed stirrups due to V, and 7,,.

50 by,s

yt

An = (A, +24,) = (15.29)

Choose proper closed stirrups with a spacing s as the smaller of 12in. or P,/8.

The stirrups should be extended a distance (b; + d) beyond the point theoretically

no longer required, where b, = width of cross-section resisting torsion.

Example 15.3: (Equilibrium Torsion)

Determine the necessary web reinforcement for the rectangular section shown in Fig. 15.15. The
section is subjected to an factored shear V,, = 48K and an equilibrium torsion T, = 360K-in at
a section located at a distance 4 from the face of the support. Use normal-weight concrete with
. = 4ksi, and fy = 60ksi.

Solution

The following steps explain the design procedure:

1. Design forces are V,, = 48K and an equilibrium torsion T, = 400K in.
2. a. Shear reinforcement is needed when V, > ¢V,./2.

Ve = ¢20/ fIbd = 0.75(2)(1)+/4000(16)(20.5) = 31.1K

AL

V.=48K > =1555K

Shear reinforcement is reguired.
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Figure 15.15 Example 15.3.

b. Torsional reinforcement is needed when
A2,
Tu> oM/l 2) =T,
Pep

Aep = Xoyo = 16(23) = 368 in.2

Pep = 2(xp + yo) = 2(16 + 23) =78 in. (15.20)
/2000 2
T, = 0.75(1) :200(368) = 82.36 K-in.

T, = 360 K-in. > 82.36 K-in.

Torsional reinforcement is needed. Note that if 7, is less than 82.36 K-in., torsional rein-
forcement is not required, but shear reinforcement may be required.

3. Design for shear:
a. V, =V, + ¢V, V. = 3526K. 48 = 31.1 4+ 0.75V,, V, = 225K

b. Maximum V, = 8,/f/bd = 8+/4000(16)(20.5) = 166K > V;.
¢ A,/s = Ve/fyd = 22.5/(60 x 20.5) = 0.018 in/in. (two legs)

A,/2s = 0.018/2 = 0.009 in.%/in. (one leg)
4. Design for torsion:
a. Design T, = 360 K-in. Determine sectional properties, assuming 1.5-in. concrete cover and
no. 4 stirrups:

x1 = width to center of stirrups = 16 — 2(1.5 +0.25) = 12.5 in.
y1 = depth to center of stirrups = 23 — 2(1.5 4+ 0.25) = 19.5 in.
Practically, x) can be assumed to be » — 3.5in. and y; = £ — 3.5in.
Ach = X1y1 = (12.5 x 19.5) = 244 in.?
Ag = 0.85A¢, = 207.2 in”
P, =2(x1 + »1) =2(12.5 + 19.5) = 64 in.
For 6 = 45° and cot § = 1.0.
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b. Check the adequacy of the size of the section using Eq. 15.21:
| o\ [ TE Ve
J (5ez) + (FP;) <o[(507) +5v7]
V. =311 K and V.=415K

48,000 \? /360,000 x 64>
t-hand side = ’ ’ — 271 psi
Left-hand side J(16x20.5) +( 1.7(244)? ) Pt

Right-hand side = 0.75 { -2 8«/4000) — 475psi » 271 psi
16 x 20.5

The section is adequate.
¢. Determine the required closed stirrups due to torsion from Eq. 15.25:

Ar _ Tn
s 2Agfupcote

T, 360 )
T, = E“ == 430 Kin. cot@ =1.0 and Ag=207.2in?
A, 480

B A | ) oD g )
s 2 x207.2 x 60 0.019 in"/in.  (per one leg)

d. Determine the additional longitudinal reinforcement from Eq. 15.27:

w=(5) (%) eote

K fy
A, . .
T=0.019, Pp=64in. fu = f, =60ksi cotéd =1.0

A; = 0.019(64) = 1.2] in.2

NG

A
Ao = 368 in? —Si =0.019

) 54/4000(368) .2
Min 4= | ——— | — (0. 1.0) =0.72 in.
in. A; [ 0,000 :I (0.019 x 64 x 1.0) in

A; = 1.21 in.? controls
5. Determine total area of closed stirrups:
a. For one leg of stirrups, Aw/s = A/s + A,/2s.

0.018
Required Ay = 5 +0.019 = 0.028 in.%/in. (per one leg)

Using no. 4 stirrups, area of one leg is 0.2in.2

0.2
Spacing of stirrups = 008 = 714 in. or 7.0 in.
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b. Maximum s = P /8 = % = 8in. or 12in., whichever is smaller. The value of s used is
7.0in. < 8in.

¢. Minimum Ay/s = 50b,/ fu = 50(16)/60,000 = 0.0133 in.2/in. This is less than 0.028 in.?/in.
provided.

6. To find the dlSll'lbl.lthﬂ of longitudinal bars, note that total A; = 1.211n. 2 Use one-third at the
top, or 1.21/3 = 0.4in.2, to be added to the compression steel Aj. Use one-third, or 0.4in.%, at
the bottom, to be added to the tension steel, and one-third, or 0. 4m , at middepth.

a. The totzal area of top bars is 0.4(2 no. 4) + 0.4 = 0.81in.2; use three no. 5 bars (4; =
0.91 in.7).
b. The total area of bottom bars is 5 (five no. 9) + 04 = 5.4 in.2; use three no. 9 and two no.
10 bars at the corners (total A; = 5.53in.2).
¢. At middepth, use two no. 4 bars (A; = 0.4 in.%).
Reinforcement details are shown in Fig. 15.15. Spacing of longitudinal bars is equal to
9in., which is less than the maximum required of 12in. The diameter of no. 4 bars used is
greater than the minimum of no. 3 or stirrup spacing, or s/24 = 0.21in.

Example 15.4: Compatibility Torsion
Repeat Example 15.3 if the factored torsional torque is a compatibility torsion.

Solution
Referring to the solution of Example 15.3,

1. Design forces are V, = 48K and compatibility torsion is 360 K-in.
2. Steps (a) and (b) are the same as in Example 15.3. Web reinforcement is required.
3. Step (c) is the same.

4. Design for torsion:
Because this is a compatibility torsion of 360K in., the design 7, is the smaller of 360K in.
or ¢T,; given in Eq. 15.19.

AL V2! 2
OT = ¢4/ ! ( ) _ 075 W) VA000B08)” _ 359 4 Kein, (15.19)

Py 78
Because ¢ T, < 360K-in., use T, = 329.4 K-in. Repeat all the steps of Example 15.3 using T,
= 329.3K-in. to determine that the section is adequate.
A

Tt = 0.018 in.%/in. (one leg)

= 0.018(64) = 1.152 in.2

Use 1.2in.2 > min. A;.
5. Required Ay = 0.018/2 + 0.018 = 0.027 in.2 in. (one leg).

0.2

s = ——=741n
0.027

Use 7 in. Choose bars, stirrups, and spacing similar to Example 15.3.

Example 15.5: L-Section with Equilibrium Torsion

The edge beam of a building floor system is shown in Fig. 15.16. The section at a distance d
from the force of the support is subjected to ¥, = 53K and an equilibrium torque 7, = 240 K-in.
Design the necessary web reinforcement using f; = 4ksi and f, = 60ksi for all steel bars and
StTUps.
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Figure 15.16 Example 15.5.

Solution

1. Design forces are V, = 60K and 7,, = 270 K-in. = 22.5 K ft.
2. a. Shear reinforcement is needed when V, > ¢ V./2.
oV, = ¢2A\/T({bwd = 0.75(2)(1)v/4000(14)(18) = 23.9K
dVe
2

Vi > = 11.95K

Shear reinforcement is required.

b. Check if torsional reinforcement is needed. Assuming that flange is contributing to resist
torsion, the effective flange length is /1, = 15in. < 4 x 6 = 24in.

xo=141in. and yy=21in.
Aep = (14 x 21)(web) + (15 x 6)(flange) = 384 in.
Pop = 2(21 +29) = 100 in.

/4000 2
T, (Eq. 15.20) = fatl 700 (289) = 70 K-in.

f =

Torsional reinforcement is required.
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3. Design for shear:

a. Vi =0V + Vs
53 =23.9+0.75V;
V; = 388K
b. Maximum V; = 8,/f/b,d = 1275K >V,
V. 38.8
C. - 77T . - ‘2 - t
Ay/ls 7.d " 6018 0.036 in.“/in (two legs)

036
Ay f2s = 0—2— = 0.018 in.?/in.

4. Design for torsion: 7, = 240K-in.
a. Determine section properties assuming a concrete cover of 1.5in. and no. 4 stirrups.

Webx; = 6—-35in.=14—-3.5=10.5in. yw = h—35=21-35=175in
Flange x; = 15 in. (stirrups extend to the web) y = 6—35=25in.
A = (15%2.5)+ (10.5x 17.5) =221 in2 Ag = 0.85Ay, = 188 in.2
P, = 2(15425)+2(10.5+17.5) =% in. 8 = 45° coté = 1.0

b. Check the adequacy of the section using Eq. 15.21: V, = 53K, ¢ V., =239K V, =31.9K

Tu = 240 K'in.
‘ 53,000 \> [240,000 x 917* .
left-hand side = ‘/tm) 4~ [W] =434 ps1

31,500
14 x 18

right-hand side = 0.75 [ + 8\/4000] = 475 psi

The section is adequate.
¢. Determine the torsional closed stirrups, A,/s, from Eq. 15.25:
At Tn 240

~ = = =0014 in2/in.  (f i
s 2Aofx  0.75x2x 188 x 60 in.”/in (for one leg)

d. Calculate the additional longitudinal reinforcement from Eq. 15.28 (for f, = 60ksi and
cot 8 = 1.0)

Ay = (%) P, = 0.014(91) = 1.28 in.?

At min (from Eq. 15.30) is

4 [5J4000(384)
=\

—(0.014 x 91) = 0.75 in2
60.000 ] { x91) =075 in

The contribution of the flange may be neglected with slight difference in results, and less
labor cost.

5. Determine the total area of the closed stirrups.
a. For one leg, Ay/s = A)/s + A\/2s.
Required Ay, = 0.014 4+ 0.018 = 0.032 in.2/in. (per leg)
Choose no. 4 closed stirrups, area = 0.2in.2
0.2

Spacing of sti = ——=6251n.
pacing of stirrups = w0 in

Use 61n.
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SUMMARY

b. Max. s = P,/8 = 91/8 = 11.4in. Use s = 6in., as calculated.

Chapter 15 Design for Torsion

c. Awls = 500,/ f,x = 50(14)/60,000 = 0.017 in.%/in., which is less than the 0.032 in.%/in. used.
Use no. 4 closed stirrups spaced at éin.

6. Find the distribution of longitudinal bars. Total A; is 1.28in.2 Use one-third, or 0.43in.2, at the
top, at the bottom, and at middepth.

a. Total top bars = 0.88 + 0.43 = 1.31in.2; use three no. 6 bars (1.32in.2).

b. Total bottom bars = 4.0 + 0.43 = 4.43in.2; use five no. 9 bars (5.0in.2).
Total A; used = (1.32 — 0.88) + (5 — 4) = 1.44in.?

¢. Use two no. 4 bars at middepth (0.40 in.2). Reinforcement details are shown in Pig. 15.16.
Spacing of longitudinal bars is at 7.5in. < 12in. The diameter of no. 4 bars used is 0.5in.,

which is greater than no. 3 or stirtup spacing, s/24 =
bars on all corners of closed stirrups in beam web and flange.

5 _
24 =

0.25 in. Add no. 4 longitudinal

Sections 15.1-15.7

1. Torsional stresses develop in a beam when a moment acts on the beam section parallel to

its surface.

2. In most practical cases, a structural member may be subjected to combined shear and

torsional moments.

3. The design methods for torsion rely generally on two basic theories: the skew bending

Sections 15.8-15.9

theory and the space truss theory. The ACI Code adopted the space truss theory.

A summary of the relative equations in U.S. customary units and SI units is given here.

fyt < 400MPa,

Note that (1.0,/7)) in psi is equivalent to (0.08,/f7) in MPa N/mm?, 1 in. &~ 25 mm, and

Equation U.S. Customary Units Sl Units
15.16 T. =2¢/F 3 %y T. =0.17¢,/fI 3 x%y
15.17 ¢ol, > T, Same
Al
15.19 T = 4)»\/TL’.' Epp T = (A'\/}Tc'/:;)(Agp/Pcp)
A2
15.20 T.=or/fI\ o+ Tu < M/ FI/12)(AL,/ Pey)
cp
v, \? P\ v,
15.21 i ulh “ ’ US.
\ (bwd) +(1.7A§h) S¢[(bwd)+8‘/70:| s
Vi \? 7.7\’ v,
u wih fid
< 2/F/3 I
\ (bwd) * (1.7A§h) _¢[(bwd)+( VI )] (S1)
15.24 Tn — M Sa_]’ne

s
{(Note that f; is in MPa, S is in mm, Ay and A, are in mm?, and 7,, is in kN m.)
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Equation U.S. Customary Units Sl Units

Ay Ta

15.25 -s— = W Same

15.27 A = ArPh (fytify) cot’6 Same

15.29 Ay +24, 2 20 (Ay + 24,) = 0.35bus/ fy

yt
7
15.30 Almin = [i;‘cA_CP:I Aimin = [(SJ]T;Acp)/l2fy]
y
— APyl ) -(%)m ()
s fy
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PROBLEMS

For each problem, compute the cracking moment ¢ 7, and the maximum factored torque ¢7,, that can be
applied without using torsional web reinforcement. Use f! = 4ksi and fy = 60ksi.

15.1 A rectangular section with & = 16in. and 2 = 24in.
15.2 A rectangular section with » = 12in. and # = 20in.

15.3 A T-section with b = 48in,, b,, = 12in., ¢ = 4in., and # = 25in. Assume flanges are confined with
closed stirrups.

15.4 A T-section with b = 60in., b, = 16in., t = 4in., and 4 = 30in. Assume flanges are confined with
closed stirrups.

15.5 An inverted L-section with b = 32in,, b,, = 14in., ¢ = 6in., and & = 24in. The flange does not
have closed stirrups.

15.6 An inverted L-section with » = 40in., b, = 12in., t = 6in., and # = 30in. The flange contains
confined closed stirrups.

15.7 Determine the necessary web reinforcement for a simple beam subjected to an equilibrium factored
torque 7, = 220K-in. and V,, = 36 K. The beam section has » = 14in., h = 22in., and d = 19.5in.,
and is reinforced on the tension side by four no. 9 bars. Use f! =4ksi and f, = 60ksi.

15.8 Repeat Problem 15.7 using f] = Sksi and f, = 60ksi.

15.9 The section of an edge (spandrel) beam is shown in Fig. 15.17. The critical section of the beam is
subjected to an equilibrium torque 7, = 300K in and a shear V,, = 60K. Determine the necessary
web reinforcement using f! = 4ksi and f, = 60ksi. Consider that the flange is not reinforced with
closed stirrups.

15.10 Repeat Problem 15.9. Considering that the flange is effective and contains closed stirrups.

15.11 The T-section shown in Fig. 15.18 is subjected to a factored shear V, = 28K and a factored
equilibrium torque 7, = 300K:.in. and M, = 250K-ft. Design the necessary flexural and web
reinforcement. Use f/ = 4ksi and f, = 60ksi.

15.12 Repeat Problem 15.11 if V, = 36K, 7, = 360K-in., M, = 400K ft., and # = 24in.
15.13 Repeat Problem 15.11 using f = 3ksi and f, = 60ksi.

15.14 Repeat Problem 15.11 if 7, is a compatibility torsion.

15.15 Repeat Problem 15.13 if 7, is a compatibility torsion.

15.16 Repeat Problem 15.7 if 7, is a compatibility torsion.
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Figure 15.18 Problem 15.11.

Py = 6 K (27 kN)
(vertical)

P, = 22K (98 kN)
{horizontat)

Py = 12 K{83.5kN)
{horizontal)

Figure 15.19 Problem 15.17.

15.17 The cantilever beam shown in Fig. 15.19 is subjected to the factored load shown.
a. Draw the axial and shearing forces and the bending and torsional moment diagrams.

b. Design the beam section at A using a steel percentage less than or equal 10 pmax for bending
moment. Use » = [16in. (300 mm), f! = 4ksi, and f, = 60ksi.
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Figure 15.20 Problem 15.18.

15.18 The size of the slab shown in Fig. 15.20 is 16 by 8ft; it is supported by the beam AB, which is
fixed at both ends. The uniform dead load on the slab (including its own weight) equals 100 psf, and
the uniform live load equals 80 psf. Design the section at support A of beam AB using fl =4ksi,
fy = 60ksi, by, = 14in.,, A = 20in., a slab thickness of 5in., and the ACI Code requirements.



CHAPTER 1 6

CONTINUOUS
BEAMS AND
FRAMES

16.1

Reinforced concrete parking structure, Minneapolis, Minnesota.

INTRODUCTION

Reinforced concrete buildings consist of different types of structural members, such as slabs,
beams, columns, and footings. These structural members may be cast in separate units as precast
concrete slabs, beams, and columns or with the steel bars extending from one member to the
other, forming a monolithic structure. Precast units are designed as structural members on simple
supports unless some type of continuity is provided at their ends. In monolithic members, conti-
nuity in the different elements is provided, and the structural members are analyzed as statically
indeterminate structures.

The analysis and design of continuous one-way slabs were discussed in Chapter 9, and the
design coefficients and reinforcement details were shown in Figs. 9.8 and 9.9. In one-way floor
systems, the loads from slabs are transferred to the supporting beams, as shown in Fig. 16.1a. If
the factored load on the slab is w, psf, the uniform load on beams AB and BC per unit length is
w,s plus the self-weight of the beam. The uniform load on beams DE and EF is w,s/2 plus the
self-weight of the beam. The load on column B equals W LS, whereas the loads on columns
E, A, and D are W,LS/2, W,SL/2, and W ,LS/4, respectively.

In two-way rectangular slabs supported by adequate beams on four sides, the floor loads
are transferred to the beam from tributary areas bounded by 45° lines, as shown in Fig. 16.1b.
Part of the floor loads are transferred to the long beams AB, BC, DE, and EF from trapezoidal
areas, whereas the rest of the floor loads are transferred to the short beams AD, BE, and CF
from triangular areas. In square slabs, loads are transferred to all surrounding beams from
triangular floor areas. Interior beams carry loads from both sides, whereas end beams carry
loads from one side only. Beams in both directions are usually cast monolithically with the
slabs; therefore, they should be analyzed as statically indeterminate continuous beams. The beams
transfer their loads in turn to the supporting columns. The load on column B equals W,LS,
while the loads on columns E, A, and D are W,LS/2, W,SL/2, and W,LS/4, respectively.
The tributary area for each column extends from the centerlines of adjacent spans in each
direction.

525
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(a)

Figure 16.1 Slab loads on supporting beams: {a) one-way direction, L/s > 2; and
{b) two-way direction, L/s < 2.

16.2 MAXIMUM MOMENTS IN CONTINUOUS BEAMS

16.2.1 Basic Analysis

The computation of bending moments and shear forces in reinforced concrete continuous beams
is generally based on the elastic theory. When reinforced concrete sections are designed using the
strength design method, the results are not entirely consistent with the elastic analysis. However,
the ACI Code does not include provisions for a plastic design or limit design of reinforced
concrete continuous structures except in allowing moment redistribution, as is explained later in
this chapter.

16.2.2 Loading Application

The bending moment at any point in a continuous beam depends not only on the position of
loads on the same span, but also on the loads on the other spans. In the case of dead loads, all
spans must be loaded simultaneously, because the dead load is fixed in position and magnitude.
In the case of moving loads or occasional live loads, the pattern of loading must be considered
to determine the maximum moments at the critical sections. Influence lines may be used to
determine the position of the live load to calculate the maximum and minimum moments.
However, in this chapter, simple rules based on load-deflection curves are used to determine the
loading pattern that produces maximum moments.

16.2.3 Maximum and Minimum Positive Moments within a Span

The maximum positive bending moment in a simply supported beam subjected to a uniform
load w K/ft is at midspan, and M = wl,/8. If one or both ends are continuous, the restraint
at the continuous end will produce a negative moment at the support and slightly shift the
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Figure 16.2 Loadings for maximum and minimum moment within span AB.

location of the maximum positive moment from midspan. The deflected shape of the continuous
beam for a single-span loading is shown in Fig. 16.2a; downward deflection indicates a positive
moment and upward deflection indicates a negative moment. If all spans deflected downward
are loaded, each load will increase the positive moment at the considered span AB (Fig. 16.2d).
Therefore, to calculate the maximum positive moment within a span, the live load is placed on
that span and on every alternate span on both sides. The factored live load moment, calculated
as explained before, must be added to the factored dead-load moment at the same section to
obtain the maximum positive moment.

The bending moment diagram due to a uniform load on AB is shown in Fig. 16.25. The
deflections and the bending moments decrease rapidly with the distance from the loaded span
AB. Therefore, to simplify the analysis of continuons beams, the moments in any span can be
computed by considering the loaded span and two spans on either side of the considered span
AB, assuming fixed supports at the far ends (Fig. 16.2¢).
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If the spans adjacent to span AB are loaded, the deflection curve will be as shown in
Fig. 16.2¢. The deflection within span AB will be upward, and a negative moment wilt be
produced in span AB. This negative moment must be added to the positive moment due to dead
load to obtain the final bending moment. Therefore, to calculate the minimum positive moment
{or maximum negative moment) within a span AB, the live load is placed on the adjacent spans
and on every alternate span on both sides of AB (Fig. 16.2¢).

16.2.4 Maximum Negative Moments at Supports

In this case, it is required to determine the maximum negative moment at any support, say,
support A (Fig. 16.3). When span AB is loaded, a negative moment is produced at support A.
Similarly, the loading of span AF will produce a negative moment at A. Therefore, to calculate
the maximum negative moment at any support, the live load is placed on the two adjacent spans
and on every alternate span on both sides (Fig. 16.3).

In the structural analysis of continuous beams, the span length is taken from center to
center of the supports, which are treated as knife-edge supports. In practice, the supports are
always made wide enough to take the loads transmitted by the beam, usually the moments acting
at the face of supports. To calculate the design moment at the face of the support, it is quite
reasonable to deduct a moment equal to V,c/3 from the factored moment at the centerline of the
support, where V,, is the factored shear and c is the column width.

16.2.5 Moments in Continuous Beams

Continuous beams and frames can be analyzed using approximate methods or computer pro-
grams, which are available commercially. Other methods, such as the displacement and force
methods of analysis based on the calculation of the stiffness and flexibility matrices, may also
be adopted. Slope deflection and moment-distribution methods may also be used. These methods
are explained in books dealing with the structural analysis of beams and frames. However, the
ACI Code, Section 8.3, gives approximate coefficients for calculating the bending moments and
shear forces in continuous beams and slabs. These coefficients were given in Chapter 9. The
moments obtained using the ACI coefficients will be somewhat larger than those arrived at by
exact analysis. The limitations stated in the use of these coefficients must be met.

Example 16.1

The slab-beam floor system shown in Fig. 16.4 carries a uniform live load of 130psf and a dead
load that consists of the slab’s own weight plus 80 psf. Using the ACI moment coefficients, design
a typical interior continuous beam and draw detailed sections. Use f! =4 ksi, f, = 60 ksi, beam
width (&) = 12in., 12-by-12in. columns, and a slab thickness of 5.0in.

Solution
1. Design of slabs: The fioor slabs act as one-way slabs, because the ratio of the long to the short
side is greater than 2. The design of a typical continuous slab was discussed in Example 9.4.

F A 8
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Figure 16.3 Loading for maximum negative moment at support A.
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Figure 16.4 Example 16.1,

2. Loads on slabs:

Dead load = 15—2 X 150 4 80 = 142.5 psf

Live load = 130 psf
Factored load {w,) = 1.2(142.5) + 1.6(130) = 379 psf

Loads on beams: A typical interior beam ABC carries slab loads from both sides of the beam,
with a total slab width of 12 ft.

Factored load on beam = 12 x 379 4- 1.2 x (self-wseight of beam web)

The depth of the beam can be estimated using the coefficients of minimum thickness
of beams shown in Table A.6. For f;, = 60ksi, the minimum thickness of the first beam AB
is LN8.5 = (24 x 12)/18.5 = 15.6in. Assume a total depth of 22in. and a web depth of
22 — 5 = 17in. Therefore, the factored load on beam ABCD is

17 x 12

wy = 12 x 379 + 1.2( X 150) = 4804 Ib/ft

Use 4.8 K/ft.

3. Moments in beam ABC: Moment coefficients are shown in Fig. 9.8. The beam is continuous
on five spans and symmetrical about the centerline at D. Therefore, it is sufficient to design
half of the beam ABCD, because the other half will have similar dimensions and reinforcement.
Because the spans AB and BC are not equal and the ratio g—f;’ is less than 1.2, the ACI moment
coefficients can be applied to this beam. Moreover, the average of the adjacent clear span is
used to calculate the negative moments at the supports.

Moments at critical sections are calculated as follows (Fig. 16.4):

L, = coefficient X wulf
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Test on a continuous reinforced concrete beam. Plastic hinges developed in the positive and negative
maximum moment regions.

Location 1 2 3 4 5 6

st ‘coeffic I ! 1 I | !
Moment coefficient —<7 +oz —i5 +3% —3i +7
M, (K-ft) —158.7 181.4 —-276.5 187.5 =272.7 187.5

4. Determine beam dimensions and reinforcement.
a. Maximum negative moment is —276.5 K-ft. Using ppax = 0.016, R, = 740 psi.

Ry max = 820 psi Pmax = 0.01806 (Table 4.1) ¢ =09

M, 276.5 x 12 ,
d= =2 =02 " __ = 193 i
R.b 0.74 x 12

For one row of reinforcement, total depth is 19.3 + 2.5 = 21.8in., say, 23in., and actual
d is 20.5in. A, = 0.016 x 12 x 19.3 = 3.7in.%; use four no. 9 bars in one row. Note
that total depth used here is 23 in., which is more than the 22in. assumed to calculate the
weight of the beam. The additional load is negligible, and there is no need to revise the
calculations.

b. The sections at the supports act as rectangular sections with tension reinforcement placed
within the flange. The reinforcements required at the supports are as follows:
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Figure 16,5 Example 16.1: reinforcement details.

Location 1 3 5

M, (K ft) —158.7 —276.5 -272.7
M, .

R, = i) (psi) 378 658 649

p(%) 0.77 1.48 1.45

A(in.2) 1.9 3.7 3.6

No. 9 bars 2 4 4

¢. For the midspan T-sections, M,, = +187.5K-ft. For @ = 1.0in. and flange width = 72in.,
M, 187.5 x 12

= =2.1in2
of, (d i fli) 0.9 x 60(20.5 — 1/2)

A, =

Agfy 21 x60
0.85f/6  085x3x72

Revised a gives A; = 2.07in.? Therefore, use three no. 8 bars (4, = 2.35in.2) for all
midspan sections. Reinforcement details are shown in Fig. 16.5.

5. Design the beam for shear, as explained in Chapter 8.
6. Check deflection and cracking, as explained in Chapter 6.

= 0.7 in.

Check a: a =

16.3 BUILDING FRAMES

A building frame is a three-dimensional structural system consisting of straight members that are
built monolithically and have rigid joints. The frame may be one bay long and one story high,
such as the portal frames and gable frames shown in Fig. 16.6a, or it may consist of multiple
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Figure 16.6 (a) Gable and portal frames (schematic) and (b) multibay, multistory frame.

bays and stories, as shown in Fig. 16.6b. All members of the frame are considered continuous
in the three directions, and the columns participate with the beams in resisting external loads.
Besides reducing moments due to continuity, a building frame tends to distribute the loads more
uniformly on the frame. The effects of lateral loads, such as wind and earthquakes, are also
spread over the whole frame, increasing its safety. For design purposes, approximate methods
may be used by assuming a two-dimensional frame system.

A frame subjected to a system of loads may be analyzed by the equivalent frame method.
In this method, the analysis of the floor under consideration is made assuming that the far ends
of the columns above and below the slab level are fixed (Fig. 16.7). Usually, the analysis is
performed using the moment—distribution method.

In practice, the size of panels, distance between columns, number of stories, and the height
of each story are known because they are based upon architectural design and utility consider-
ations. The sizes of beams and columns are estimated first, and their relative stiffnesses based
on the gross concrete sections are used. Once the moments are calculated, the sections assumed
previously are checked and adjusted as necessary. More accurate analysis can be performed using
computers, which is recommended in the structural analysis of statically indeterminate structures
with several redundants. Methods of analysis are described in many books on structural analysis.

Yz Ll sz gl Z

Roct

I T T T 070 T 77 T2 VAT 07
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Figure 16.7 Assumption of fixed column ends for frame analysis.
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16.4 PORTAL FRAMES

A portal frame consists of a reinforced concrete stiff girder poured monolithically with its
supporting columns. The joints between the girder and the columns are considered rigidly fixed,
with the sum of moments at the joint equal to 0. Portal frames are used in building large-span
halls, sheds, bridges, and viaducts. The top member of the frame may be horizontal (portal
frame) or inclined (gable frame) (Fig. 16.8). The frames may be fixed or hinged at the base.

A statically indeterminate portal frame may be analyzed by the moment-distribution method
or any other method used to analyze statically indeterminate structures. The frame members are
designed for moments, shear, and axial forces, whereas the footings are designed to carry the
forces acting at the column base.

Girders and columns of frames may be of uniform or variable depths, as shown in Fig. 16.8.
The forces in a single-bay portal frame of uniform sections may be calculated as follows.

16.4.1 Two Hinged Ends

The forces in the members of a portal frame with two hinged ends [2] can be calculated using
the following expressions (Fig. 16.9).
For the case of a uniform load on top member BC, let

L hk
K=34+2|—x —
" (IIXL)
where

Ii and I; = column and beam moments of inertia
h and L = height and span of frame

The bending moments at joints B and C are

wl?
4K

2
. - . w
Maximum positive moment at midspan BC = = + Mp

Mp=Mc =

The horizontal reaction at A is H4 = Mp/h = Hp. The vertical reaction at A is V4 = WL/2
= Vp. For a uniform load on half the beam BC, Fig. 16.96: Mp = M = —WL2/8K, Hy =
Hp = Mp/h, V4 =3WL/8, and Vp = WL/8.

Haunch

N
Figure 16.8 Portal and gable frames.
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Figure 16.9 Portal frame with two hinged ends. Bending moments are drawn on the
tension side.

16.4.2 Two Fixed Ends

The forces in the members of a portal frame with two fixed ends [2] can be calculated as follows
(Fig. 16.10).
For a uniform load on top member BC, let

I h
K1=2+(—2X——)

' L
wl?
Mg=Mc=——
B C 6K,
M L?
Ms=Mp= —Z,i M (mdspan) = wT‘I'MB
M L
Hy=Hp = h" and VA=VD=%—

For a uniform load on half the top member BC, let

L h
Ko=146{— x —
2 " (11 XL)
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Figure 16.10 Portal frame with fixed ends. Bending moments are drawn on the tension
side.

Then

M_wL2(1 1 melz 2+1
A= 78 \3k, 32k, 5= 73 \3k; " 8K,

M_wL2(2 1) M_wL2(1 1)
=78 \3K, 38K, P~ 78 \3k, 3k,

wil? 1
Hi=Hp=— X —
ASHD= T X R
wlL wl 1
Vimo= —Vp and  Vp= o= (1 —
A= T @ =g ( 41(2)

16.5 GENERAL FRAMES

The main feature of a frame is its rigid joints, which connect the horizontal or inclined girders
of the roof to the supporting structural members. The continuity between the members tends
to distribute the bending moments inherent in any loading system to the different structural

elements according to their relative stiffnesses. Frames may be classified as

1. Statically determinate frames (Fig. 16.11a)
2. Statically indeterminate frames (Fig. 16.12)
3. Statically indeterminate frames with ties (Fig. 16.13).
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Figure 16.11 (a) Statically determinate frames and (b} reinforced concrete stadium.



16.6 Design of Frame Hinges 537

D JC JC

777, 7777, 7777 7777 777
| ] i {
T I'+l T | 8 ) ] $ 3 3 X ] 1]
1 1
1.1 f 4.1
7 T 77 77 (D) A A Z

Figure 16.12 (a) Vierendeel girder and (b} statically indeterminate frames.

Difterent methods for the analysis of frames and other statically indeterminate structures
are described in books dealing with structural analysis. Once the bending moments, shear, and
axial forces are determined, the sections can be designed as the examples in this book are.
Analysis may also be performed using computer programs.

16.6 DESIGN OF FRAME HINGES

The main types of hinges used in concrete structures are Mesnager hinges, Considére hinges,
and lead hinges [19]. The description of each type is given next.
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Figure 16.13 Structures with ties.

16.6.1 Mesnager Hinge

The forces that usually act on a hinge are a horizontal force, H, and a vertical force, P. The
resultant of the two forces, R, is transferred to the footing through the crossing bars A and
B shown in Fig. 16.14. The inclination of bars A and B to the horizontal varies between 30°
and 60°, with a minimum distance ¢, measured from the lower end of the frame column, equal
to 8D, where D is the diameter of the inclined bars. The gap between the frame column and
the top of the footing y varies between 1in. and 1.3#’, where I is the width of the concrete
section at the hinge level. A practical gap height ranges between 2 and 4 in. The rotation of the
frame ends is taken by the hinges, and the gap is usually filled with bituminous cork or similar
flexible material. The bitumen protects the cork in contact with the soil from deterioration. The
crossing bars A and B are subjected to compressive stresses that must not exceed one-third the
yield strength of the steel bars f, under service loads or 0.55 £, under factored loads. The low
stress is assumed because any rotation at the hinge tends to bend the bars and induces secondary
fiexural stresses. It is generally satisfactory to keep the compression stresses low rather than to
compute secondary stresses. The areas of bars A and B are calculated as follows:

R
Area of bars A: A, = 0551f (16.1)
N y
R
Area of bars B: A, = ﬁ (16.2)
¢ y

where R; and Rj are the components of the resultant R in the direction of the inclined bars
A and B using factored loads. The components Ry and R are usually obtained by statics as
follows:

H
sin @

H4+ Rysinf = R;sinf and R, =R;— (16.3a)
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Figure 16.14 Hinge details.

Also, (Ry + Rp) cos 8 = P, so

2= -
cos @ cos 6 sin @

Pu Pu H
R = - Ry = - [R; - J (16.3b)

1| P, H
Ri== —
! 2|:0039+sin0]

The inclined hinge bars transmit their force through the bond along the embedded lengths
in the frame columns and footings. Consequently, the bars exert a bursting force, which must
be resisted by ties. The ties should extend a distance a = 8D (the larger bar diameter of bars

A and B) in both columns and footings. The bursting force F can be estimated as

F = & tan € 4+ Ha
2 0.85d




Chapter 16 Continuous Beams and Frames

If the contribution of concrete is neglected, then the area of tie reinforcement, A, required to
resist F is

F F
Ag = — = ———— (16.5)
ofy 0.85f,
The stress in the ties can also be computed as follows:
i tan 6 + i
fi (ties) = —2 0.85d 0,857, (16.6)

0.005ab + A (ties) —

where

Ag = area of ties within a distance a = 8D
d = effective depth of column section
b = width of column section

This type of hinge is used for moderate forces and limited by the maximum number of inclined
bars that can be placed within the column width.

16.6.2 Considére Hinge

The difference between the Considére hinge and the Mesnager one is that the normal force P,
is assumed to be transmitted to the footing by one or more short, spirally reinforced columns
extending deep into the footing, whereas the horizontal force H is assumed to be resisted by the
inclined bars A and B (Fig. 16.15). The load capacity of the spirally reinforced short column

Rz R1
for (As) for (A1)

Figure 16.15 (a) Considére hinge, (b) Mesnager hinges for a series of portal frames,
and (c) Consideére hinge.



16.6 Design of Frame Hinges 541

may be calculated using Eq. 10.7, neglecting the factor 0.85 for minimum eccentricity.
P, = ¢P, =0.75[0.85 fl(A; — Aw) + Aufy) (16.7)

where A, is the area of concrete hinge section, or b4’, and Ay is the area of longitudinal bars
within the spirals. Ties should be provided in the column up to a distance equal to the long side
of the column section 4.

16.6.3 Lead Hinges

Lead hinges are sometimes used in reinforced concrete frames. In this type of hinge, a lead
plate, usvally 0.75 to 1.0in. thick, is used to transmit the normal force, P,, to the footing. The
horizontal force H is resisted by vertical bars placed at the center of the column and extended
to the footing (Fig. 16.16). At the base of the column, the axial load P, should not exceed the
bearing strength specified by the ACI Code, Section 10.14, of ¢(0.85f/A1), where ¢ = 0.65
and A; = bh'. The area of the vertical bars is A;. = H/0.6f,, where H = factored horizontal
force.

Example 16.2

An 84- by 40-ft hall is to be covered by reinforced concrete slabs supported on hinged-end portal
frames spaced at 12 ft on centers (Fig. 16.17). The frame height is 15 ft, and no columns are allowed
within the hall area. The dead load on the slabs is that due to self-weight plus 75 psf from roof finish.
The live load on the slab is 85 psf. Design a typical interior frame using normal-weight concrete with
fl=4ksi and f;, = 60ksi for the frame and a column width of b = 16in.

Solution
The main structural design of the building will consist of the following:

» Design of one-way slabs » Design of columns
» Analysis of the portal frame «» Design of hinges
+ Design of the frame girder due to moment » Design of footings

+ Design of the frame girder due to shear

~ -— 0

Lead piate

_..|
—

o=h

ira—JL*m‘“———f el

H ———— '
//”'_"i i._ Se;’fggﬂ

Footing

Figure 16.16 Lead hinge.
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D.L. = Self-weight + 60 psf

LL = 80 psf
Figure 16.17 Example 16.2: design of portal frame.

1. One-way roof slab: The minimum thickness of the first slab is L/30, because one end is
continuous and the other end is discontinuous (Table A.6 in Appendix A).

12 x 12
“ % 48in.

Minimum depth =

Assume a slab thickness of 5.0in. and design the slab following the steps of Example 9.5.
2. Analysis of an interior portal frame:
a. The loads on slabs are

5
Dead load on slabs = 75 + (l_” X 150) = 137.5 psf

Factored load on slabs = 1.2 x 137.5 4 1.6 x 85 = 301 psf

b. Determine loads on frames: The interior frame carries a Joad from a 12-ft slab in addition
to its own weight. Assume that the depth of the beam is L/24 = (40 x 12)/24 = 20in. Use
a projection below the slab of 16in., giving a total beam depth of 21 in.

16\
Dead load from self-weight of beam = ( E) x 150 = 267 Ib/ft

Total factored load on frame = 301 x 12 + 1.2 x 267
= 3932 Ib/ft
w, = 4.0 K/t

¢. Determine the moment of inertia of the beam and columns sections. The beam acts as a
T-section. The effective width of slab acting with the beam is the smallest of span/d4 = 40
x 12/4 = 120in., 16k, + b, = 16 x 5+ 16 =96, or 121t x 12 = 144in. Use b = 96 in.
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The centroid of the section from the top fibers is
_ 96 x5x254+16 x 16 x 13
B 9 x 5416 x 16

y =6.2in.

I,(beam) = [?g (5)° + 96 x 5(3.7)2] + [g 16> + 16 x 16(6.8)2]

= 24,870 in.*

It is a common practice to consider an approximate moment of inertia of a T-beam as equal to
twice the moment of inertia of a rectangular section having the total depth of the web and slab:

Ip(beam) = 2 x %(21)3 = 24,696 in.*

(For an edge beam, approximate I = 1.5 x bh3/12.) Assume a column section 16 by 20in.
(having the same width as the beam).

16
I.(column) = o (20)® = 10,667 in.*

. Let the factor

L h 24870 15
K=3+2(2x=)=3+2 —4.75
* (L 8 fc) * ( 0 10.667)

Referring to Fig. 16.17 and for a uniform load w, = 4.0 K/ft on BC,
w, L2 4.0(40)*
= — = —336.8 K-ft
4K 4 x4.75
The maximum positive bending moment at midspan of BC equals

L2 4.0(40)?
w, — + Mp = 0(40)

8
The horizontal reaction at A is

MB=MC=—

— 336.8 = 463.2 K ft

Mp 3368
Ha—HD—T~T—22.5K
The vertical reaction at A is
ML -
Va=Vp= %— + weight of column
40 20 16
Vi =4.0x% 7+E X - x 0.150 x 15 ft =85.0K

The bending moment diagram is shown in Fig, 16.17.

. To consider the sidesway effect on the frame, the live load is placed on half the beam BC, and
the moments are calculated at the critical sections. This case is not critical in this example.

. The maximum shear at the two ends of beam BC occurs when the beam is loaded with the
factored load w,,, but the maximum shear at midspan occurs when the beam is loaded with
half the live load and with the full dead load:

40
V, at support = 4.0 X 5= 300K

) L 40
Va atmldspan=W1§=(l.7x80x 12) x n

=81601b=8.16 K
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g. The axial force in each column is V3 = Vp = 85.0K.
h. Let the point of zero moment in BC be at a distance x from B; then

2
X X
MB =w“L§ _wl‘i
2
336.8 = 4.0 (4% - %) or x*—40x + 1684 =0

x = 4.8 ft = 57.6 in. from B

3. Design of girder BC:
a. Design the critical section at midspan. M, = 463.2 K-ft, web width is flange width is b,, =
16in., flange width is » = 96in., and d = 21 — 3.5 = 17.5in. (assuming two rows of steel
bars). Check if the section acts as a rectangular section with effective b = 96in. Assume

a = 1.0in; then
M 4632 x 12
Ap=—" = S =605 in”
of,(d—2%)  09x60(17.5- 12
A 6.05 x 60
a= b _ X —1lin. <50in

T 085fb 085x4x96

The assumed a equals approximately the calculated a. The section acts as a rectangular
section; therefore, use six no. 9 bars. Check bpin (o place bars in one row):

buin = 11 (g) +2 (%) +3=16.13 in. > 16 in.

Place bars in two rows, as shown in Fig. 16.18.

b. Design the critical section at joint B: M, = 336.8K:ft, » = 16in., and d = 21 — 2.5 =
18.5in. (for one row of steel bars). The slab is under tension, and reinforcement bars are
placed on top of the section.

M, 3368 x 12,000
“Tbd2 T 16(18.5)
From tables in Appendix A, p = 0.016 < ppax = 0.018. (Tension-controlled section,
¢ = 0.9)

= 738 psi

Ag = 0.016 x 16 x 18.5 = 4.73 in.2

Use five no. 9 bars in one row.
4. Design the girder BC due to shear:
a. The critical section is at a distance d from the face of the column with a distance from the
column centerline of 10 + 18.5 = 28.5in. = 2.4 ft. Thus,

V. (at distanced) =80 -4 x 24 =704 K
b. The shear strength provided by concrete is

Ve = $ 20/ Dby d
SV, = &51’%‘& % /4000 x 16 x 18.5 = 28.1 K

The shear force to be provided by web reinforcement is
oVi=V,—¢V. =704 —-281=423K
_ 423

V, = — =564 K
0.75
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Figure 16.18 Exampls 16.2: reinforcement details of frame sections.

¢. Choose no. 4 stirrups and A, = 2 x 0.20 = 0.40in.2 Thus,
Ay fyd 040 x 60 x 18.5

S = v = 56.4 = 7.8 in., say 7 in.
d. Maximum spacing of no. 4 stirrups is
d 185 .
Sm,,x=5=7=925m say, 9 in.

or
_ Aufy _ 040 x 60,000
xS S T S0 16 o0 ™
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Check for maximum spacing of d/2: V; < 4,/f!b,d or
16 x 18.5
The value V; of 56.4 is less than 74.9K, so use Spax = 9in.
Ay fyd 040 x 360 x 18.5
s =

9
¢V, =0.75x49.3=37K

Vs (fOI' Smax = 9 il‘l.) - - 49.3 K

The distance from the face of the column where Sn.x = 9in. can be used is equal o 45in.
= 3.75ft (from the triangle of shear forces).

e. Distribution of stirrups:
First stirrups at $/2 = 3.0 in.
7 stirrups at 7 in. = 49.0 in
19 stirrups at 9 in. = 171.0 in.  (Total = 223 in.)

The distance from the face of the column to the centerline of the beam is 240 — 10 =

230in. Use the same distribution for the second half of the beam, and place one stirrup at
midspan.

5. Design the column section at joint B: M, = 336.8 K ft, P, = 80K, b = 16in., and # = 20in.

a. Assuming that the frame under the given loads will not be subjected to sidesway, then the

effect of slenderness may be neglected, and the column can be designed as a short column

when
Kl, <34 12M,
4 M-,

M =0 and M;=23368 Kt

Let K = 0.8 (Fig. 12.2), L, = 15 — 21/(2 x 12) = 14.125ft, and r = 032 = 0.3 x 20 =
6in; then

(see Section 12.5)

. 12
KLu _ 0.8 x % =226 <34

¥
If K is assumed equal to 1.0, then
KL,

r

=2825<34

Therefore, design the member as a short column.
b. The design procedure is similar to Examples 11.16 and 11.3.

.. M, 3368 x12 )
Eccent =—=——"7—=505m
centricity (e) P, 20 n
This is a large eccentricity, and it will be assumed that the section i3 in the (ransition region,
¢ < 09,
d=20-25=175in.

¢. Because ¢ = 50.5in. is much greater than d, determine approximate A; and A from the
M, only and then check the final section by statics, as was explained in Example 11.3. For
M, = 336.8K-ft, b = 16in., k = 20in., and d = 17.5in., R, = M, /bd* = 336.8(12,000y/
16(17.5) = 825 psi.

0 =00183 and A, = pbd = 0.0183(16)(17.5) = 5.12 in.2
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Choose three no. 9 and two no. 10 bars and A; = 5.53 in.2 Choose Ay =A;/3=513/3=
1.7 in.2 and three no. 7 bars (A, =18 in.z) (Fig. 16.18). When the eccentricity, e, is quite
large, it is a common practice to use A; = A,/3 or Ag/2 instead of A; = Af.

d. Check the load capacity of the final section using A; = 5.53in.2 and A; =18 in.2, similar
to Example 11.3, according to the following steps:

i P=C.+C —T
C. = 0.85 flab = 0.85(4)(16)a = 54.4a
Cs = AL(f! —0.855) = 1.8(60 — 0.85 x 4) = 101.8 K
T = A, f, = 5.53(60) = 331.8 K
P, =54.4a + 101.8 — 331.8 = (43.4a — 230) @

ii. Take moments about A:
1 a
Po=—[Co(d=5)+Cotd — ]
€ 2
¢ = e+ d”, where d” is the distance from A; to the plastic centroid of the section. The

plastic centroid occurs at 11.1 in. from the extreme compression fibers and d” = d — x
= 6.41in. (refer to Example 11.1).

¢ =505+64=56.9in.
1

~ 56.9

= 16.73a — 0.478a> + 26.86 I

P, [54.4a (175 - %)+ 101.815)]

iii. Equate Egs. I and II and solve to get @ = 6.313in. and P, = 113.5K. Check f = 87(c —
d)je < fy: ¢=af0.85=743in. and f] =87(7.43 —2.5)/7.43 = 58 ksi, which is
close to the 60ksi assumed in the calculations. Choose no. 3 ties spaced at 16in.

iv. Check ¢: d;, = 17.51n.

g = (d‘ - c) 0.003 = 0.00407
C

250
3
¢P, =0.823(113.5) =933 K> 80 K

¢ = 0.65 + (¢, — 0.002) ( ) =0.823

The section is adequate.
6. Check the adequacy of the column section at midheight, 7.5ft from A: M, = 336.8/2 =
168.4 K ft.
P, = 80 + 2.5 (half the column weight) = 8§2.5 K

Use A; = three no. 9 bars and A| = three no. 7 bars. In an approach similar to step 5, ¢pP, =
122K > 82.5K (no. 10 bars can be terminated, and they have to be extended a development
length below the midheight of the column).
7. Design the hinge at A: My, =0, H = 225K, P, = 85K.
a. Choose a Mesnager hinge. Using Egs. 16.3a4 and 16.36, Ry = 72K and R; = 27 K. (Refer
to Fig. 16.19 with 8 = 30°.)

R 72

= = =22 in?
055f, 0.5 x 60 o

Asl
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H=225K
3#9 Column 3#6
- Column ties _‘!”/
i R = 875K

R1 = 72K

#3 hinge ties 107 Ry = 27K
f Section A-A
a=8"

Bituminized _%Z f i
cork or felt =8 087 /
A A, l Footing A

Figure 16.18 Example 16.2: hinge details.

Choose three no. § bars (4, = 2.35in.2).
_ R B 27
T 055x% f, 0.55x60

A =082 in.?

Choose two no. 7 bars (A; = 1.2in.2). Arrange the crossing bars by placing one no. 8 bar
and then one no. 7 bar, as shown in Fig. 16.19 (or use five no. & bars.)

. Lateral ties should be placed along a distance ¢ = 8 — bar diameter = 8.0in. within the

column and footing. The bursting force is

F = P“ta 6 + fa
2 YT 854
For & = 30°, d = 17.5in., and a = 8.0in.,
85 225 % 8
Fe=—tan30°+ ——— " —366K
5 @30+ e s =
36.6
fties= ———— =0.72 in2
Area of ties 085 x 60 0.72 in

If no. 3 closed ties (two branches) are chosen, then the area of one tieis 2 x 0.11 = 0.22 in.?
The number of ties is 0.72/0.22 = 3.27, say, four ties spaced at % = 2.7 in., as shown in
Fig. 16.19. ‘

8. Design the footing: If the height of the footing is assumed to be A, then the forces acting on
the footing are the axial load P and a moment M = H/h'. The soil pressure is calculated from
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Eq. 13.14 of Chapter 13:
P M
g = +X + Tc < allowable soil pressure

The design procedure of the footing is similar to that of Example 13.7.

16.7 INTRODUCTION TO LIMIT DESIGN

16.7.1 General
Limit state design of a structure falls into three distinct steps:

1. Determination of the factored design load, obtained by multiplying the dead and live loads
by load factors. The ACI Code adopted the load factors given in Chapter 3.

2. Analysis of the structure under factored loads to determine the factored moments and forces
at failure or collapse of the structure. This method of analysis has proved satisfactory for
steel design; in reinforced concrete design, this type of analysis has not been fully adopted
by the ACI Code because of the lack of ductility of reinforced concrete members. The
Code allows only partial redistribution of moments in the structure based on an empirical
percentage, as will be explained later in this chapter.

3. Design of each member of the structure to fail at the factored moments and forces deter-
mined from structural analysis. This method is fully established now for reinforced concrete
design and the ACI Code permits the use of the strength design method, as was explained
in earlier chapters.

16.7.2 Limit Design Concept

Limit design in reinforced concrete refers to the redistribution of moments that occurs throughout
a structure as the steel reinforcement at a critical section reaches its yield strength. The ultimate
strength of the structure can be increased as more sections reach their strength capacity. Although
the vielding of the reinforcement introduces large deflections, which should be avoided under
service loads, a statically indeterminate structure does not collapse when the reinforcement of
the first section yields. Furthermore, a large reserve of strength is present between the initial
yielding and the collapse of the structure.

In steel design, the term plastic design is used to indicate the change in the distribution
of moments in the structure as the steel fibers, at a critical section, are stressed to their yield
strength. The development of stresses along the depth of a steel section under increasing load
is shown in Fig. 16.20. Limit analysis of reinforced concrete developed as a result of earher
research on steel structures and was based mainly on the investigations of Prager [4], Beedle [5].
and J. B. Baker [6]). A. L. L. Baker [7] worked on the principles of limit design, whereas Cranston
[8] tested portal frames to investigate the rotation capacity of reinforced concrete plastic hinges.
However, more research work is needed before limit design can be adopted by the ACI Code.

16.7.3 Plastic Hinge Concept

The curvature, ¢ of a member increases with the applied bending moment M. For an underrein-
forced concrete beam, the typical moment—curvature and the load—deflection curves are shown
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Figure 16.20 Distribution of yield stresses in a yielding steel rectangular section.
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Figure 16.21 Yielding bshavior of an under reinforced concrete beam.

Concrete
crushing
(fallure)

Moment M

I
I
i
!
B
o
I |
| |
| )
1 1

Y

Curvature ¢ = 1/R

Figure 16.22 Yielding behavior of an overreinforced concrete beam.

in Fig. 16.21. A balanced or an overreinforced concrete beam is not permitted by the ACI
Code, because it fails by the crushing of concrete and shows a small curvature range at factored
moment (Fig. 16.22).

The significant part of the moment—curvature curve in Fig. 16.21 is that between B and C,
in which M, remains substantially constant for a wide range of values of ¢. In limit analysis,
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Moment M

Curvature ¢ = 1/R

Figure 16.23 Idealized moment-curvature behavior of reinforced concrete beams.

the moment—curvature curve can be assumed to be of the idealized form shown in Fig. 16.23,
where the curvature, ¢, between B and C is assumed to be constant, forming a plastic hinge.
Because concrete is a brittle material, there is usually considered to be a limit at which the
member fails completely at maximum curvature at C.

Cranston [8] reported that in normally designed reinforced concrete frames, ample rotation
capacity is available, and the maximum curvature at point C will not be reached until the failure
or collapse of the frame. Therefore, when the member carries a moment equal to its factored
moment, M,, the curvature continues to increase between B and C without a change in the
moment, producing a plastic hinge. The increase in curvature allows other parts of the statically
indeterminate structure to carry additional loading.

16.8 THE COLLAPSEC MECHANISM

In limit design, the moment strength of a reinforced concrete member is reached when it is on the
verge of collapse. The member collapses when there are sufficient numbers of plastic hinges to
transform it into a mechanism. The required number of plastic hinges, n, depends upon the degree
of redundancy, r, of the structure. The relation between » and r to develop a mechanism is

ne=14r (16.8)

For example, in a simply supported beam no redundants exist, and r = 0. Therefore,
the beam becomes unstable and coliapses when one plastic hinge develops at the section of
maximum moment, as shown in Fig. 16.24a. Applications to beams and frames are also shown
in Fig. 16.24.

16.9 PRINCIPLES OF LIMIT DESIGN

Under working loads, the distribution of moments in a statically indeterminate structure is
based on elastic theory, and the whole structure remains in the elastic range. In limit design,
where factored loads are used, the distribution of moments at failure, when a mechanism is
reached, is different from that distribution based on elastic theory. This change reflects moment
redistribution.
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For limit design to be valid, four conditions must be satisfied.

1. Mechanism condition: Sufficient plastic
part of the structure into a mechanism.

hinges must be formed to transform the whole or

2. Equilibrium condition: The bending moment distribution must be in equilibrium with the

applied loads.
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3. Yield condition: The factored moment must not be exceeded at any point in the structure.

4. Rotation condition: Plastic hinges must have enough rotation capacity to permit the devel-
opment of a mechanism.

Only the first three conditions apply to plastic design, because sufficient rotation capacity
exists in ductile materials as steel. The fourth condition puts more limitations on the limit design
of reinforced concrete members as compared to plastic design.

16.10 UPPER AND LOWER BOUNDS OF LOAD FACTORS

A structure on the verge of collapse must have developed the required number of plastic hinges
to transform it into a mechanism. For arbitrary locations of the plastic hinges on the structure,
the collapse loads can be calculated, which may be equal to or greater than the actual loads.
Because the calculated loads cannot exceed the true collapse loads for the structure, then this
approach indicates an upper or kinematic bound of the true collapse loads [10]. Therefore, if
all possible mechanisms are investigated, the lowest M, will be caused by the actnal loads.
Horne [11] explained the upper bound by assuming a mechanism and then calculating the
external work, W,., done by the applied loads and the internal work, W;, done at the plastic
hinges. If W, = W;, then the applied loads are either equal to or greater than the collapse
loads.

If any arbitrary moment diagram is developed to satisfy the static equilibrium under the
applied loads at failure, then the applied loads are either equal to or less than the true collapse
loads. For different moment diagrams, different factored loads can be obtatned. Higher values of
the lower, or static, bound are obtained when the moments at several sections for the assumed
moment diagram reach the collapse moment. Horne [11] explained the lower bound by assuming
different moment distributions to obtain the one that is in equilibrium with the applied loads and
satisfies the yield condition all over the structure. In this case, the applied loads are either equal
to or less than the collapse loads.

16.11 LIMIT ANALYSIS

For the analysis of structures by the limit design procedure, two methods can be used, the virtual
work method and the equilibrium method. In the virtual work method, the work done by the
factored load, P, (or w,), to produce a given virtual deflection, A, is equated to the work
absorbed at the plastic hinges. The external work done by loads is W, = X(w, A) or X (P,A).
The work absorbed by the plastic hinges is internal work = Wi = L(M,0).

Example 16.3

The beam shown in Fig. 16.25 carries a concentrated load at midspan. Calculate the collapse moment
at the critical sections.

Solution

1. The beam is once statically indeterminate (r = 1), and the number of plastic hinges needed
to transform the beam into a mechanism is # = 1 + 1 = 2 plastic hinges, at A and C. The
first plastic hinge develops at A, and the beam acts as a simply supported member until 2
mechanism is reached.
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Figure 16.25 Example 16.3: P, = ¢P, and M, = ¢M,.
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DHw

2. If a rotation & occurs at the plastic hinge at the fixed end, A, the rotation at the sagging hinge

is C = 20. The deflection of C under the load is (L/2)8 (Fig. 16.25).

Le
W, = external work = Z P,A =P, >

W; = internal work = Z M0 = M, (9) + M,,(20)

If the two sections at A and C have the same dimensions and reinforcement, then M, =
M,, =M, and W; = 3M,6. Equating W, and W;,
P.L

6

L
M, +2M,, = P“E =3M, and M, =
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Example 16.4

Calculate the collapse moments at the critical sections for the beam shown in Fig. 16.26 due to a
uniform load w,.

Solution

1. The number of plastic hinges is two.
2. For a deflection at C = 1.0, the rotation at A, 84, is 1/a; 8 = 1/b, and

1 1 a+bd L
bo=Oatts="Fy =" =0

%A w, k/ft B
A 1 1 ¢+ 1 ¢ 1+ 3 }
7 =

[ ———— - gL——-D-

(@) 2w

i Eiastic

- moment
wi?/8

0.586, ——»+a—0 4L —wd

Mn2

1
A 2 B

Ry = 0586wl £
M T Ry = 0.414w,L

(b)

a=190

8, = i/a 8, = 1/b
L Jos=15

Gc — c
-

//

6o = (1/a+ 1/b)

(¢

X
NN
Lt
e — —
w

W l/2 + Ma/L w,t/2 — M/t
(a)

Figure 16.26 Example 16.4: M, = oM, and w,, = ¢w,.
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3. External work is

I x L wylL
Wg=zqu=w“( 2 )= ;

Internal work is
W= mM,6 = M, 04 + M0,

1 1 1
= M"l (a—) + Muz (; + .b-)

Equating W, and W;,

2 M“l Muz Mll')
- = 2 16.9
W L ( a + a + L —a) (169)
If both moments are equal, then
2 1 2M, [ QL —
w, = M2 =ML~ a) (16.10)
L la (L-a L |la(L—-a)

4. To determine the position of the plastic hinge at C that produces the minimum value of the
collapse load w,,, differentiate Eq. 16.9 with respect to a and equate to 0:

Swa _ o (M,,l M, M, )20

sa a2 @ (L-a)?
It M, =M, =M,, then
2 1
=z o =L2~~+2)=0.586L
ol or a 2~2)

From Eq. 16.10, the collapse load is w, = 11.66 (M,/L?), and the collapse moment is M, =
0.0858w, L?. The reaction at A is 0.586w, L, and the reaction at B is 0.414w, L.

In the equilibrium method, the equilibrium of the beam or of separate segments of the
beam is studied under the forces present at collapse. To illustrate analysis by this method, the
two previous examples are repeated here.

Example 16.5
For the beam shown in Fig. 16.25, calculate the collapse moments using the equilibrium method.

Solution

Two plastic hinges will develop at A and C. Referring to Fig. 16.25¢, the reaction at A is (P,/2) +
(M, L) and the reaction at B is (F,/2) — (M,, /L).
Considering the equilibrium of beam BC and taking moments about C,

(54 (¢)-»-

L
M, +2M,, = P“E

which is the same equation obtained in Example 16.3. When M,, = M,,, = M,, then

L
Mu= Wy
3 P2

[ PP RO SO
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Example 16.6
Calculate the collapse moments for the beam shown in Fig. 16.26 by the equilibrium method.

Solution

1. Two plastic hinges will develop in this beam at A and C. Referring to Fig. 16.264, the reaction
at A = w,(L/2) + (M,, /L) and the reaction at B = w, (L/2) — (My,/L). The load on BC is
w,b acting at b/2 from B, and b = (L — a). Considering the equilibrium of segment BC and
taking moments about C,

L M b
(wu— - u')b - (wub)§ =M,,
If Mul = Muz = M“, then
b b M,
—(L=-bH =M 1 — = —=L —
Wy 2( ) u ( + L) 12 ( a)
2M, (2L -—a)
Wy = X
L a(l —a)
which is similar to the results obtained in Example 16.4.
w,L a(L —a)
X
2 (2L —a)

2. The position of & can be determined as before, where @ = 0.586L, M, = 0.0858w,L», and
w, = 11.66(M,/L?).

M, =

16.12 ROTATION OF PLASTIC HINGES

16.12.1 Plastic Hinge Length

The assumption that the inelastic rotation of concrete occurs at the point of maximum moment
while other portions of the member act elastically is a theoretical one; in fact, the plastic rotation
occurs on both sides of the maximum moment section over a finite length. This length is called
the plastic hinge length, {,. The hinge length, /), is a function of the effective depth d, and the
distance from the section of highest moment to the point of contraflexure (zero moment).
Referring to Fig. 16.27a, the length L ,/2 represents the plastic hinge length on one side of
the center of support. M,, and ¢, indicate the factored moment and ultimate curvature at the crit-
ical section, whereas M, and ¢, indicate the moment and curvature at first yield. The plastic cur-
vature at the critical section ¢, is equal to ¢, — ¢,) and the rotation capacity is equal to (@pl,).
The estimated length of the plastic hinge was reported by many investigators. A. L. L. Baker
[7] assumed that the length of the plastic hinge is approximately equal to the effective depth d.
Corley [12] proposed the following expression for the equivalent length of the plastic hinge:

I, = 0.5d +0.2vd (3) (16.11)

where z = distance of the critical section to the point of contraflexure and d = effective depth
of the section. Mattock [13] suggested a simpler form:

1, = 0.5d + 0.052 (16.12)
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Figure 16.27 (a) Plastic rotation from moment-curvature and moment gradient and
(b) development of plastic hinges in a reinforced concrete continuous beam.

Tests [14] on reinforced concrete continuous beams showed that / p can be assumed equal to
1.06d. They also showed that the length of the plastic hinge, in reinforced concrete continuous
beams containing hooked-end steel fibers, increases with the increase in the amount of the steel
fibers and the main reinforcing steel according to the following expression:

I, = (1.06 + 0.13pp;)d (16.13)

where p = percentage of main steel in the section and p, = percentage of steel fibers by volume,
0 < ps < 1.2. For example, if p = 1.0% and p, = 0.8%, then [, = 1.164d.

16.12.2 Curvature Distribution Factor

Another important factor involving the calculation of plastic rotations is the curvature distribu-
tion factor, 8. The curvature along the plastic hinge varies significantly, and in most rotation
estimations this factor is ignored, which leads to an overestimation of the plastic rotations. Refer-
ring to Fig. 16.27, the shaded area, ABC, represents the inelastic rotation that can occur at the
plastic hinge, whereas the unshaded area, EBF, represents the elastic contribution to the rotation
over the length of the member. The shaded area ABC can be assumed to be equal to S times
the total area ABCD within the plastic hinge length, /,/2, on one side of the critical section. The
curvature distribution factor, B, represents the ratio of the actual plastic rotation, Ope, tO @lp,
where ¢ is the curvature and /, is the length of the plastic hinge. The value of 8 was reported
to vary between 0.5 and 0.6. Tests [14] have showed that 8 can be assumed to be equal to 0.56.
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When hooked-end steel fibers were used in concrete beams, the value of g decreased according
to the following expression:

B =0.56 —0.16p; (16.14)

where p; is the percentage of steel fibers, 0 < p; < 1.2%. The reduction of the curvature
distribution factor of fibrous concrete does not imply that the rotation capacity is reduced: The
plastic curvature of fibrous concrete is substantially higher than that of concrete without fibers.
Figure 16.28 shows the distribution of the curvature along the plastic hinge length. The area
ABC| represents the plastic rotation for concrete that does not contain steel fibers, B = 0.56,
whereas the areas ABC, and ABC35 represent the plastic rotation for concretes containing 0.8%

and 1.2% steel fibers, respectively.

240

200

160

120

¢, X 10" radians

0.67% main stee)
- - 1,21% main steel
__________ 1.89% main steel

Figure 16.28 Curvature distribution along the plastic hinge.
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16.12.3 Ductility Index

The ratio of ultimate to first-yield curvature is called the ductility index, u = ¢u/¢y. The ductility
index of reinforced concrete beams was reported [15] to vary between 4 and 6. If steel fibers are
used in concrete beams, the ductility index increases according to the following expression [14]:

i =(1.0+38p)u (16.15)
where
p = the ratio of ultimate to first-yield curvature

1" = ductility index of the fibrous concrete
ps = percentage of steel fibers by volume, 0 < p, < 1.2%.

16.12.4 Required Rotation

The rotation of a plastic hinge in a reinforced concrete indeterminate structure is required to
allow other plastic hinges to develop, and the structure to reach a mechanism can be determined
by slope defection from the following expression [7,20]. For a segment A B between two plastic
hinges, the rotation at A is

L
B = 6E.1 [2(M4 — Mpa) + (Mp — Mgs)] (16.16)

where

M4 and Mg = factored moments at A and B, respectively
Mgs and Mpg = elastic fixed-end moments at A and B
E. = modulus of elasticity of concrete = 33w]‘5\/Tc’
I = moment of inertia of a cracked section (Chapter 5)

16.12.5 Rotation Capacity Provided

Typical tensile plastic hinges at the support and midspan sections of a frame are shown in
Fig. 16.29. The rotation capacity depends mainly on the following:

1. The ultimate strain capacity of concrete, &/, which may be assumed to be 0.003 or 0.0035,
as used by Baker [7].

2. The length, I,, over which yielding occurs at the plastic hinge, which can be assumed to be
approximately equal to the effective depth of the section where the plastic hinge developed
(p = d).

3. The depth of the compressive block ¢ in concrete at failure at the section of the plastic
hinge. Baker [7] estimated the angle of rotation, &, of a tensile plastic hinge as follows:

g = %P Ip
c
where ¢, is the increase in the strain in the concrete measured from the initial yielding of

steel reinforcement in the section (see Fig. 16.29¢):

(16.17)

gp = &, — &, = 0.0035 — ¢,
If I, = d and the ratio c¢/d equals A < 0.5,

_ (00035 —¢e.)d _ 0.0035 — &,
o Ad o A

0
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(@) Plastic hinge in beam (b) Piastic binge at support
Uttimate strain
fot— € e
AL Ultimate stress
e ——
9——
i C
h Stress
diagram
A,
e ays JE D SE——
Foat— ) —

¢, = I,/E; = Strain in steel at start of yielding
¢, = Ultimate strain in steel

{c) Stress and strain diagrams

Figure 16.29 Plastic hinge and typical stress and strain distribution {2].

From strain triangles (Fig. 16.29),

. g (;)_&(_&L)_&(L)
9T \d—c/] E,\d—A/) E;\1-2X

where f, = yield strength of steel bars and E; = modulus of elasticity of steel = 29 X
10° psi. Therefore,

0.0035 &, 0.0035 b
9 = S - J 16.18
A A A E;(1—-2) ( )
For grade 40 steel, f, = 40ksi, and using a maximum value of A of 0.50, then
0.0035 40
Omin = = 0.00424 rad

050 29,000 x (1 —0.50)
For grade 60 steel, f, = 60ksi and Apax = 0.44;
0.0035 60
Bmin = -
0.44 29,000(1 — 0.44)

= 0.00426 rad
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The Omin calculated here is from one side only, and the total permissible rotation at the
plastic hinge equals 26 or 26,,;,. The actual A can be calculated as follows, given o = 8¢
and 81 = 0.85 for f] <4 ksi:

. a  Agfy
0.85 ~ (0.85)2f'b
c Asfy of y

=dT0msmd o =% (1619
where p = A /bd. (Mg is obtained when oy is used.)

If the rotation provided is not adequate, one can increase the section dimensions or
reduce the percentage of steel reinforcement to obtain a smaller c, a smaller 2, and greater
6. A. L. L. Baker [3] indicated that if special binding or spirals are used, the ultimate
crushing strain in bound concrete may be as high as 0.012.

For a compression plastic hinge (as in columns),

i
6= ‘Q"T" (16.20)
where A = overall depth of the section and [, = length over which yielding occurs. In
compression hinges, /,, varies between 0.5 and h.
At a concrete ultimate stress of f/, s, == 0.002; thus, &, = &, ~ 0.002 = 0.0035 —
0.002 = 0.0015 is the minimum angle of rotation on one side. Therefore,
0.0015 x 0.5h

emin = _k = 0.00075 rad

With special binding or spirals, # may be increased to

0.54
Omax = (0.012 — 0.002) x & = 0.005 rad

The extreme value of ¢, = 0.012 is quite high, and a smaller value may be used with
proper spirals; otherwise a different section must be adopted.

In reinforced concrete continuous beams containing steel fibers, the plastic rotation
may be estimated as follows [14]:

_ 0.0035 Sy
9;,_1;8( )L El —)L)) (16.21)
where
A={434+224p, — 0.043 f, +4.17pp;) (16.22)
B =0.56 - 0.16p; (16.14)

fy = yield strength of steel, ksi

E; = modulus of elasticity of main steel
o = percentage of main steel

ps = percentage of steel fibers

From Eq. 16.21, it is obvious that the plastic rotation of fibrous reinforced concrete is
dependent upon the percentage of steel fibers and percentage of the main steel and its
yield strength. Raising the yield strength of the main steel reduces the plastic rotation.
Equation 16.21 also includes the effect of the plastic hinge length on rotation.
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Plastic hinge in the maximum positive moment region.

A simplified form can be presented [14]:
=B (0 203) (16.23)

For example, if p; = 0 and f, = 60ksi, then 0p, = 0.00289/1, and if p; = 1.0%, p =
1.5%, and fy = 60ksi, then 6,, = 0.01222/A. ThlS means that the rotation capacity of a
concrete beam may be increased by about four times if 1% of steel fibers is used.

16.13 SUMMARY OF LIMIT DESIGN PROCEDURE

1. Compute the factored loads using the load factors given in Chapter 3:
w, =1.2D + 1.6L

2. Determine the mechanism, plastic hinges, and factored moments M Ue
3. Design the critical sections using the strength design method.

4. Determine the required rotation of plastic hinges.

5

. Calculate the rotation capacity provided at the sections of plastic hinges. The rotation
capacity must exceed that required.
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6. Check the factor against yielding of steel and excessive cracking, that is, ¢M /elastic
moment at service load.

7. Check deflection and cracking under service loads.
8. Check that adequate shear reinforcement is provided at all sections.

For more details, see Ref. 21.

Example 16.7

The beam shown in Fig. 16.30 is fixed at both ends and carries a uniform factored load of 5.5 K/ft,
and a concentrated factored load of 48 K. Design the beam using the limit design procedure. Use
b =14 in., f, =3 ksi, and f, = 40Kksi.

Solution

i. Factored uniform load w, = 5.5 K/ft. Factored concentrated load P, = 48K.

2. The plastic hinges will develop at A, B, and C, causing the mechanism shown in Fig. 16.30.
Using the virtual work method of analysis and assuming a unit deflection at C, then the external
work is equal to

1
W, =48 x 1 +5.5 (24>< 5) =114 Kft

The internal work absorbed by the plastic hinges is
W; = M, 6(at A) + M,0(at B) + M,(20) at C

1 M,
= 9 = —_ =
4My 4M, (l 2) 3
Equating W, and W; gives M, = 342K.-ft. The general analysis gives directly
w,L? L 55 _, 24
M, = —_ = — — =13 .
u 16 +P.,.8 16(24) +488 42 K-ft

3. Design the critical sections at A, B, and C for M, = 342K-ft. From tables in Appendix A and
for 1 =3 ksi, fy =40 ksi, and a steel percentage p = 0.013, R, = 420psi (pmax = 0.0203).

M, = R.bd*
342 % 12 = 0.42 x 14(d)?

d = 26.4 in. and the total depth is 2 = 26.4 + 2.5 = 28.9 in,, say, 29 in.
A, = pbd =0.013 X 14 x 26.4 = 4.8 in.”
Use five no. 9 bars in one row; A, provided = 5.0in.%, by, = 13.875in. < 14in.

Lo ALy S0x40 o
T 0857h 085x3x14 T
a c 6.6
=—— =66in. A=-=— =02
=085 " 2" 26407
4. The required rotation of plastic hinges is as follows:
L
a. fa = 6E.1 [2(M4 — Mgz) + (Mp — Mgp))
E. = 57,400,/ F] = 3.144 x 10° psi
E;=29x10%psi and n= E g,

E.
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Figure 16.30 Example 16.7.

b. Determine the fixed end moments at A and B using factored [oads:

L? P,L
Mpa = Mpp = Ya (uniform load) + —g— (concentrated load)
(24)2 24
=55 448 x — =408 K ft
2 Ty

Plastic M4 = plastic Mg = 342 K ft
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¢. The cracked moment of inertia can be calculated from

x3
lo = b= +nAs(d —x)?

where x is the distance from compression fibers to the neutral axis (kd). To determine x
(see Chapter 6), x = 10.3in. and I, = 17,172in.*

d. Required minimum rotation: Considering all moments at supports A and B are negative,
then

_ 24 % 12
T 6% 3.144 x 105 x 17,172

04 [2(~342 + 408) + (—342 + 408)](12,000) = 0.00211 rad

5. The rotation capacity provided is
o, — 0.0035 Iy _0.0035 40
AT Es(1-2) 025 29,000(1 — 0.25)
= 0.0122 rad > 0.00211 required

The rotation capacity provided is about 5.5 times that required, indicating that the section is
adequate.

6. Check the ratio of factored to elastic moment at service load:

wL?  PL
3 s
24)? 24
_ 352 30X
12
Actual $M, = dA, f,[d — (@f2)] = 09 x 5 x 40[26.5 — (5.6/2)/12 = 356 K-fi. The ratio is

356/258 = 1.38. which represents the factor of safety against the yielding of steel bars at the
support.

7. Check maximum deflection due to service load (at midspan): Let the uniform service load {w)
= 3.5K/ft, and P = 30K then:

My=Mp=

= 258 K.ft

_ wL*
'™ 3841
For a concentrated load at midspan,
Ao pPL}
2T 192E1
and total deflection is
(3500/12)(24 x 12)* 30,000(24 x 12)°

A= =0.166 in.

384(17.172)(3.144 x 108) ~ 192(17,172)(3.144 x 10%)
A 0166 1
L 24x12° 1735

which is a very small ratio.
8. Adequate shear reinforcement must be provided to avoid any possible shear failure.
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16.14 MOMENT REDISTRIBUTION OF MAXIMUM NEGATIVE OR POSITIVE MOMENTS
IN CONTINUOUS BEAMS

Moment redistribution of maximum positive or negative moments in continuous flexural mem-
bers is based on the net tensile strain (NTS), &,, for both reinforced and prestressed concrete
members. Figure 16.31 shows the permissible limits on moment redistribution. It indicates that
the percentage decrease in the negative moments at supports and positive moments between
supports of continuous beam, ¢’, calculated by the elastic theory, must not exceed 1000¢,%,
with maximum of 20%. Moment redistribution is allowed only when &, > 0.0075, indicating
adequate ductility is available at the section at which moment is reduced. When &, < 0.0075,
no moment redistribution is allowed. The modified negative moments must be used to calculate
the modified positive moments within the span, ACI Code, Section 8.4. Moment redistribution
does not apply to members designed by the direct design method for slab systems. (Refer to
Chapter 17.)

In summary, the percentage of decrease in maximum negative or positive moments in

continuous beams is as follows:

1. When ¢, > 0.0075, moment redistribution is allowed. (p/p, > 0.476)

2. When &, = 0.0075, the percentage of moment redistribution is 75% (o/pp = 0.476).
3. When g, > 0.020, the percentage of moment redistribution is 20% (p/p;, = 0.217).
4. When 0.0075 < g, < 0.020, the percentage of moment redistribution is:

" = 1000¢, (16.24)
5
60 80
20 +
= Available 5
. 60
B 1%
£ e
g - ’“//; - 80
=
%
]
=
L3
O
&
5 754
g . 3[8-05
= q'= 1000¢,
(Allf,and £}
0 0.0075 0.020 0.025

Net tensile strain, £,

Figure 16.31 Permissible moment redistribution for minimum rotation capacity [22].
Countesy of ACI-PCA.
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Table 16.1 Percentage Change in Moment Redistribution {g'), f, = 60 ksi

&t 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200 0.0225
olps 0.476 0.385 0.323 0.278 0.244 0.217 0.196
q % 7.5 10.0 12.5 15.0 17.5 20.0 20.0

For example, if &, = 0.010, then the percentage of moment redistribution is 10%. The relationship
between the steel percentage, p, in the section and the net tensile strain, &;, is as follows (refer

to Section 3.10):
(0.003 + %)
52| —0.003

& = (3.24)
()
Pb
For grade 60 steel, f, = 60ksi and E; = 29,000ksi. Assuming f,/E; = 0.002, then
0.005
——Q | —0.003 (3.25)

& =
(%)
Pb
For &, = 0.0075, the ductility limit ¢,/e, = 0.0075/0.002 = 3.75. The percentage change in
moment redistribution according to these limitations and for fy = 60ksi given in Tables 16.1
and 16.2.

Whatever percentage of moment redistribution is used, it is essential to ensure that no
sections is likely to suffer local damage or excessive cracking at service loads and that adequate
rotation capacity is maintained at every critical section in the structure. The redistribution of
moments in a statically indeterminate structure will result in a reduction in the negative moments
at the supports and in the positive moments within the spans. This reduction will not imply
that the safety of the structure has been reduced or jeopardized as compared with determinate
structures. In fact, continuity in structures provides additional strength, stability and economy in
the design.

Moment redistribution factor, g, based on the ACI Code 318-02 is calculated as follows:

g =20 [[ — _.__(’O — p')] (16.25)
b

In Eq. 16.25, the steel ratio p or (p — p'), at the section where the moment is limited to a
maximum ratio of 0.50,. The minimum stee! ratio in the section, for flexural design is limited

Table 16.2 Percentage Change in Moment Redistribution {q) for a Given p/pp Ratio

olob 0.48 0.45 0.40 0.35 0.30 0.25 0.20
& 0.0074 0.0081 0.0095 0.0113 0.0137 0.017 0.022
q % 0.0 8.1 9.5 11.3 13.7 17.0 20.0
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Table 16.3 Maximum and Minimum Moment Redistribution g (Eq. 16.25)

f. (ksi) fy, (ksi} Po P£min Qmax % {for pp) Qmin % (for 0.5 pp)
3 60 0.0215 0.0033 16.9 10
4 60 0.0285 0.0033 17.7 10
5 60 0.339 0.0035 179 10

to 3/ f//fy = 200/ f,. Using these extreme limitations, the maximum and minimum moment %=
redistribution percentages are shown in Table 16.3. ;

Example 16.8

Determine the maximum elastic moments at the supports and midspans of the continuous beam of
four equal spans shown in Fig. 16.32a. The beam has a uniform section and carries a uniform dead
load of 8 K/ft and a live load of 6 K/ft. Assume 10% maximum redistribution of moments and consider
the following two cases: (1) When the live load is placed on alternate spans, calculate the maximum
positive moments within the spans, and (2) when the live load is placed on adjacent spans, calculate
the maximum negative moments at the supports.

Solution

1. The beam has a uniform moment of inertia I and has the same E; thus, Ef is constant. The
three-roment equation to analyze the beam and for a constant Ef is
wlL'; szg

MaLi+2My(Ly +Lo) + McLo = —— = — =

Because the spans are equal,

9

L-
M, +4M3+Mc=—7(w1 + un) (16.26)

In this example M 4 = Mg = 0. Six different cases of loading will be considered, as shown
in Fig. 16.31:

Case 1, Dead load is placed on the whole beam ABCDE (Fig. 16.32b).

Case 2. Live load is placed on AB and CD for maximum positive moments within AB and
CD (Fig. 16.32c).

Case 3. Similar to Case 2 for beams BC and DE (Fig. 16.324).

Case 4. Live load is placed on AB, BC, and DE for a maximum negative moment at B
(Fig. 16.32¢).

Case 5. Live load is placed on spans CD and DE (Fig. 16.32f).

Case 6. Live load is placed on BC and CD for a maximum negative moment at C (Fig. 16.32g).

2. Case 1. Apply Eq. 16.26 to the beam segments ABC, BCD, and CDE, respectively:
(20)*
4
Mg +4Mc + Mp = —1600 K-ft

Mc + 4Mp = —1600 K-ft

aMp + M¢ = —

(8 + 8) = —1600 K-ft

Solve the three equations to get

Mp=Mp=—3428 Kft and My = —228.6 K-ft
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Figure 16.32 Example 16.8: Bending moments are drawn on the tension side.
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For a 10% reduction in moments,
;3 - M;) =0.9(—342.8) = —308.5 K-ft
M& = 0.9(=228.6) = —205.7 K-ft

The corresponding midspan moments are

Span AB = DE = w’;L2 + %MB = 8(280)2 - % x 308.5 = 245.8 K ft
Span BC = CD = wpl® - %(308.5 +205.7) = 8(280)2 —257.1 = 1429 K fi
3. Case 2. Apply Eq. 16.26 to ABC, BCD, and CDE, respectively:
4Mp + Mc = — (22)2 (6) = —600 K ft

Mg +4Mc + Mp = —600 K-ft
Me +4Mp = —600 K ft
Solve the three equations to get
Mg = Mp = —129.6 K-ft Mc = —86.4 K-t
The corresponding elastic midspan moments are

wy L? 4 Ms _ 6(20)° 1296

B - — = 4+235.2 K ft
cam AB g 3 3 > +

BC=0- —;-(129.6 + 86.4) = —108 K1t

wLL2
8

6(20)?

CD = — 108 = +192 K-fi

- %(129.6 +864) =

1
DE=0- 3 x 129.6 = —64.8 K-ft

To reduce the positive span moment, increase the support moments by 10% and calculate the
corresponding positive span moments. The resulting positive moment must be at least 90% of
the first calculated moments given previously.

My = Mp =1.1(-129.6) = —142.6 K ft
M; = 1.1(—86.4) = —95.0 K-ft
The corresponding midspan moments are

wl? | My 6Q0° 1426

B AB = = +228.7 KAt
€am 3 3 3 +
1
BC = —5(142.6 +95) = —118.8 K-t
wy L2 6202 1

CD =

1
+ E(M('; + Mp) = - 5(95 + 142.6) = 181.2 K-ft

3
DE = —% x 142.6 = —=71.3 K-ft

4. Case 3. This case is similar to Case 2, and the moments are shown in Fig. 16.324.
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. Case 4. Consider the spans AB, BC, and DE loaded with live load to determine the maximum

negative moment at support B:
wy L2 6(20)?

4M Me = — = =—-12 K-ft
B+ Mc > > 00
L2 602012
MB+4MC+MD=—'”L4 = (4} = —600 KAt
6(20)2
Mc+4Mp = — (4) = —600 K-ft

Solve the three equations to get
Mc = —42.9 K At
Mg = —289.3 K-ft
Mp = —139.3 K.ft
For 10% reduction in moment at support B,
My = 0.9 x (—289.3) = —260.4 K-ft
The correspending midspan moments are

wrL? N Mg 6(20)* 2604

eam 2 3 S 69.8 t
L? 1
BC = “’LS — 5(260.4 4 42.9) = 148.4 K f

i
CD = —5(429+139.3) = —9L.1 KA

DE =300 — %x139.3 = +230.4 K.ft

Case 5. This is similar to Case 4, except that one end span is not loaded to produce maximum
positive moment at support B (or support D for similar loading). The bending moment diagrams
are shown in Fig. 16.32f.

. Case 6. Consider the spans BC and CD loaded with live load to determine the maximum

negative moment at support C:

L-
AMp + Mc = 252 = —600 K-t
wLL2
Ms +4Mc + Mp = ——-— = —1200 K-t
wLL2 .
Mc +4Mp = ——£— = —600 K-At

Solve the three equations to get
M = -257.2 KAt
Mg =Mp=-857K 1t
For 10% reduction in support moments,
M{ =09 x (—257.2) = —231.5 Kt
Mg =M:=09x (—85.7)=-772 Kt
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Table 16.4 Final Moments of Example 16.8 after Moment Redistribution
Case 1 2 3 4 5
D.L. + L.L. D.L. +L.L.
LL L.L. (1) +(2 1)+ @)
Section D.L. Maximum Maximum Maximum Maximum
Location Moments Negative Positive Negative Positive
Support
A 0 0 0 0 0
B —-308.5 —260.4 +214 —568.9* —287.1
C -205.7 —231.5 — —437.2* —205.7
D —-308.5 —260.4 +21.4 —568.9* —287.1
E 0 0 0 0 0
Midspan
AB 245.8 —-71.3 228.7 +£174.5 +474.5*
BC 142.9 —118.6 181.2 +24.3 +324.1*
(8/)] 142.9 —118.6 181.2 +£24.3 +324.1*
DE 245.8 ~71.3 228.7 +174.5 +474.5*

*Final maximum and minimum design moments,

The corresponding midspan moments are

77.2

Beam AB = DE = -5 —38.6 K-ft

BC=CD=

wLL2

1
- 5(231.5 +77.2) =

6(20)?

— 1543 = 145.7 Kt

8. The final maximum and minimum moments after moment redistribution are shown in Table 16.4.
The moment envelope is shown in Fig. 16.324.

9. In this example, the midspan sections are used for simplicity: The midspan moments are not

necessarily the maximum positive moments. In the case of the end spans AB and DE, the
maximum moment after 10% moment redistribution is equal to (wpL2)/12.2 and occurs at

0.4L from A and D.

Example 16.9

Determine the permissible redistribution of negative moments at supports B, C, D, and E of the

continuons beam ABCDEF shown in Fig.

16.33. The beam has a rectangular section,

b = 12in, h = 22in, and 4 = 19.5in, and it is reinforced as shown in the following table

(f, =4 ksi and f, = 60ksi).
1. Use Appendix B.

2. Use the ACI Code limitations.

Solution

1. For f/ =4 ksi and f, = 60ksi, p, = 0.0285. The ACI Code redistribution factor was given

as follows:

=20|1-
7 [ Pb

p—p

(16.25)
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12"

Figure 16.33 Example16.9.

7.5% and 20%, as shown in Fig. 16.31.

2, The ACI Code redistribution factor is a function of the net tensile strain, ¢,, and varies between

g’ = 1000¢, (16.24)
0.003 + %
& = 7 £ —0.003
Pb
and
0.005
&= —p— = 0.003 (for fy = 60 ksi)
Pb
The table shows the values of ¢ and ¢, which are not compatible.
Tension Compression o—p
Support Bars (Ag) o Bars {4;) I p q% & q
b
B 3n0.9  0.01282 0 0 045 11.0 00113 113
C 3no. 10 0.0160 0 0 0.56 8.8 0.006 0
D 3no.6  0.00564 0 0 0.198 160 0.0226 20
E 4n0.8 (.01342 3 no. 6 0.0056 0273 145 00153 153

Sections 16.1-16.3

In continuous beams, the maximum and minimum moments are obtained by considering the
dead load acting on all spans, whereas pattern loading is considered for live or moving loads,
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as shown in Figs. 16.2 and 16.3. The ACI moment coefficients given in Chapter 9 may be used
to compute approximate values for the maximum and minimum moments and shears.

Sections 16.4-16.5

A frame subjected to a system of loads may be analyzed by the equivalent frame method. Frames
may be statically determinate or indeterminate.

Section 16.6

There are several types of frame hinges: Mesnager, Considére, lead, and concrete hinges. The
steel for a Mesnager hinge is calculated as follows:

R Ry
Ay = —— d Ay, = —— 16.2
T 0ss5s, ¢ AeT0ssy, (16:2)
P, Ha
B : = —t :
urst force: ¥ > ané + 0.854 (16.4)
o F
Stress in ties  f; = 0.85 fy (16.6)

<
0.005ab + Agy (ties) —

Sections 16.7-16.8

Limit design in reinforced concrete refers to redistribution of moments, which occurs throughout
the structure as steel reinforcement reaches its yield strength. Ultimate strength is reached when
the structure is on the verge of collapse. This case occurs when a number of plastic hinges, »,
develop in a structure with redundants, r, such that n =1 + r.

Sections 16.9-16.11

For limit design to be valid, four conditions must be satisfied: mechanism, equilibrium, yield,
and rotation. Two methods of analysis may be used: the virtual work method and the equilibrium
method, which are both explained in Examples 16.3 through 16.6.

Sections 16.12-16.13
The plastic hinge length, { ,, can be considered equal to the effective depth, 4. In fibrous concrete,
[, = (1.06 + 0.13pp,)d (16.13)
Ductility index g = ]
Py
For fibrous concrete,

w = (1.0+3.8p5)u (16.15)
Angle of rotation 6 = 00035 Jv (16.18)
A Ei(1—))
Lfy :
=-—2_ <05 16.1
0.72f! ~ (16.19)

A summary of the limit design procedure is given in Section 16.14.
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Section 16.14

Moment redistribution may be taken into account in the analysis of statically indeterminate
structures. In this case, the maximum negative moments calculated by the elastic theory may be
increased or decreased by not more than the ratio q’, where

g’ = 1000¢, (16.24)
Table 16.1 gives the different values of g. Moment redistribution is explained in detail in
Example 16.8.
REFERENCES
1. J. C. McCormac. Structural Analysis. New York: Intext, 1985.

10.
11.
12.

13.
14.

15,

16.

17.

18.
19.
20.

21.

22.

M. N. Hassoun. Ultimate Load Design of Reinforced Concrete. London: Cement and Concrete Associ-
ation, 1981.

. A. L. L. Baker. The Ultimate Load Theory Applied to the Design of Reinforced and Prestressed Concrete

Frames. London: Concrete Publications, 1956.
W. Prager and P. G. Hodge. Theory of Perfectly Plastic Solids. New York: John Wiley, 1951.

. L. S. Beedle, B. Thiirlimann, and R. L. Ketter. Plastic Design in Structural Steel. New York: American

Institute of Steel Construction, 1955.

J. F. Baker, M. R. Home, and J. Heyman. The Steel Skeleton, Vol. 2. London: Cambridge University
Press, 1956.

A. L. L. Baker. Limit-State Design of Reinforced Concrete. London: Cement and Concrete Association,
1970.

. W. B. Cranston. “Tests on Reinforced Concrete Portal Frames”. Cement and Concrete Association

Technical Report TRA-392. London, 1965.

. B. G. Neal. The Plastic Methods of Structural Analysis. London: Chapman and Hall, 1956.

L. 8. Bedle. Plastic Design of Steel Frames. New York: John Wiley, 1958.
M. R. Homne. Plastic Theory of Structures. Cambridge, Massachusetts: M. I. T. Press, 1971, pp. 16-17.

W. G. Corley. “Rotational Capacity of Reinforced Concrete Beams™. ASCE Journal, Structural Division
92 (October 1966).

A. H. Mattock. “Discussion [12])”. ASCE Journal, Structural Division 93 (April 1967).

K. Sahebjam. “The Effect of Steel Fibers on the Plastic Rotation of Reinforced Concrete Continuous
Beams.” MS Thesis, South Dakota State University, 1984.

W. Chan. “The Ultimate Strength and Deformation of Plastic Hinges in Reinforced Concrete Frame-
works”. Magazine of Concrete Research (November 1955).

S. K. Kaushik, L. M. Ramamurthy, and C. B. Kukreja. “Plasticity in Reinforced Concrete Continuous
Beams, with Parabolic Soffits”. ACI Journal (September-Ociober 1930).

R. W. Furlong. “Design of Concrete Frames by Assigned Moment Limits”. ACI Journal 67 (April
1970).

P. G. Hodge. Plastic Analysis of Structures. New York: McGraw-Hill, 1959.

M. Hilal. Design of Reinforced Concrete Halls. Cairo: J. Marcou and Company, 1971.

V. Ramakrishnan and P. D. Arthur. Ultimate Strength Design for Structural Concrete. India: Wheeler
Publishing, 1977.

Structural Design of Tall Concrete and Masonry Buildings. New York: American Society of Civil
Engineers, 1978.

American Concrete Institute. “Building Code Requirements for Structural Concrete.” ACI Code 318-08
American Concrete Institute. Detroit, Michigan 2008.




Problems

579

PROBLEMS

16.1 The slab-beam floor system shown in Fig. 16.34 carries a uniformly distributed dead load {excluding
weight of slab and beam) of 40 psf and a live load of 100 psf. Using the ACI Code coefficients, design
the interior continuous beam ABCD and draw detailed sections. Given: f! = 4 ksi, fy = 60 ksi,
width of beam web = 12in., slab thickness = 4.0in., and column dimensions = 14 by 14in.

16.2 Repeat Problem 16.1 using span lengths of the beams shown in Fig. 16.32 as follows:
Li=201t L,=24ft
Ly=20ft L;=10ft

16.3 For the beam shown in Fig. 16.35, compute the reactions at A, B, and C using constant Ef. Draw
the shear and bending moment diagrams and design all critical sections, using ¥ = 14 in, 2 = 25 in.,
fl=4ksi, f, = 60 ksi, and a load factor = 1.6.

16.4 Repeat Problem 16.3 using span lengths of beams as follows: span AB = 20ft and span BC = 16ft.

16.5 The two-hinged portal frame ABCD shown in Fig. 16.36 carries a uniform dead load (excluding
self-weight) = 2.6 K/ft and a uniform live load of 1.8 K/ft. Design the frame ABCD, the hinges, and
footings using f! = 4 ksi, f, = 60 ksi, and a beam width of 4 = 16 in. The footing is placed 5ft
below ground level and the allowable bearing soil pressure is 5 ksf. Use a slab thickness of 6in.

16.6 Design the portal frame ABCD of Problem 16.5 if the frame ends at A and D are fixed.

Ly =10 L= =10

=201 L. ‘A A6

Figure 16.34 Problem 16.1.

10K/

i v v v s 0 O B O O

= 24 0" e 16 0" —=]

Figure 16.35 Problem 16.3.
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Figure 16.36 Problem 16.5.
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Figure 16.37 Problem 16.7.
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Figure 16.38 Problem 16.8.

16.7 Calculate the collapse moments at the critical sections of the beams shown in Fig. 16.37.

16.8 Repeat Problem 16.7 for Fig. 16.38.

16.9 If the beam shown in Fig. 16.36 carries a uniform dead load of 2.5 K/ft and a live load of 2.4 K/ft,
design the beam using the limit design procedure. Use f, = 4 ksi, f, = 60 ksi, and a beam width
of b = 14in.

16.10 Determine the maximum and minimum elastic moments at the supports and midspans of the three-
span continuous beam shown in Fig. 16.37. The beam has a uniform rectangular section and carries
a uniform dead load of 6 K/ft and a live load of 5 K/ft. Assuming 10% maximum redistribution of
moments, recalculate the maximum and minimum moments at the supports and midspans of the
beam ABC. Note: Place the live load on alternate spans to calculate maximum positive moments and
on adjacent spans to calculate the maximum negative (minimum) moments {Example 16.8).

16.11 Repeat Problem 16.10 if the beam consists of four equal spans, each 24 ft in length (Fig. 16.39).

w, = 12 K/ft

[ 1 1 11
A

Figure 16.39 Problem 16.11.
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CHAPTER 1 7

DESIGN OF
TWO-WAY
SLABS

174

The Bonaventure Complex and the Bonaventure Hilton Hotel,
Montreal, Canada.

INTRODUCTION

Slabs can be considered as structural members whose depth, 4, is small as compared to their
length, L, and width, S. The simplest form of a slab is one supported on two opposite sides,
which primarily deflects in one direction and is referred to as a one-way slab. The design of
one-way slabs was discussed in Chapter 9.

When the slab is supported on all four sides and the length, L, is less than twice the width,
S. the slab will deflect in two directions, and the loads on the slab are transferred to all four
supports. This slab is referred to as a two-way slab. The bending moments and deflections in
such slabs are less than those in one-way slabs; thus, the same slab can carry more load when
supported on four sides. The load in this case is carried in two directions, and the bending
moment in each direction is much less than the bending moment in the slab if the load were
carried in one direction only. Typical slab-beam-girder arrangements of one-way and two-way
slabs are shown in Fig. 17.1.

17.2 TYPES OF TWO-WAY SLABS

Structural two-way concrete slabs may be classified as follows:

1. Two-Way Slabs on Beams: This case occurs when the two-way slab is supported by beams
on all four sides (Fig. 17.1). The loads from the slab are transferred to all four supporting
beams, which, in turn, transfer the loads to the columns.

2. Flat Slabs: A flat slab is a two-way slab reinforced in two directions that usually does not
have beams or girders, and the loads are transferred directly to the supporting columns.
The column tends to punch through the slab, which can be treated by three methods (refer
to Figs. 17.2 and 17.3):

a. Using a drop panel and a column capital.
b. Using a drop panel without a column capital. The concrete panel around the column
capital should be thick enough to withstand the diagonal tensile stresses arising from

the punching shear.
581
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Figure 17.1 {a) One-way slab, L/S > 2, and (b) two-way slab, L/S < 2.

»-—-—l—-—-—l—-- ,g Slab _}

8 8 f {

t 14

Column
—————
| A 1 A
T I~ th /F—I [—)17 /Ll
—+9} SN 77 Deop ponel
I ~F
‘ urnn copital
__-: __ﬂ I Column
N ; ‘\ s
l J Section A-4 Section A-A Section A-4
Without drop panel With drop panel Without column capital

(b)

Figure 17.2 Two-way slabs without beams: (a) flat plate floor and section; (b} flat slab
floor and sections; {c) ribbed slab and sections.

¢. Using a column capital without drop panel, which is not common.

3. Flar-Plate Floors: A flat-plate floor is a two-way slab system consisting of a uniform slab
that rests directly on columns and does not have beams or column capitals (Fig. 17.2a). In
this case the column tends to punch through the slab, producing diagonal tensile stresses.
Therefore, a general increase in the slab thickness is required or special reinforcement is
used.
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Figure 17.2 (continued)

4. Two-Way Ribbed Slabs and the Waffle Slab System: This type of slab consists of a floor
slab with a length-to-width ratio less than 2. The thickness of the slab is usually 2 to 4 in.
and is supported by ribs (or joists) in two directions. The ribs are arranged in each direction
at spacings of about 20 to 30 in., producing square or rectangular shapes (Fig. 17.2¢). The
ribs can also be arranged at 45° or 60° from the centerline of slabs, producing architectural
shapes at the soffit of the slab. In two-way ribbed slabs, different systems can be adopted:

a. A two-way rib system with voids between the ribs, obtained by using special removable
and usable forms (pans) that are normally square in shape. The ribs are supported on
four sides by girders that rest on columns. This type is called a two-way ribbed (joist)
slab system.

b. A two-way rib system with permanent fillers between ribs that produce horizontal slab
soffits. The fillers may be of hollow, lightweight or normal-weight concrete or any other
lightweight material. The ribs are supported by girders on four sides, which in turn are
supported by columns. This type is also called a two-way ribbed (joist) slab system or
a hollow-block two-way ribbed system.
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: [N [N,
{a)
. M M

(d)

Figure 17.3 Types of two-way slab systems: (a) flat plate, (b) flat slab, (¢} slab on
beams, and (d) waffle slab.
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c. A two-way rib system with voids between the ribs with the ribs continuing in both
directions without supporting beams and resting directly on columns through solid panels
above the columns. This type is called a waffle slab system.

17.3 ECONOMICAL CHOICE OF CONCRETE FLOOR SYSTEMS

Various types of floor systems can be used for general buildings, such as residential, office, and
institutional buildings. The choice of an adequate and economic floor system depends on the
type of building, architectural layout, aesthetic features, and the span length between columns.
In general, the superimposed live load on buildings varies between 80 and 150 psf. A general
guide for the economical use of floor systems can be summarized as follows:

1. Flat Plates: Flat plates are most suitable for spans of 20 to 25 ft and live loads between
60 and 100 psf. The advantages of adopting flat plates include low-cost formwork, exposed
flat ceilings, and fast construction. Flat plates have low shear capacity and relatively low
stiffness, which may cause noticeable deflection. Flat plates are widely used in buildings
either as reinforced or prestressed concrete slabs.

2. Flat Slabs: Flat slabs are most suitable for spans of 20 to 30 ft and for live loads of 80
to 150 psf. They need more formwork than flat plates, especially for column capitals. In
most cases, only drop panels without column capitals are used.

3. Waffle Slabs: Waffle slabs are suitable for spans of 30 to 48 ft and live loads of 80 to
150 psf. They carry heavier loads than flat plates and have attractive exposed ceilings.
Formwork, including the use of pans, is quite expensive.

Flat-plate floor system.
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Slab on beams.

4. Slabs on Beams: Slabs on beams are suitable for spans between 20 and 30 ft and live
loads of 60 to 120 psf. The beams increase the stiffness of the slabs, producing relatively
low deflection. Additional formwork for the beams is needed.

5. One-Way Slabs on Beams: One-way slabs on beams are most suitable for spans of 10 to
20 ft and a live load of 60 to 100 psf. They can be used for larger spans with relatively
higher cost and higher slab deflection. Additional formwork for the beams is needed.

6. One-Way Joist Floor System: A one-way joist floor system is most suitable for spans of
20 to 30 ft and live loads of 80 to 120 psf. Because of the deep ribs, the concrete and steel
quantities are relatively low, but expensive formwork is expected. The exposed ceiling of
the slabs may look attractive.

17.4 DESIGN CONCEPTS

An exact analysis of forces and displacements in a two-way slab is complex, due to its highly
indeterminate nature; this is true even when the effects of creep and nonlinear behavior of the
concrete are neglected. Numerical methods such as finite elements can be used, but simplified
methods such as those presented by the ACI Code are more suitable for practical design. The
ACI Code, Chapter 13, assumes that the slabs behave as wide, shallow beams that form, with
the columns above and below them, a rigid frame. The validity of this assumption of dividing
the structure into equivalent frames has been verified by analytical [1,2] and experimental [3,4]
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research. It is also established [3,5] that factored load capacity of two-way slabs with restrained
boundaries is about twice that calculated by theoretical analysis, because a great deal of moment
redistribution occurs in the slab before failure. At high loads, large deformations and deflections
are expected; thus, a minimum slab thickness is required to maintain adequate deflection and
cracking conditions under service loads.

The ACI Code specifies two methods for the design of two-way slabs:

The direct design method, DDM (ACI Code, Section 13.6), is an approximate procedure
for the analysis and design of two-way slabs. It is limited to slab systems subjected to
uniformly distributed loads and supported on equally or nearly equally spaced columns.
The method uses a set of coefficients to determine the design moments at critical sections.
Two-way slab systems that do not meet the limitations of the ACI Code, Section 13.6.1,
must be analyzed by more accurate procedures.

The equivalent frame method, EFM (ACI Code, Section 13.7), is one in which a three-
dimensional building is divided into a series of two-dimensional equivalent frames by cut-
ting the building along lines midway between columns. The resulting frames are considered
separately in the longitudinal and transverse directions of the building and treated floor by
floor, as shown in Fig. 17.4.

Two ACI Code procedures are based on the results of elastic analysis of the structure as

a whole using factored loads. A modified approach to the direct design method was presented
in the commentary of the 1989 Code as the modified stiffness method, or MSM. It is based on
specific distribution factors introduced as a function of the stiffness ratio, ac, for proportioning
the total static moment in an end span. This method is explained later.

Flat slab system with drop panels (no column capitals).
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In addition to the ACI Code procedures, a number of other alternatives are available
for the analysis and design of slabs. The resulting slabs may have a greater or lesser amount

of reinforcement. The analytical methods may be classified in terms of the basic relationship
between load and deformation as elastic, plastic, and nonlinear.

1. In elastic analysis, a concrete slab may be treated as an elastic plate. The flexure, shear, and
deflection may be calculated by the fourth differential equation relating load to deflection
for thin plates with small displacements, as presented by Timoshenko [6]. Finite difference
as well as finite element solutions have been proposed to analyze slabs and plates [7,8].

Continuous
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Figure 17.4 (a) Longitudinal and (b} transverse equivalent frames in plan view and (c)
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In the finite element method, the slab is divided into a mesh of triangles or quadrilaterals.
The displacement functions of the nodes (intersecting mesh points) are vsually established,
and the stiffness matrices are developed for computer analysis.

2. For plastic analysis, three methods are available. The yield line method was developed by
Johansen [9] to determine the limit state of the slab by considering the yield lines that occur
in the slab as a collapse mechanism. The strip method was developed by Hillerborg [10].
The slab is divided into strips, and the load on the slab is distributed in two orthogonal
directions. The strips are analyzed as simple beams. The third method is optimal analysis.
There has been considerable research into optimal solutions. Rozvany and others [11] pre-
sented methods for minimizing reinforcement based on plastic analysis. Optimal solutions
are complex in analysis and produce complex patterns of reinforcement.

3. Nonlinear analysis simulates the true load deformation characteristics of a reinforced con-
crete slab when the finite element method takes into consideration the nonlinearity of
the stress strain—relationship of the individual elements [11,12]. In this case, the solution
becomes complex unless simplified empirical relationships are assumed.

The preceding methods are presented very briefly to introduce the reader to the different
methods of analysis of slabs. Experimental work on slabs has not been extensive in recent years,
but more research is probably needed to simplify current design procedures with adequate safety,
serviceability, and economy [11].
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17.5 COLUMN AND MIDDLE STRIPS

Figure 17.5 shows an interior panel of a two-way slab supported on columns A, B, C, and D. If
the panel is loaded uniformly, the slab will deflect in both directions, with maximum deflection
at the center, O. The highest points will be at the columns A, B, C, and D; thus, the part of the
slab around the columns will have a convex shape. A gradual change in the shape of the slab
occurs, from convexity at the columns to concavity at the center of the panel O, each radial
line crossing a point of inflection. Sections at O, E, F, G, and H will have positive bending
moments, whereas the periphery of the columns will have maximum negative bending moments.
Considering a strip along AFB, the strip bends like a continuous beam (Fig. 17.5b), having
negative moments at A and B and positive bending moment at F. This strip extends between
the two columns A and B and continues on both sides of the panel, forming a column strip.

Similarly, a strip along EOG will have negative bending moments at £ and G and a
positive moment at O, forming a middle strip. A third strip along DHC will behave similarly to
strip AFB. Therefore, the panel can be divided into three strips, one in the middle along EOG,
referred to as the middle strip, and one on each side, along AFB and DHC , referred to as column
strips (Fig. 17.5a). Each of the three strips behaves as a continuous beam. In a similar way, the
panel is divided into three strips in the other direction, one middle strip along FOH and two
column strips along AED and BGC, respectively (Fig. 17.5¢).

Referring to Fig. 17.5a, it can be seen that the middle strips are supported on the column
strips, which in turn transfer the loads onto the columns, A, B, C, and D in this panel. Therefore,
the column strips carry more load than the middle strips. Consequently, the positive bending
moment in each column strip (at E, F, G, and H) is greater than the positive bending moment
at O in the middle strip. Also, the negative moments at the columns A, B, C, and D in the
column strips are greater than the negative moments at E, F, G, and H in the middle strips.
The portions of the design moments assigned to each critical section of the column and middle
strips are discussed in Section 17.8.
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The extent of each of the column and middle strips in a panel is defined by the ACI Code,
Section 13.2. The column strip is defined by a slab width on each side of the column centerline,
x in Fig. 17.5, equal to one-fourth the smaller of the panel dimenstons {; and /;, including beams

if they are present, where

I, = span length, center to center of supports, in the direction moments are being

determined

[ = span length, center to center of supports, in the direction perpendicular to /;

The portion of the panel between two column strips defines the middle strip.
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17.6 MINIMUM SLAB THICKNESS TO CONTROL DEFLECTION

The ACI Code, Section 9.5.3, specifies a minimum slab thickness in two-way slabs to control
defiection. The magnitude of a slab’s deflection depends on many variables, including the flexural
stiffness of the slab, which in turn is a function of the slab thickness, 4. By increasing the slab
thickness, the flexural stiffness of the slab is increased, and consequently the slab deflection is
reduced [13). Because the calculation of deflections in two-way slabs is complicated and to avoid
excessive deflections, the ACI Code limits the thickness of these slabs by adopting the following
three empirical limitations, which are based on experimental research. If these limitations are
not met, it will be necessary to compute deflections.

1. For 0.2 < af, <2,

fy
_ b (0'8 * 200,000
36 + 58(ctgm — 0.2)

but not less than S in.
2. Forayzy, > 2.0,

Iy
o I (0.8 + 1400
(fy1n psi) h=

R TIy To— (fyin MPa) (17.1)

) ()
h = . (0'8 " 200,000 (fy in psi) h= A 1400 (fy in MPa) (17.2)
36+ 98 Y 36+ 98 g
but not less than 3.5 in.
3. Foras, < 0.2,
h = minimum slab thickness without interior beams (Table 17.1) (17.3)

where

I, = clear span in the long direction measured face to face of columns (or face
to face of beams for slabs with beams)
B = the ratio of the long to the short clear spans

Table 17.1  Minimum Thickness of Slabs Without Interior Beams

Without Drop Panels® With Drop Panels?
Exterior Panels Exterior Panels
Yield Stress Without With Without With
f, psi Edge Edge Interior Edge Edge Interior
(1@ Beams Beams Panels Beams Beams® Panels
In In I'-n I" ln !n
40,000 33 36 36 36 40 40
In In In In In In
60,000 — — — — — —
30 33 33 30 36 36
9For values of reinforcement, yield stress between 40,000 and 60,000 psi minimum thickness shall be obtained by linear
interpolation.

®Drop panel is defined in ACI Sections 13.3.7.1 and 13.3.7.2.
¢Slabs with beams between columns along exterior edges. The value of @ ¢ for the edge beam shall be not less than 0.8.
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o sy = the average value of o for all beams on the sides of a panel

o ¢ = the ratio of flexural stiffness of a beam section EcpJ, to the flexural stiffness
of the slab EI;, bounded laterally by the centerlines of the panels on each
side of the beam

Ecnlp
ECSIS

where E, and E are the moduli of elasticity of concrete in the beam and the slab,
respectively, and

g = (17.4)

Iy, = the gross moment of inertia of the beam section about the centroidal axis
(the beam section includes a slab length on each side of the beam equal to the
projection of the beam above or below the slab, whichever is greater, but not
more than four times the slab thickness)

I, = the moment of inertia of the gross section of the slab

However, the thickness of any slab shall not be less than the following:
1. For slabs with @, < 2.0 then thickness > 5.0 in. (125 mm)
2. For slabs with s, > 2.0 then thickness > 3.5 in. (90 mm)

If no beams are used, as in the case of flat plates, then oy = 0 and ¢ 4,, = 0. The ACI Code
equations for calculating slab thickness, #, take into account the effect of the span length, the
panel shape, the steel reinforcement yield stress, f,, and the flexural stiffness of beams. When
very stiff beams are used, Eq. 17.1 may give a small slab thickness, and Eq. 17.2 may control.
For flat plates and flat slabs, when no interior beams are used, the minimum slab thickness may
be determined directly from Table 9.5¢ of the ACI Code, which is shown here as Table 17.1.

Other ACI Code limitations are summarized as follows:

1. For panels with discontinuous edges, end beams with a minimum « equal to 0.8 must be
used; otherwise, the minimum slab thickness calculated by Eqs. 17.1 and 17.2 must be
increased by at least 10% (ACI Code, Section 9.5.3).

2. When drop panels are used without beams, the minimum slab thickness may be reduced
by 10%. The drop panels should extend in each direction from the centerline of support
a distance not less than one-sixth of the span length in that direction between center to
center of supports and also project below the slab at least 4/4. This reduction is included
in Table 17.1.

3. Regardless of the values obtained by Eqs. 17.1 and 17.2, the thickness of two-way slabs shall
not be less than the following: (1) for slabs without beams or drop panels, 5 in. (125 mm);
(2) for slabs without beams but with drop panels, 4 in. (100 mm); (3) for slabs with beams
on all four sides with « ¢, > 2.0, 3%in. (90 mm), and for o ¢, < 2.0, 5 in. (125 mm) (ACI
Code, Section 9.5.3.).

The following steps summarize these calculations:

1. For slabs without interior beams (flat plates and flat slabs),

a. Calculate the minimum slab thickness directly from Table 17.1. However, Eqgs. 17.1 and
17.2 may be used, and Eq. 17.1 normally controls. Minimum slab thickness shall be
greater than or equal to 5 in. (125 mm) for slabs without drop panels and greater than
or equal to 4 in. (100 mm) for slabs with drop panels.
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b. At discontinuous edges, an edge beam with oy > 0.8 should be used. Otherwise, the
minimum slab thickness calculated by Eqs. 17.1 and 17.2 should be increased by 10%.
This increase of 10% has already been included in the second columns of Table 17.1.

¢. If drop panels are used in flat slabs, the minimum slab thickness may be reduced by
10% on the condition that the drop panel extends in each direction from the centerline
of the support a distance not less than one-sixth of the span and projects below the slab
at least /4. This reduction is included in the factors of Table 17.1.

For slabs with beams on all sides (@, > 0),

a. Calculate o), and then calculate the minimum slab thickness from Egs. 17.1 and 17.2.
In most cases, Eq. 17.2 controls.

b. The slab thickness should be greater than or equal to 5 in. for slabs with af,, < 2.0
and should be greater than or equal to 3.5 in. for slabs with « ¢, > 2.0.

. For all slabs: A slab thickness less than the minimum thickness given in steps 1 and 2 may

be used if shown by computation that deflection will not exceed the ACI Code, Table 9.55
limitations explained earlier in Chapter 6.

Example 17.1

A flat-plate floor system with panels 24 by 20 ft is supported on 20-in. square columns. Using the ACI
Code equations, determine the minimum slab thickness required for the interior and corner panels
shown in Fig. 17.6. Edge beams are not used. Use f! =4 ksi and f] = 60 ksi.

107
10 F “l‘—24'—t--t—24’—>¢—-24’—-—.-.
T~l | L J | |
<
0 1 4
l r 3 & —t
f A A
Y. 2 3
i } ]
! . & - L
A 1
All columns 20" X 207
>
e pLy 24 -

Saction A-A
Figuwre 17.6 Example 17.1.
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Solution

1. For corner panel no. 1, the minimum thickness is /,/30 (f, = 60 ksi, and no edge beams are
used; see Table 17.1).

20
Iny =24 — m =22.33 ft (long direction)
22. 12
Benin = ?):;—OX =893 in., say,9.0in.
Alternatively, Eqs. 17.1 and 17.2 can be used to calculate the minimum thickness with

af =apy, =0.

2. For the interior panel no. 3 and fy = 60 ksi, the minimum slab thickness is [,/33 = (22.33 x
12)/33 = 8.12 in., say, 8.5 in. Alternatively, Eqs. 17.1 and 17.2 can be uvsed. If a uniform slab
thickness is used for all panels, then # = 9.0 in. will be adopted.

Example 17.2

The floor system shown in Fig. 17.7 consists of solid slabs and beams in two directions supported
on 20-in. square columns. Using the ACI Code equations, determine the minimum slab thickness
required for an interior panel. Use f, =3 ksi and f, = 60 ksi.

Allucoium”ns
':*-—24' N S yT— 32 ﬁxlggé
1 I DA
20 Slab 1 “< —_ ° L
- Y7
|
T P — A e ' QQMITFX—' Fest— X —a] IT
0 8|8 Slob 2 = Baarms —»1 y /
| ; l 7
<y — 16"~
4, 1 Section A-A
(@) (b)
l—-——27“—-| # i: 26" ={ ¢
I 7= 887" 7 { |8
2 | QL 1{2” 1
l T
o] D—
Section B-8 T-section
(©)

Figure 17.7 Example 17.2.
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Solution

1.

2.

3.

To use Eq. 17.1, o, should be calculated first. Therefore, it is required to determine fp, /s, and
« 7 for the beams and slabs in the long and short directions.

The gross moment of inertia of the beam, [, is calculated for the section shown in Fig. 17.7b,
which is made up of the beam and the extension of the slab on each side of the beam x = y
but not more than four times the slab thickness. Assume & = 7 in., to be checked later: then
xx=y=22—-7=15in. < 4 x 7 = 28 in. Therefore, b, = 16 + 2 x 15 = 46 in., and
the T-section is shown in Fig. 17.7¢. Determine the centroid of the section by taking moments
about the top of the flange:

Area of flange = 7 x 46 = 322 in.?
Area of web = 16 x 15 = 240 in.?
Total area = 562 in.”
(322 x 3.5) 4+ 240 x (7 +7.5) = 562y
y = 8.201in.

I = [%(7)3 +322 % (4.7)2]

12

The moment of inertia of the slab in the long direction is [ = (bh*)/12, where b = 20 ft and
h =7 in.

3
+ [ U 4240075~ 1.2)2] = 22453 in.”

;o (20 x 12)(7)*
I 12
El, 22453

ari(in the long direction} = T 5860 3.27
B

— 6860 in.*

4, The moment of inertia of the slab in the short direction is I; = (bh*)/12 where b = 24 ft and

5.

7.

= 7 in.
I = % = 8232 int
El 22,453
%= Elf =g 2
a fr 18 the average of sy and oy
i = 3.27 42—2.72 —130

-9 1233

= = =1.22
(20 — %) 18.33

Determine A, using Eq. 17.1 (§, = 22.33 ft);

B (2233x12)08+0.005x60) _
T 364+ (5 x 1.22)[3.0-02] T T
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However, this value must not be less than & given by Eq. 17.2 (as,, > 2.0):
29438
7364 9(1.22)

Also, Anin = 3.5 in. Therefore, & = 6.27 in. controls. A slab thickness of 6.5 in, or 7.0 in. may
be adopted. Note that in most practical cases, Eq. 17.2 controls.

=6.27 in.

17.7 SHEAR STRENGTH OF SLABS

In a two-way floor system, the slab must have adequate thickness to resist both bending moments
and shear forces at the critical sections. To investigate the shear capacity of two-way slabs, the
following cases should be considered.

17.7.1 Two-Way Slabs Supported on Beams

In two-way slabs supported on beams, the critical sections are at a distance d from the face of
the supporting beams, and the shear capacity of each section is ¢V, = ¢(2A/]Tgbd). When the
supporting beams are stiff and are capable of transmitting floor loads to the columns, they are
assumed to carry loads acting on floor areas bounded by 45° lines drawn from the corners, as
shown in Fig. 17.8. The loads on the trapezoidal areas will be carried by the long beams AB
and CD, whereas the loads on the triangular areas will be carried by the short beams AC and
BD. The shear per unit width of slab is highest between E and F in both directions, and V, =
w, (12/2), where w, is the uniform factored load per unit area.

1

Figure 17.8 Areas supported by beams in two-way slab floor system.
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If no shear reinforcement is provided, the shearing force at a distance d from the face of
the beam, V,q, must be equal to

Vad < ¢V, < $(21/fIbd),

I
Vud=wu(§2—d).

17.7.2 Two-Way Slabs Without Beams

where

In flat plates and flat slabs, beams are not provided, and the slabs are directly supported by
columns. In such slabs, two types of shear stresses must be investigated; the first is one-way
shear, or beam shear. The critical sections are taken at a distance d from the face of the column,
and the slab is considered as a wide beam spanning between supports, as in the case of one-way
beams. The shear capacity of the concrete section is ¢V, = ¢(2A\/T;bd). The second type of
shear to be studied is two-way, or punching, shear, as was previously discussed in the design of
footings. Shear failure occurs along a truncated cone or pyramid around the column. The critical
section is located at a distance d/2 from the face of the column, column capital, or drop panel
(Fig. 17.9a). If shear reinforcement is not provided, the shear strength of concrete is the smaller
of Eq. 17.5 and 17.6:

PV, = (2 + %) M/ flbod < 40/ f1bod (17.5)

where

b, = perimeter of the critical section
B = ratio of the long side of column (or loaded area) to the short side

SV, = ¢ (O;jd + 2) A/ Fbod (17.6)
where «; is 40 for interior columns, 30 for edge columns, and 20 for corner columns. When
shear reinforcement is provided, the shear strength should not exceed

¢V, < 96,/ fb,d) (17.7)

17.7.3 Shear Reinforcement in Two-Way Slabs Without Beams

In flat-slab and flat-plate floor systems, the thickness of the slab selected may not be adequate
to resist the applied shear stresses. In this case, either the slab thickness must be increased or
shear reinforcement must be provided. The ACI Code allows the use of shear reinforcement by
shearheads and anchored bars or wires.

Shearheads consist of steel I-shapes or channel shapes welded into four cross-arms and
placed in the slabs above the column (Fig. 17.9¢, d). Shearhead designs do not apply to exterior
columns, where large torsional and bending moments must be transferred between slab and
column. The ACI Code, Section 11.11.4.8, indicates that on the critical section the nominal
shear strength, V,, should not exceed 4,/ fb,d, but if shearhead reinforcement is provided, V,,
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should not exceed 7./f/b,d. To determine the size of the shearhead, the ACI Code, Section
11.11.4.8, gives the following limitations:

1. The ratio a, between the stiffness of shearhead arm, E;7, and that of the surrounding
composite cracked section of width, ¢; + d, must not be less than 0.15.

2. The compression flange of the steel shape must be located within 0.134 of the compression
surface of the slab.

3. The depth of the steel shape must not exceed 70 times the web thickness.
4. The plastic moment capacity, M, of each arm of the shearhead is computed by

oM, = ;,—; [ +a (- 5)] (ACI Code, Eq. 1137 (17.8)

where

¢ =09

V, = factored shear force around the periphery of the column face

n = number of arms

h, = depth of the shearhead

I, = length of the shearhead measured from the centerline of the column.

5. The critical slab section for shear must cross each shearhead arm at a distance equal to (3/4)
({, — ¢1/2) from the column face to the end of the shearhead arm, as shown in Fig. 17.9¢.
The critical section must have a minimum perimeter, b,, but it should not be closer than
d/2 from the face of the column.

6. The shearhead is considered to contribute a moment resistance, M,, to each slab column
strip as follows:

¢
M, = 23% v, (z,, — ?‘) (ACI Code, Eq. 11.38) (17.9)
n

but it should not be more than the smallest of 30% of the factored moment required in the

column strip or the change in the column strip moment over the length /, or M, given in

Eq. 17.8.

The use of anchored bent bars or wires is permitted by the ACI Code, Section 11.11.3. The
bars are placed on top of the column, and the possible artangements are shown in Fig. 17.9e.
When bars or wires are used as shear reinforcement, the nominal shear strength is

Avfyd
N

Vo = Vo + Vs = QA fDbod + (17.10)

where A, is the total stirrup bar area and b, is the length of the critical section of two-way
shear at a distance d/2 from the face of the column. The nominal shear strength, V,,, should not
exceed 6\/-f_c’bod .

The use of shear reinforcement in flat plates reduces the slab thickness and still maintains
the flat ceiling to reduce the cost of formwork. Typical stirrup cages for shear reinforcement
are shown in Fig. 17.9 f. Another type of shear reinforcement consists of studded steel strips
(Fig. 17.9g). The steel strip is positioned with bar chairs and fastened to the formwork, replacing
the stirrup gages. The yield strength of the stud material is specified between 40 and 60 ksi to
achieve complete anchorage at ultimate load.
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17.8 ANALYSIS OF TWO-WAY SLABS BY THE DIRECT DESIGN METHOD

The direct design method is an approximate method established by the ACI Code to determine
the design moments in uniformly loaded two-way slabs. To use this method, some limitations
must be met, as indicated by the ACI Code, Section 13.6.1.

17.8.1 Limitations

1. There must be 2 minimum of three continuous spans in each direction.

2. The panels must be square or rectangular; the ratio of the longer to the shorter span within
a panel must not exceed 2.0.

3. Adjacent spans in each direction must not differ by more than one-third of the longer span.

4. Columns must not be offset by a maximum of 10% of the span length, in the direction of
offset, from either axis between centerlines of successive columns.

§. All loads must be uniform, and the ratio of the unfactored live to unfactored dead load
must not exceed 2.0.

6. If beams are present along all sides, the ratio of the relative stiffness of beams in two
perpendicular directions, a 17 /a r,17 must not be less than 0.2 nor greater than 5.0.

17.8.2 Total Factored Static Moment

If a simply supported beam casries a uniformly distributed load w K/ft, then the maximum pos-
itive bending moment occurs at midspan and equals M, = wl]2/ 8, where /; is the span length.
If the beam is fixed at both ends or continuous with equal negative moments at both ends, then the
total moment M, = M,(positive moment at midspan) + M, (negative moment at support) =
wllz/S (Fig. 17.10). Now if the beam AB carries the load W from a slab that has a width

. , w2
i, perpendicular to I, then W = w,l5, and the total moment is M, = %L, where w, = load

intensity in KAt?. In this expression, the actual moment occurs when /; equals the clear span
between supports A and B. If the clear span is denoted by I, then

2
M, = (wulz)% (ACI Code, Eq. 13.4) (17.11)
Al wK/ft v, B

éHHLHHH%

Z %

7 i

r : 7

" |
A 8 Mo = M, + M, = wii/8

M., M, l

Figure 17.10 Bending moment in a fixed-end beam.
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Figure 17.11 Critical sections for negative design moments. A-A, section for negative
moment at exterior support with bracket.

The clear span, I,, is measured face to face of supports in the direction in which moments
are considered, but not less than 0.65 times the span length from center to center of supports. The
face of the support where the negative moments should be calculated is illustrated in Fig. 17.11.
The length /5 is measured in a direction perpendicular to /;, and equals the direction between
center to center of supports (width of slab). The total moment M, calculated in the long direction
will be referred to here as M, and that in the short direction, as M.

Once the total moment, M,, is calculated in one direction, it is divided into a positive
moment, Mp, and a negative moment, M,, such that M, = M, + M, (Fig. 17.10). Then each
moment, M, and M,, is distributed across the width of the slab between the column and middle
strips, as 1s explained shortly.

17.8.3 Longitudinal Distribution of Moments in Slabs

In a typical interior panel, the total static moment, M, is divided into two moments, the positive
moment, M, at midspan, equal to 0.35M,, and the negative moment, M,, at each support, equal
to 0.65M,, as shown in Fig. 17.12. These values of moment are based on the assumption that the
interior panel is continuous in both directions, with approximately equal spans and loads, so that
the interior joints have no significant rotation. Moreover, the moment values are approximately
the same as those in a fixed-end beam subjected to uniform loading, where the negative moment
at the support is twice the positive moment at midspan. In Fig. 17.12, if I; > {3, then the
distribution of moments in the long and short directions is as follows:
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Figure 17.12 Distribution of moments in an interior panel.

2

l
My = (wuzg)ﬁg—' My =035My My = 0.65My

2 |
My = (wull)"?2 Mps = 0.35My My = 0.65M s

If the magnitudes of the negative moments on opposite sides of an interior support are
different because of unequal span lengths, the ACI Code specifies that the larger moment should
be considered to calculate the required reinforcement.

In an exterior panel, the slab load is applied to the exterior column from one side only,
causing an unbalanced moment and a rotation at the exterior joint. Consequently, there will
be an increase in the positive moment at midspan and in the negative moment at the first
interior support. The magnitude of the rotation of the exterior joint determines the increase in
the moments at midspan and at the interior support. For example, if the exterior edge is a simple
support, as in the case of a slab resting on a wall (Fig. 17.13), the slab moment at the face of the
wall there is 0, the positive moment at midspan can be taken as M, = 0.63M,, and the negative
moment at the intertor support is M, = 0.75 M,. These values satisfy the static equilibrium
equation

1 1
M, =M, + §Mn = 0.63M, + 5(0~75Mo)
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Figure 17.13 Exterior panel.

In a slab-column floor system, there is some restraint at the exterior joint provided by the
flexural stiffness of the slab and by the flexural stiffness of the exterior columns.

According to Section 13.6.3 of the ACI Code, the total static moment M, in an end span
is distributed in different ratios according to Table 17.2 and Fig. 17.14. The moment coefficients
in column 1 for an unrestrained edge are based on the assumption that the ratio of the flexural
stiffness of columns to the combined flexural stiffness of slabs and beams at a joint, o 15 equal
to 0. The coefficients of column 2 are based on the assumption that the ratio a,. is equal to
infinity. The moment coefficients in columns 3, 4, and 5 have been established by analyzing the
slab systems with different geometries and support conditions.

17.8.4 Transverse Distribution of Moments

The longitudinal moment values mentioned in the previous section are for the entire width of
the equivalent building frame. This frame width is the sum of the widths of two half-column
strips and two half-middle strips of two adjacent panels, as shown in Fig. 17.15. The transverse
distribution of the longitudinal moments to the middle and column strips is a function of the
ratios Izﬂl,

Eslpy  beam stiffness

o = = - 17.12
/= Esl,  slab stiffness (17.12)
8 = EaxC torsional rigidity of edge beam section (17.13)
T 2E I " flexural rigidity of a slab of width equal to beam span length ’
Table 17.2 Distribution of Moments in an End Panel
Slab Without Beams
Between Interior
Exterior Edge Slab with Supports
Beams
Fully Between All With Without
Unrestrained Restrained Supports Edge Beam Edge Beam
1) @ 3 @) {5)
Exterior negative factored moment ¢ 0.65 0.16 0.30 0.26
Positive factored moment 0.63 0.35 0.57 0.50 0.52

Interior negative factored moment 0.75 0.65 0.70 0.70 0.70
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Figure 17.14 Distribution of total static moment into negative and positive span
moments.
where
. 0.63x x3
C = torsional constant = Z (1 — ) (_y) (17.14)
y 3

where x and y are the shorter and longer dimension of each rectangular component of the
section. The percentages of each design moment to be distributed to column and middle strips
for interior and exterior panels are given in Tables 17.3 through Table 17.6. In a typical interior
panel, the portion of the design moment that is not assigned to the column strip (Table 17.3)
must be resisted by the corresponding half-middle strips. Linear interpolation of values of l5/;
between 0.5 and 2.0 and of «f i/l between 0 and 1 is permitted by the ACE Code. From
Table 17.3 it can be seen that when no beams are used, as in the case of flat plates or flat slabs,
of, = 0. The final percentage of moments in the column and middle strips as a function of M,
are given in Table 17.4.
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Figure 17.15 Width of the equivalent rigid frame {equal spans in this figure) and
distribution of moments in flat plates, flat slabs, and waffle slabs with no beams.

Table 17.3 Percentage of Longitudinal Moment in Column Strips, Interior Panels (ACI Code,
Section 13.6.4)

Aspect Ratio, 12”1

ag, lafly 0.5 1.0 2.0

Negative moment at interior support 0 75 75 75
>1.0 90 75 45

Positive moment near midspan 0 60 60 60
>1.0 90 75 45

For exterior panels, the portion of the design moment that is not assigned to the column strip
(Table 17.5) must be resisted by the corresponding half-middle strips. Again, linear interpolation
between values shown in Table 17.5 is permitted by the ACI Code, Section 13.6.4.2. When
no beams are used in an exterior panel, as in the case of flat slabs or flat plates with no edge
(spandrel) beam, as, =0,C =0, and 8, = 0. This means that the end column provides the
restraint to the exterior end of the slab. The applicable values of Table 17.5 for this special case

are shown in Table 17.6 and Fig. 17.15.
From Table 17.6 it can be seen that when no edge beam is used at the exterior end of the

slab, B, = 0 and 100% of the design moment is resisted by the column strip. The middle strip
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Table 17.4 Percentage of Moments in Two-Way Interior Slabs Without Beams (ay = 0)

5 nt
= = S —
Total Design Moment = M, = (w,/2)} ( B ) i =1l
Negative Moment Positive Moment
Longitudinai moments in one panel —-0.65M, +0.35M,
Column strip 0.75(—0.65M,) = ~0.49M, 0.60(0.35M,) = 0.21M,
Middle strip 0.25(—=0.65M,) = 0.16M, 0.40(0.35M,) = 0.14M,
Table 17.5 Percentage of Longitudinat Moment in Column Strips, Exterior Panels (ACI Code,
Section 13.6.4)
Aspect Ratio >/
o, s /14 B 0.5 1.0 2.0
Negative moment at exterior support 0 ¢ 100 100 100
>25 75 75 75
>1.0 ¢ 100 100 100
>2.5 90 75 45
Positive moment near midspan 0 60 60 60
>1.0 90 75 45
Negative moment at interior support 0 75 75 75
>1.0 90 75 45

Table 17.6 Percentage of Longitudinal Moment in Column and Middle Strips, Exterior Panels (For All
Ratios of fo/h), Given oy, = 8 =0

Final Moment as a

Column Middle Function of M, and oec
% Strip Strip {Column Strip)
, . F 0.65
Negative moment at exterior support 100 0.26 M, 0 — | (M)
L (14 1/ae0)
- [ 0.28
Positive moment (0.6 x 0.52M,) 60 0.312M, 0.208M, 063 - —— | (M,)
L (I + 1/aec)
. N i 0.10
Negative moment at interior support 75 0.525M, 0.175M, 0.7 — ————— | (M,)
L (1 + 1/aec)

(0.75 x 0.70M,)

will not resist any moment; therefore, minimum steel reinforcement must be provided. The ACI
Code, Section 13.6.4.3, specifies that when the exterior support is a column or wall extending for
a distance equal to or greater than three-fourths the transverse span length, /5, used to compute
M,, the exterior negative moment is to be uniformly distributed across /3. When beams are
provided along the centerlines of columns, the ACI Code, Section 13.6.5, requires that beams
must be proportioned to resist 85% of the moment in the column strip if ay, (/2/1;) > 1.0. For
values of w s, (I2/11) between 1.0 and 0, the moment assigned to the beam is determined by linear
mterpolation. Beams must also be proportioned to resist additional moments caused by all loads
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applied directly to the beams, including the weight of the projecting beam stem. The portion of
the moment that is not assigned to the beam must be resisted by the slab in the column strip.

17.8.5 ACI Provisions for Effects of Pattern Loadings

In continuous structures, the maximum and minimum bending moments at the critical sections
are obtained by placing the live load in specific patterns to produce the extreme values. Placing
the live load on all spans will not produce either the maximum positive or negative bending
moments. The maximum and minimum moments depend mainly on the following:

1. The ratio of live to dead load. A high ratio will increase the effect of pattern loadings.

2. The ratio of column to beam stiffnesses. A low ratio will increase the effect of pattern
loadings.

3. Pattern loadings. Maximum positive moments within the spans are less affected by pattern
loadings.

To determine the design factored moments in continuous structures, the ACI Code, Section
13.7.6, specifies the following:

1. When the loading pattern is known, the equivalent frame shall be analyzed for that load.

2. When the live load is variable but does not exceed 43 of the dead load, w; < 0.75wp, or
when all the panels is almost loaded simultaneously with the live load, it is permitted to
analyze the frame with full factored live load on the entire slab system.

3. For other loading conditions, it is permitted to assume that the maximum positive factored
moment near a midspan occurs with 0.75 of the full factored live load on the panel and
alternate panels. For the maximum negative factored moment in the slab at a support, it is
permitted to assume that 0.75 of the full factored live load is applied on adjacent panels
only.

4. Factored moments shall not be taken less than the moments occurring with full factored
live load on all continuous panels.

17.8.6 Reinforcement Details

After all the percentages of the static moments in the column and middle strips are determined,
the steel reinforcement can be calculated for the negative and positive moments in each strip,
as was done for beam sections in Chapter 4:

= A 2
M, =4S, (d—5) = Rubd (17.15)
Calculate R, and determine the steel ratio o using the tables in Appendix A or use the following
equation:
pfy
R, = 1 - —— 17.16

where ¢ = 0.9. The steel area is A; = pbd. When the slab thickness limitations, as discussed
in Section 17.4, are met, no compression reinforcement will be required. Fig. 13.3.8 of the ACI
Code indicates the minimum length of reinforcing bars and reinforcement details for slabs without
beams; it is reproduced here as Fig. 17.16. The spacing of bars in the slabs must not exceed
the ACI limits of maximum spacing: 18 in. (450 mm) or twice the slab thickness, whichever is
smaller.
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17.8.7 Modified Stiffness Method for End Spans

In this method, the stiffnesses of the slab end beam and of the exterior column are replaced by
the stiffness of an equivalent column, K. The flexural stiffness of the equivalent column, K.,
can be calculated from the following expression:

LK.
1+ Y K./K,

or K= (17.17)

where

Ke. = flexural stiffness of the equivalent column
K. = flexural stiffness of the actual column
K, = torsional stiffness of the edge beam

The sum of the flexural stiffness of the columns above and below the floor slab can be

taken as follows:
In  Ia2 )
K.=4FE{ — + 17.18
Z ¢ (Lcl Lc2 ( )

where 7., and L. the moment of inertia and length of column above slab level and /., and L.,
= the moment of inertia and length of column below slab level. The torsional stiffness of the
end beam, K, may be calculated as follows:

E.C
K, = Z _ 9EsC (17.19)

where

c; = size of the rectangular or equivalent rectangular column, capital, or bracket
measured on transverse spans on each side of the column

E.s = modulus of elasticity of the slab concrete
C = torsion constant determined from the following expression:

3
c=% (1 - 0.635) (’%) (17.20)

where x is the shorter dimension of each component rectangle and y is the longer dimension of
each component rectangle. In calculating C, the component rectangles of the cross-section must
be taken in such a way as to produce the largest value of C.

The preceding expressions are introduced here and will also be used in Section 17.2,“Equiv-
alent Frame Method.”

If a panel contains a beam parallel to the direction in which moments are being determined,
the torsional stiffness, K;, given in Eq. 17.19 must be replaced by a greater value, K,, computed
as follows:

I

Kta"—'K;XI—S
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where

L3
I, = i—z = moment of inertia of a slab that has a width equal to the full width between

panel centerlines (excluding that portion of the beam stem extending above or
below the slab)

Iy =1, including the portion of the beam stem extending above or below the slab.

Cross-sections of some attached torsional members are shown in Fig. 17.17. Once K, is calcu-
lated, the stiffness ratio, «e., is obtained as follows:

Kec
w — . 17.21
ec Z:(Ks + Kb) ( )
where
4E.. 1
K, = —>2 = flexural stiffness of the slab
4EL]
Ky = ;b ® — flexural stiffness of the beam
1

I, = gross moment of inertia of the longitudinal beam section

The distribution of the total static moment, M,, in an exterior panel is given as a function of
e as follows:

Interior negative factored moment = | 0.75 — L] M,
{1+ 1/aec)
[ 28
Positive factored moment = | 0.63 — 0—] A
1+ 1/aec)
Exterio ative factored moment 065 ] M
r negative =] —
8 T+ /@) ] ¢

These values are shown for a typical exterior panel in Fig. 17.18. These factors take into
consideration the effect of the stiffness of the exterior column as well as the slab end beam
giving adequate distribution of moments.

17.8.8 Summary of the Direct Design Method (DDM)
Case 1. Slabs without beams (flat slabs and flat plates).

1. Check the limitation requirements explained in Section 17.8.1. If limitations are not met,
DDM cannot be used.

2. Determine the minimum slab thickness (%) to control deflection using values in

Table 17.1. Exterior panels without edge beams give the highest An(1,/30 for f, = 60

ksi). It is a common practice to use the same slab depth for all exterior and interior panels.

Calculate the factored loads, W, = 1.2Wp + 1.6W,.

Check the slab thickness, #, as required by one-way and two-way shear. If the slab thick-
ness, k, is not adequate, either increase 4 or provide shear reinforcement.

5. Calculate the total static moment, M,, in both directions (Eq. 17.11).

& o
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Figure 17.17 Cross-sections of some attached torsional members.
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Figure 17.18 Distribution of moments in an exterior panel.

6. Determine the distribution factors for the positive and negative moments in the longitudinal
and transverse directions for each column and middle strip in both interior and exterior
panels as follows:

a. For interior panels, use the moment factors given in Table 17.4 or Fig. 17.15.

b. For exterior panels without edge beams, the panel moment factors are given in Table 17.2
or Fig. 17.14 (Case 5). For the distribution of moments in the transverse direction, use
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7.

8.

9.

Table 17.6 or Fig. 17.15 for column-strip ratios. The middle strip will resist the portion
of the moment that is not assigned to the column strip.

¢. For exterior panels with edge beams, the panel moment factors are given in Table 17.2
or Fig. 17.14 (Case 4). For the distribution of moments in the transverse direction, use
Table 17.5 for the column strip. The middle strip will resist the balance of the panel
moment.

Determine the steel reinforcement for all critical sections of the column and middle strips

and extend the bars throughout the slab according to Fig. 17.16.

Compute the unbalanced moment and check if transfer of unbalanced moment by flexure

is adequate. If not, determine the additional reinforcement required in the critical width.

(Refer to Section 17.10.)

Check if transfer of the unbalanced moment by shear is adequate. If not, increase A or

provide shear reinforcement. (Refer to Section 17.10.)

Case 2. Slabs with interior and exterior beams.

D b

W

[ <N

A

.

»

Check the limitation requirements as explained in Section 17.8.1.

Determine the minimum slab thickness () to control deflection using Egs. 17.1 through
17.3. In most cases, Eq. 17.2 controls. Equation 17.1 should be calculated first, as shown
in Example 17.1.

Calculate the factored load, W,.

Check the slab thickness, %, according to one-way and two-way shear requirements. In
general, shear is not critical for slabs supported on beams.

Calculate the total static moment, M, in both directions (Eq. 17.17).

Determine the distribution factors for the positive and negative moments in the longitudinal
and transverse directions for each column and middle strips in both interior and exterior
panels as follows:

a. For interior panels, use moment factors in Fig. 17.14 (Case 3) or Fig. 17.12. For the
distribution of moments in the transverse direction, use Table 17.3 for column strips.
The middle strips will resist the portion of the moments not assigned to the column
strips. Calculate «; from Eq. 17.12.

b. For exterior panels, use moment factors in Table 17.2 or Fig. 17.14 (Case 3). For the
distribution of moments in the transverse direction, use Table 17.5 for the column strip.
The middle strip will resist the balance of the panel moment.

c. In both cases (a) and (b), the beams must resist 85% of the moment in the column strip
when a4, (1/11) > 1.0, whereas the ratio varies between 85% and 0% when ay, (12/ 1)
varies between 1.0 and 0.

Determine the steel reinforcement for all critical sections in the column strip, beam, and
middle strip; then extend the bars throughout the slab according to Fig. 17.16.

Compute the unbalanced moment and then check the transfer of moment by flexure and
shear. (Refer to Section 17.10.)

Example 17.3

Using the direct design method, design the typical interior flat-plate panel shown in Figs. 17.6 and
17.19. The floor system consists of four panels in each direction with a panel size of 24 by 20 ft. All
panels are supported by 20- by 20-in. columns, 12 ft long. The slab carries a uniform service live
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load of 100 psf and a service dead load that consists of 24 psf of floor finish in addition to the slab
self-weight. Use normal-weight concrete with f. = 4 ksi and f, = 60 ksi.

Solution
1. Determine the minimum slab thickness using Table 17.1 for flat piates. From Example 17.1, a
9-in. slab thickness is adopted.

2. Calculate the factored loads:

9.0
wp = 24 + weight of slab = 24 + kv x 150 = 136.5 psf

wy, = 1.2 x (136.5) + 1.6 x (100) = 323 say, 330 psf

3. Check one- and two-way shears:

a. Check punchmg shear at a distance d/2 from the face of the column (two—way action):
Assummg in. concrete cover and no. 5 bars, then the average d is 9.0 — 0.75 — - = 7.6 in.
and b, = 4(20 + 7.16) = 110 in. (See Fig. 17.19¢).

276 276
V,,=[11:2—(—1§-x = )]xwu_(24x20 5.3) x 0.330 = 156.7 K

75”’ % /4000 x 110 x 7.6 = 158.6 K

PVe = ¢4/ fbod =

which is greater than V,,.

b. Check beam shear at a distance d from the face of the column; average d is 7.6 in. Consider
a 1-ft strip (Fig. 17.194), with the length of the sirip being

x=12——=——=105ft

Vi =w,(1 x105)=0330x1x105=347K

075 x2x1
Ve = (20 Fbd = =

which is greater than V, = 3.47 K. In normal loadings, one-way shear does not control.
4. Calculate the total static moments in the long and short directions. In the long direction,

X V4000 x (12 x 7.6) =8.7K

whiZ 033
My = “82 = == x 20(22.33)? = 411.4 K-ft

In the short direction,

w2
MDS - 8 2

Because /> < I;, the width of half a column strip in the long direction is 0.25 x 20 = 5 ft, and
the width of the middle strip is 20 — 2 x 5 = 10 ft. The width of half the column strip in the
short direction is 5 ft, and the width of the middle strip is 24 — 2 x 5 = 14 ft. To calculate the
effective depth, 4, in each direction, assume that steel bars in the short direction are placed on
top of the bars in the long direction. Therefore, d(long direction) = 9.0 — 0.75 — TG =79 in.
and d (short direction) = 9.0 — 0.75 — % —_ 15—6— = 7.3 in. For practical applications, an average
d =9 — 1.5 = 7.15 in. can be used for both directions.

The design procedure can be conveniently arranged in a table form, as in Tables 17.7
and 17.8.

2=

x 24 x (18.33)% =333 K ft

0.33
8
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Table 17.7 Design of Interior Flat-Plate Panel {Long Direction)

M, =414 K1t
M, = 0.65M, = —267.4 K.t
M, = +0.35M, = +144 K-ft

Column Strip Middie Strip

Long Direction Negative Positive Negative Positive
Moment distribution (%) 75 60 25 40
M, (K-ft) 0.75M, = —201.6 0.6M, = £86.4 0.25M, = —66.8 0.4M, = £57.16
Width of strip b (in.) 120 120 120 120
Effective depth d (in.) 79 79 7.9 7.9

M,
R, = b—;z-(psi) 323 128 107 93
Steel ratio o (%) 0.633 0.262 0.2 0.175
A, = pbd (in.2) 6.00 248 1.92 1.66
Min. A; = 0.0018bk, (in.?) 1.94 1.94 1.94 1.94
Bars selected (Straight) 20 no. 5 10 no. 5 10 no. 4 10 no. 4
Spacing < 2h; = 18in. 6 in. 12 12 12

Table 17.8 Design of Interior Flat-Plate Panel (Short Direction)

M, = 333 K.ft
M, = 0.65M, = —216.5 K-ft
M, = +0.35M, = +116.5 K-ft

GColumn Strip Midklle Strip

Short Direction Negative Pasitive Negative Positive
Moment distribution (%) 75 60 25 40
M, (K-ft) 0.75M, = —1624 0.6M, = £69.9 0.25M, = —54.1 04M, = £46.16
Width of strip b (in.) 120 120 168 168
Effective depth d (in.) 7.3 7.3 7.3 7.3

M
R, = Eg‘g(psi) 305 131 73 62
Steel ratio p (%) 0.60 0.25 0.14 0.12
As = pbd (in?) 523 2.18 1.72 1.46
Min. A; = 0.0018bk; (in.2) 1.94 1.94 272 2.72
Bars selected (Straight) 18 no. 5 10no. 5 14 no. 4 14 no. 4
Spacing < 2h; = 18in. 6.7 12 12 12

The details for the bars selected for this interior slab are shown in Fig. 17.20 using the
staight bar system. Minimum lengths of the bars must meet those shown in Fig. 17.16.
Straight bars and f, = 60 ksi steel bars are more often preferred by contractors.
width of panel 168 12
_— = — =12in
no. of bars 14
occurs at the middle strip in the short direction; this spacing of 12 in. is adequate, because it
is less than 2k, = 18 in. and less than 18 in. specified by the ACI Code. Note that all steel
ratios are less than pp. = 0.018. Thus ¢ = 0.9.

Maximum spacing =
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Figure 17.20 Example 17.3: reinforcement details. For bar length, refer to Fig. 17.16.

Example 174

Using the direct design method, design an exterior flat-plate panel that has the same dimensions,
loads, and concrete and steel strengths given in Example 17.3. No beams are used along the edges

(Fig. 17.21).

Solution
1. Determine the minimum slab thickness using Table 17.1 for flat plates. From Examplel7.1, a
9.0-in. slab thickness is adopted.
2. Calculate factored loads: W, = 330 psf. (See Example 17.3.)
3. Check one- and two-way shear (refer to Example 17.3 and Fig. 17.19).
a. Check punching shear at an interior column, V, = 156.7 < ¢V, = 158.6 K.
b. Check one-way shear: V, =347 K < ¢ V. =87 K.
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Figure 17.21 Example 17.4: distribution of bending moments.
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¢. Check punching shear at the exterior column: d = 7.6 in.

d .
xx20+§=20+¥=23.8 in. = 1.98 ft

y=20+d=204+76=276in. =230 ft
b, =2x+y=752in.

10
Ve = [20 (12 + -ﬁ) - 1.98(2.30)] 033=832K

oV. = ¢4/ flbyd = 1084 K > V,

d. Check punching shear at a corner column: d = 7.6 in.

d
x=y=20+5=23.8in.=1.98ft

b, =x+y=476in.

10 10
Vi = [(10 + E) (12 + —ﬁ) - (1.98)(1.98)] 033 =446 K

¢V, = ¢4/ flb,d =686 K>V,

4, Calculate the total static moments. From Example 17.3,
M, (long direction) = 411.4 K-ft d=179in.
M, (short direction) = 333 K-ft d =73 1n.

The width of the column strip is 120 in., and the width of the middle strip is 168 in.

§5. Calculate the design moments in the long direction: {; = 24 ft. (Refer to Table 17.5 or Fig.
17.135). The distribution of the total moment, M, in the column and middle strips is computed
as follows:

a. Column strip:
Interior negative moment = —0.525M, = —0.525(411.4) = 216 K-ft
Positive moment within span = 0.312M, = 0.312(411.4) = +128.4 K-ft
Exterior negative moment = —0.26M, = —0.26(411.14) = —107 K-ft
b. Middle strip:

Interior negative moment = —=0.175M, = ~0.175 x 4114 = =72 K-ft
Positive moment within span = 0.208M, = 0.208 x 411.4 = +85.6 K -ft
Exterior negative moment = 0

6. Calculate the design moments in the short direction: /; = 20 ft. It will be treated as an inte-
rior panel because it is continuous on both sides. Referring to Table 17.4 or Fig. 17.15, the
distribution of the total moment, M, in the column and middle strips is computed as follows:

a. Column strip:

Negative moment = 0.49M, = —0.49(333) = —163.2 K-ft
Positive moment = +0.21M, = +0.21(333) = +70.0 K-ft
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Table 17.9 Design of Exterior Flat-Plate Panel for Example 17.4 (d = 7.9in.)

Column Strip Middle Strip
Long Direction Exterior Positive Interior Exterior Positive Interior
M, (K.ft) —107.06 +128.4 -216.0 0 185.6 =720
b (in.) 120 120 12¢ 120 120 120
M,
R, = oz (psi) 172 206 346 0 138 116
Steel ratio p (%) 0.33 04 0.682 0 0.262 0.22
A; = pbd 3.11 3.75 6.47 0 2.48 2.10
Min. A; = 0.0018bh; 1.94 1.94 1.94 1.94 1.94 1.94
Bars selected (Straight) 12 no. 5 12 no. 5 22n0. 5 10 no. 4 14 no. 4 14 no. 4
Spacing # 18in. 10 10 5.5 12 8.5 8.5
Short Direction Column Strip Middle Strip
M, (K-ft) —163.2 +70.0 -53.3 +46.6
Width of strip b (in.) 120 120 168 168
d(in.) 7.3 7.3 73 73
M, .
R, = o7 (psi) 306 131 71 63
Steel ratio p (%) 0.6 0.25 0.133 0.12
As = pbd (in.2) 5.26 2.20 1.63 1.47
Min. A, = 0.0018bh, 1.94 1.94 2.72 2.72
Bars selected (Straight) 18 no. 5 8no. 5 14 no. 4 14 no. 4
Spacing 18in. 6.67 15 12 12

b. Middle strip:
Negative moment = —0.16M, = —0.16(333) = —53.3 K ft
Positive moment = +0.14M, = 40.14(333) = +46.6 K-ft

The design procedure can be conveniently arranged in Table 17.9. The details for bars
selected are shown in Fig. 17.22 using the straight-bar system in the long direction. Details
of reinforcement in the short direction will be similar to Fig. 17.20 using the bars chosen in
Table 17.9.

Note that all steel ratios are less than ppax = 0.018. Thus ¢ = 0.9.

Example 17.5
Repeat Example 17.4 using the modified stiffness method. (Similar calculations are needed for the
equivalent frame method, Section 17.12.)

Solution
1. Steps 1 through 4 will be the same as in Example 17.4.
2. Calculate the equivalent column stiffness, Ke:
1 1 1
K. LK K
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Figure 17.22 Example 17.4: reinforcement details (longitudinal direction). For bar
lengths, refer to Fig. 17.16.

It can be assumed that the part of the slab strip between exterior columns acts as a beam resisting
torsion. The section of the slab-beam is 20 in. (width of the column) x 9.0 in. (thickness of
the slab), as shown in Fig. 17.21.

a. Determine the torsional stiffness, X, from Eq. 17.20:

3
c=(1—0.63’ﬁ) "Ty x=9in y=20in.
y

20 3

E E. x 3482
K, = OEC = SE. x = 170E,

3 3
C2 20
fz(z—g> (20)(12)(1—20)(12)

For the two adjacent slabs (on both sides of the column) acting as transverse beams,
K, =2 x 170E, = 340E,

3
C = (1 —0.63 x 3) 9 X2 _ 3482 in.t

b. Calculate the column stiffness, X.; the column height L. = 12 ft
AE.I, 4E, (20)*
K. = = x
L {12 x 12) 12
For two columns above and below the floor slab,
K.=2x370.14E,. = 740.18E,

= 3N4E,
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c. Calculate K :
1 1 1

Ko TA08E, © 340E,
To simplify the calculations, multiply by 1000E,:

1000E, 1000 1000
Ko _740.8+ 340 =4.29 Kec = 233E,

3. Calculate slab stiffness and the ratio oec:

4E€15 . 12h3
K = hs =9 in. 1L, =20ft I, ==—
y i m z 12
4E, (20 x 12)(9.0)*
K; = = .
ST 2ax12) ] 12 202.5E.
Kec
o = (17.21)
LK+ Ky)
Kp = 0 (no beams are provided)
thus
233E, e
“ 7 202.5E.
Let
g=1{1+ L =1+ ! = 1.87
- ae) 115

4. Calculate the design moments in the long direction: {; = 24 ft. The distribution of moments in
one panel is shown in Fig. 17.18. The interior negative moment is

0.10 0.10
My= 1075~ — | My=1{0.75— — } (411.4) = —286.6 K- ft
nt [ Q ] ol ( 187) ( )

The positive moment is

0.28
Mp = [063 - ?] Mo]

0.28
= 63 — —— 4) =197, .
(0 63 1.87) 411.4) =197.6 K-ft

The exterior negative moment is

0.65 0.65
Mpe=—(My) = —— (411.4) = —143.0 K-ft
ne Q ( ol) 1.87 ( )

8. Calculate the distribution of panel moments in the transverse direction to column and middle
strips. The moments My;, M,, and M, are distributed as follows (refer te Table 17.6):

a. The interior moment (My)) = —286.6 K-ft is distributed 75% for the column strip and 25%
for the middle strip.

Column strip = 0.75(—286.6) = —215 K-ft
Middle strip = 0.25(—286.6) = —71.6 K-ft
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b. The positive moment, M, = 197.6 K ft, is distributed 60% for the column strip and 40%
for the middie strip.

Column strip = 0.6(197.6) = 118.5 K.ft
Middle strip = 0.4(197.6) = 79.1 K-ft

¢. The exterior negative moment, M,, = —143 K-ft, is distributed according to Table 17.5:

E.C C
Po=3E1 =2
cty s
The concrete of slab and column are the same.
9.0)3
I, = (20 x 12) ( 12) = 14,580 in.*
2 x 14,580
Ecvlp 1) l2
= =0 — =0 — ={.83
afl Ecsfs &fl ll Z]

From Table 17.5 and by interpolation between B, = 0 (percentage = 100%) and 8, =
2.5 (percentage = 100%) for 8, = 0.1119, the percentage is 99%. The exterior negative
moment in the column strip is 0.99(—143.10) = —142 K-ft and in the middle strip, it is
—1.10 K-ft. It is practical to consider that the column strip carries in this case 100% of My =
—143 K ft.
6. Determine the reinforcement required in the long direction in a table form similar to Example
17.4. Results will vary slightly from those of Table 17.9.
7. Comparison of results between Examples 17.4 and 17.5 shows that the exterior moment in the
column strip (— 143 K-ft) is greater than that calculated in Example 17.4 (— 107 K-ft) by about

34%, whereas the positive moment (£ 118.15) is reduced by about 8% (relative to £ 128.14).
Other values are almost compatible.

Example 17.6

Design an interior panel of the two-way slab floor system shown in Fig. 17.7. The floor consists
of six panels in each direction, with a panel size of 24 by 20 ft. All panels are supported on 20-
by 20-in. columns, 12 ft long. The slabs are supported by beams along the column lines with the
cross-sections shown in the figure. The service live load is to be taken as 100 psf, and the service
dead load consists of 22 psf of fioor finish in addition to the slab weight. Use normal-weight concrete
with f! =3 ksi, f, = 60 ksi, and the direct design method.

Saolution

1. The limitations required by the ACI Code are met. Determine the minimum slab thickness
using Eqs. 17.1 and 17.2. The slab thickness has been already calculated in Example 17.3, and
a 7.0-in. slab can be adopted. Generally, the slab thickness on a floor system is controlled by a
corner panel, as the calculations of zp;, for an exterior panel give greater slab thickness than
for an interior panel.

2. Calculate factored loads:
wp = 22 + weight of slab = 22 + ]7—2 x 150 = 109.5 psf
wy = 1.2(109.5) 4+ 1.6(100) = 292 psf
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3. The shear stresses in the slab are not critical. The critical section is at a distance 4 from the
face of the beam. For a 1-ft width:

Vi, = w, (10 - %beam width — d)

16 6
={0.292{10— —— ) =2.
9(0 2x12 12) 258 K
075 x2x 1 x/3000x12x6

V, = "Nod = -6 3
oV, = ¢ (27 /f)bd 1500 63 K>V

4. Calculate the total static moments in the long and short directions:

0.292
My = %iz(z,,l)z = 79(20)(22.33)2 = 364.0 Kft

0.292
My = %iz,(zﬂ)z = T(24)(18.33)2 = 294.3 K-ft
5. Calculate the design moments in the long direction: I; = 24 ft.

a. Distribution of moments in one panel:

Negative moment (M) = 0.65M, = 0.65 x 364 = —236.6 K-ft
Positive moment (M) = 0.35M,) = 0.35 x 364 = 127.4 K-fi

b. Distributions of panel moments in the transverse direction to the beam, column, and middle
strips are as follows:

! 20 El
f == 083 af =a;= Elj = 3.27 (from Example 17.2)
17

o E =327x083=271>1.0

¢. Distribute the negative moment, M,. The portion of the interior negative moment to be
resisted by the column strip is obtained from Table 17.3 by interpolation and is equal to
80% (for I/} = 0.183 and «f, (I/) > 1.0).

Column strip = 0.18M, = 0.18 x 236.16 = —189.13 K fi
Middle strip = 0.12M, = 0.12 x 236.16 = —47.13 Kft

Because a4, (I2/11) > 1.0, the ACI Code, Section 13.6.5, indicates that 85% of the moment
in the column strip is assigned to the beam and the balance of 15% is assigned to the slab
in the column strip.

Beam = 0.85 x 189.3 = —160.9 K-ft
Column strip = 0.15 x 189.3 = —-28.4 K-ft
Middle strip = —47.3 K-ft

d. Distribute the positive moment, M,. The portion of the interior positive moment to be
resisted by the column strip is obtained from Table 17.3 by interpolation and is equal to
80% (for I,/1| = 0.83 and wy (1, /1) > 1.0).

Column strip = 0.8M, = 0.8 x 127.4 = +101.9 K-ft
Middle strip = 0.2M, = 0.2 x 127.4 = +25.5 K-t
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Since a5 (f2/11) > 1.0, 85% of the moment in the column strip is assigned to the beam and
the balance of 15% is assigned to the slab in the column strip:

Beam = 0.85 x 101.9 = 4-86.6 K ft
Column strip = 0.15 x 101.9 = +15.3 Kft
Middle strip = +25.5 K.ft

Moment details are shown in Fig. 17.23.

6. Calculate the design moment in the short direction: span = 20 ft. The procedure is similar to
step 5.

Negative moment (M,) = 0.65M;; = 0.65 x 294.3 = —191.3 K-ft
Positive moment (M) = 0.35My; = 0.35 x 294.3 = +103.0 K-t

Mornents in: .
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' I
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(10t width) 153
1
1 midklle ship -47.3/2 -42.3/2
(5-ft width) | +255/2 |
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N L )l’ I
o . . . .
2 » c .
2 £ ! < .
% S £ 10
€ 8 8 } middie ship l l
omi e ] _ -
oo o e i ~47.3/2 +26.5/2 ~47.3/2 5 T
e L S f-—l1 o
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Figure 17.23 Example 17.6: interior slab with beams. All moments are in K-ft.
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Distribution of M, and M, to beam, column, and middle strips:

h 24 El
ﬁ =55 =12 ep=a= E—li’ =272 (from Example 17.2)

!
afl-lﬁ =272x12=326> 10
1

The percentages of the column strip negative and positive moments are obtained from Table 17.3
by interpolation. (For I3/; = 1.12 and @y, ({2/!)) > 1.0, the percentage is 69%.)
Column strip negative moment = 0.69M, = 0.69 x 191.3 = —132 Kft
Middle strip negative moment = 0.31M, = 0.31 x 191.3 = =59.3 K-ft
Since ey, (I2/4) > 1.0, 85% of — 132 K-ft is assigned to the beam. Therefore,
Beam negative moment = 0.85 x 132 = —112.2 K.-ft
Column strip negative moment = 0,15 x 132 = —19.8 K ft
Beam positive moment = (0.85)(0.69 x 103.0) = +60.4 K-ft
Column strip positive moment = (0.15)(0.69 x 103.0) = +10.7 K.ft
Middle strip positive moment = (1 — 0.169)(103.10) = £31.19 K-ft

7. The steel reinforcement required and number of bars are shown in Table 17.10. Note all steel
ratios are less than ppax = 0.0135. Thus, ¢ = 0.9.

Example 17.7

Using the direct design method, determine the negative and positive moments required for the design
of the exterior panel (no. 2) of the two-way slab system with beams shown in Fig. 17.7. Use the
loads and the data given in Example 17.6.

Solution
1. Limitations required by the ACI Code are satisfied in this problem. Determine the minimum
slab thickness, h;, using Eqs. 17.1 and 17.2 and the following steps: Assume kg = 7.10 in.
The sections of the interior and exterior beams are shown in Fig. 17.7. Note that the extension
of the slab on each side of the beam x = y = 15 in.
2. a. The moments of inertia for the interior beams and slabs were calculated earlier in
Example 17.2:

I,(in both directions) = 22,453 in.*
I;(in the long direction) = 6860 in*
I;(in the short direction) = 8232 in.*
b. Calculate 7, and /; for the edge beam and end slab.

I (edge beam) = [%{7)3 + (27 x 7)(5.37)2] + [g(lsﬁ + (12 x 15)(5.63)2]

= 15,302 in.?

Calculate I; for the end strip parallel to the edge beam, which has a width = %ft+
3 column width = 12+ 13 = 12.83 ft.

(12.83 x 2)

B (7)° = 4401 in*

I;(end slab) =
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Table 17.10 Design of an Interior Two-Way Slab with Beams

l.ong Diraction
Column Strip Middle Strip
M, (KAt -28.14 +15.13 —47.13 +25.15
Width of strip (in.) 120 120 120 120
Effective depth (in.) 6.0 6.0 6.0 6.0
R, = %(psi) 79 43 132 71
Steel ratio p 0.0016 Low 0.0026 0.0015
A; = phd (in.?) 1.15 Low 1.87 1.08
Min. A, = 0.10018bk, (in.2) 1.52 1.52 1.52 1.52
Selected bars 8 no. 4 8 no. 4 10 no. 4 8 no. 4
Shonrt Direction
Column Strip Middle Strip
M, (K-ft) —19.18 +10.17 —-59.13 +31.19
Width of strip (in.} 120 120 168 168
Effective depth (in.) 55 55 55 55
M
R, = Ba%(psi) 65 35 196 105
Steel ratio o Low Low 0.0039 0.002
Ay = pbd (in%) Low Low 3.60 1.85
Min. A; = 0.0018bh, (in.2) 1.52 1.52 2.10 2.10
Selected bars 8 no. 4 8 no. 4 18 no. 4 10 no. 4
3. a. Calculate aplay = EL/EL).
22,453
1 direction) = —— =3,
a;(long direction) €860 3.27
L 22,453
o (short direction) = <73 = 2.72
15,302
dge be = =34
o (edge beam) 4401 348
3274272 x2+ 348
Averagea = a5y = L 4X L =3.05
b. B = ration of long to short clear span.
22.33
1833 = 1.22

¢ Caloulato h: (22.33 x 12)(0.8 + 0.005 x 60)
33 x 12)(0.8 + 0.005 x
Min. h, = =5.52in.
s = T (5 % 1.29[3.05 — 0.2] m

but this value must not be ess than
) 294.756 .
Min. ks = m = 6,30 in. (COHtrOlS)

Use Ay = 7 in. > 3.15 in. (minimum code limitations).
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Calculate factored loads:
w, = 292 psf (from Example 17.6)
Calculate total static moments:
Mg = 364.0 K-ft M, = 294.3 K-ft (from previous example)

Calculate the design moments in the short direction (span = 20 fi): Becavse the slab is con-
tinuous in this direction, the moments are the same as those calculated in Example 17.6 and
shown in Fig. 17.23 for an interior panel.

Calculate the moments in one panel using the coefficients given in Table 17.2 or Fig. 17.14
{Case 3):

Interior negative moment (M) = 0.7M, = 0.7 x 364 = —254.8 K-ft
Positive moment within span (M,) = 0.57M, = 0.57 x 364 = +207.5 K ft
Exterior negtive moment {Mpe} = 0.16M, = 0.16 x 364 = —58.2 K.t

Note: If the modified stiffness method is used, then C = 9528, K; = 1520, K. = 370E., K,
=312E., K; = 95E,, K. = 498E, and a. = 1.22. The interior negative moment becomes
—253.13 K-ft (same as before). The positive moment becomes —173.19 K-ft (16% decrease)
and the exterior moment becomes —128.16 K-ft (220% increase).

Distribute the panel moments to beam, column, and middle strips:
i 20
f_l = X =0.83 af =a;=3.27
15)

Offlg =327x083=271>1.0

Calculate C: 3
X\ x’y
C= 1-0.63-]—
> ( y) 3
Divide the section of the edge beam into two rectangles in such a way as to obtatn maximum

C. Use for a beam section 12 by 22 in., x; = 12 in,, y; = 22 in., and a slab section 7 by 15
in., x3 = 7 in,, and y2 = 15 in.

12\ /122 x 22 7 73 x 15
e (1-06x 2) (Z22) 4 (1-0a 5) (222)

= 9528 in.*
g — EnC 9528
" T 2E.l, 2 x 6860

a. Distribute the interior negative moment, M,,;: Referring to Table 17.5 and by interpolation,
the percentage of moment assigned to the column strip (for [,/l; = 0.83 and af{3/{( > 1.0
is 80%.

= 0.69

Column strip = 0.8 x 254.8 = —203.8 K/ft
Middle strip = 0.2 x 254.8 = —51.0 K-ft

Because a5y [/l > 1.0, 85% of the moment in the column strip is assigned to the beam.
Therefore,

Beam = (.85 x 203.8 = —173.3 K-ft
Column strip = 0.15 x 203.18 = —30.6 K ft
Middle strip = —51.0 K-ft

et o ikt s
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b. Distribute the positive moment, M ,: Referring to Table 17.5 and by interpolation, the per-
centage of moment assigned to the column strip is 80% (85% of this value is assigned to
the beam). Therefore,

Beam = (0.85)(0.8 x 207.5) = +141.1 K.t
Column strip = (0.15)(0.8 x 207.5) = 24.9 K-ft
Middie strip = 0.2 x 207.5 = +41.5 K-t

¢. Distribute the exterior negative moment, Mp.: Referring to Table 17.5 and by interpolation,
the percentage of moment assigned 1o the column strip (for /) = 0.83, ayy b/l > 1.0,
and B; = 0.69) is 94%, and 85% of the moment is assigned to the beam. Therefore,

Beam = (0.85)(0.94 x 58.2) = —46.5 K ft
Column strip = (6.15)(0.94 x 58.2) = —8.2 K-ft
Middle strip = 0.06 x 58.2 = -35 K ft

17.9 DESIGN MOMENTS IN COLUMNS

When the analysis of the equivalent frames is carried out by the direct design method, the
moments in columns due to the unbalanced loads on adjacent panels are obtained from the
following equation, which is specified by the ACI Code, Section 13.6.9:

M, = 0.07[(wa + 0.5w)hiZ — wily ()] (17.22a)
If the modified stiffness method using K¢ and ¢ is used, then the moment M, is computed
as follows:
0.08 0.5w)lh? — whi,(11)?
w, = 2O81wa + 0.5w) Za 2(ln)’] (17.226)
()
Qe
where
wg and w; = factored dead and live loads on the longer span
wy; = factored dead load on the shorter span
I, and I, = length of the longer and shorter spans, respectively
Ko
O = —=———— 17.21
T Y (K + K») (172D

The moment in Eq. 17.22 should be distributed between the columns above and below the slab
at the joint in proportion to their flexural stiffnesses (Fig. 17.24). For equal spans !, =) and

=1,

M, = 0.07(0.5wl21?) (17.23a)

_0.08(0.5whl2)

M, = 0
(1+2)
Oec

(17.23b)
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Figure 17.25 Exterior column loading.

The development of these eqguations is based on the assumption that half the live load acts on
the longer span, whereas the dead load acts on both spans. Equation 17.22 can also be applied
to an exterior column by assuming the shorter span length 1s 0 (Fig. 17.25).

17.10 TRANSFER OF UNBALANCED MOMENTS TO COLUMNS

17.10.1 Transfer of Moments

In the analysis of an equivalent frame in a building, moments develop at the slab-column joints
due to lateral loads, such as wind, earthquakes, or unbalanced gravity loads, causing unequal
moments in the slab on opposite sides of columns. A fraction of the unbalanced moment in
the slabs must be transferred to the columns by flexure, and the balance must be transferred
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by vertical shear acting on the critical sections for punching shear. Approximately 60% of the
moment transferred to both ends of the column at a joint is transferred by flexure, and the
remaining 40% is transferred by eccentric shear (or torque) at the section located at d/2 from
the face of the column {14,15). The ACI Code, Section 13.5.3, states that the fraction of the
unbalanced moment transferred by flexure My at a slab-column connection is determined as
follows (ACI Eq. 13.1):

My =yrM, (17.24)

1
yr= = ! (17.25)

14+ 2 joi+d 1+(%) b
3V oo+ d 3/ Vb

and the moment transferred by shear is
My=(0—-y)M, =M, — M; (17.26)

where ¢; and ¢, are the lengths of the two sides of a rectangular or equivalent rectangular
column, b; = (¢ + d), and by = (¢c2 + d). When ¢; = ¢2, My = 0.6M,,, and M, = 04M,.

17.10.2 Concentration of Reinforcement Over the Column

For a direct transfer of moment to the column, it is necessary to concentrate part of the steel
reinforcement in the column strip within a specified width over the column. The part of the
moment transferred by flexure, My, is considered acting through a slab width equal to the
transverse column width ¢; plus 1.15k; on each side of the column or to the width (c; +
3h,) (ACI Code, Section 13.5.3). Reinforcement can be concentrated over the column by closer
spacing of bars or the use of additional reinforcement.

17.10.3 Shear Stresses Due to M,

The shear stresses produced by the portion of the unbalanced moment, 3,, must be combined
with the shear stresses produced by the shearing force, V,, due to vertical loads. Both shear
stresses are assumed acting around a periphery plane located at a distance d/2 from the face of
the column [16], as shown in Fig. 17.26. The equation for computing the shear stresses is

V. M,C
= — = 17.27
V1,2 A 7. ( )

where

A, = area of critical section around the column

J. = polar moment of inertia of the areas parallel to the applied moment in addition to
that of the end area about the centroidal axis of the critical section

For an interior column,
A, =2d(x +y) (17.28)

and

(x—3 + x2 )+f‘~i—3- (17.29)
3 YT '
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Figure 17.26 Shear stresses due to V; and M.

For an exterior column,
A.=dQ2x+y) (17.30)

and

2dx3 a’
Jo = Tx — @x + y)dx? + f~6- (17.31)

where x, x), and y are as shown in Fig. 17.26. The maximum shear stress, v; = V, /A, +
M,C/J., must be less than ¢(4,/ f/); otherwise, shear reinforcement should be provided.
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Example 17.8
Determine the moments at the exterior and interior columns in the long direction of the flat plate in
Example 17.4.

Solution
1. Find the exterior column moment. From Examples 17.4 and 17.5,

wg = (136.5)(1.2) = 0.16 ksf
0.5w; = 0.5 x (1.6 x 100) = 80psf
1
12=!§=20 ft l,,=£:,=22.33 ft (l+—) = 1.87
Uec

The unbalanced moment to be transferred to the exterior column using Eq. 17.22b is

M, = %[(0.16 + 0.08)(20)(22.33)> — 0] = 102 K ft

If Eq. 17.22a is used, M, = 168 K-ft, which is a conservative value.
2. At an interior support, the slab stiffness on both sides of the column must be used to com-

pute oec:
Kec
Qo = = 17.21
€C E(Ks + Kb) ( )
From Example 17.5, K, = 233E,, K, = 202.5E,, and X; = 0. Therefore,
233E,
= ——— =038
% = 33202 5E,
1 1
1+—}=14— =27
( + a,c) * 0.58 2
From Eq. 17.22b, the unbalanced moment at an interior support is
0.08
M, = 375 [(0.16 + 0.08)(20)(22.33)* — 0.16(20)(22.33)*] = 23 K-ft

If Eq. 17.22a is used, M,, = 42 K-ft, which is a conservative value.

Example 17.9

For the flat plate in Example 17.4, calculate the shear stresses in the slab at the critical sections due to
unbalanced moments and shearing forces at an interior and exterior column. Check the concentration
of reinforcement and torsional requirements at the exterior column. Use f, = 4 ksi and f, = 60 ksi.

Solution

1. The unbalanced moment at the interior support is M, = 20 K -ft (Example 17.8), where y y =
0.6 (becavse ¢; = ¢ = 20 in.). The moment te be transferred by flexure is

My=y;M, =06 x23=138 Kt
The moment to be transferred by shear is
M,=23-138=92Kft

Alternatively, moments calculated from Eq. 17.22a may be used producing higher shear stresses.
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Critical section Shear strasses
for shear

Figure 17.27 Example 17.9: shear stresses at interior column due to unbalanced
moment.

Using d = 7.9 in. (Example 17.4),
27.9\*
vV, =033 [20 x 24 — (1—29) ] = 156.6 K

From Fig. 17.27,
A, =4(27.9)(7.9) = 882 in.

d (x} ” xd3
Jo=—1—= - —
¢ 2(3+xY)+ 3

79 [@19°
2 3
N 156,600  9.2(12,000)(27.9/2)
X882 114,670
=178 + 13 = 191 psi
Umin = 178 — 13 = 165 psi
Allowable v, is ¢4,/f! = 0.75 x 4 /4000 = 190 psi > 190 psi
2. For the exterior column, the unbalanced moment to be transferred by flexure M ¢ at a slabcolumn

joint is equal to y s M,,, where M, = 102 K-ft. Note that ¢| = ¢; = 20 in,, d = 7.9 in. in the
longitudinal direction, and y s = 0.6 for square columns.

My =0.6(102) = 61.2 KAt

+ (27.9)2(27.9)] o+ 3—7(;'?- (7.9 = 114,670 in*

The moment to be transferred by shear is

M,=M,—M; =102 -61.2 =40.8 K-t

3. For transfer by shear at exterior column, the critical section is located at a distance d/2 from
the face of the column (Fig. 17.28).

W, = 330 psf

2395 279
Ve =0.33 (20 x 12.83 — BTR x W) =83.1K



17.10 Transfer of Unbalanced Moments to Columns 637

20" x 20"
column 6.35"
X =76
/2 = 3.95" / /‘
e 10" »talonfonL o
———r e —4

il

3/
42

_ 4
‘ 10" — et f— 12—t

N\

e —1283— PN
¢ Column
T
]
68 psi " | T
209 psi R
68 209 10" > F- r Section
X =18
6.38"

Shear stresses

Figure 17.28 Example 17.9: shear stresses at exterior column due to unbalanced
moment.

Locate the centroid of the critical section by taking moments about AB:

2 (23.95 x @) = (2 x 23.95 +27.9)x,
Therefore, x; = 7.6 in. The area of the critical section A, is 2(23.95 x 7.9) + (279 x 7.9) =
599 in.2 Calculate J. = I, + I, for the two equal areas (7.19 x 23.195) with sides parallel to

the direction of moment and the area (7.19 x 27.19) perpendicular to the direction of moment,
all about the axis through CD.

bR,

3 2
=2 [7.9 (2335) + (7.9 x 23.95) (%95 - ?,6) }

+2 [2‘3159—5 (7.9)3] +1(27.9 x 7.9)(7.6)} = 52.760 in.*
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or by using Eq. 17.31 for an exterior column. Calculate the maximum and minimum nominal

shear stresses using Eq. 17.27:
\7 " M,c _ 83,100 + 40.2(12,000)(7.6)

Vmas = T T 599 52,760
Umin = 68 psi

Allowable v, = ¢4,/ f/ = 0.75 x 4+/4000 = 190 psi.

= 209 psi

Shear stress is greater than the allowable v., so increase the slab thickness or use shear
reinforcement.

. Check the concentration of reinforcement at the exterior column; that is, check that the flexural

capacity of the section is adequate to transfer the negative moment into the exterior column.
The critical area of the slab extends 1.5k, on either side of the column, giving an area (20 +
3 x 9) = 47 in. wide and 9 in. deep. The total moment in the 120-in.-wide column strip is
107 K ft, as calculated in Example 17.4 (step 5). The moment in a width, ¢; + 3k, = 47 in,,
is equal to 107(;5) = 41.9 Kft.

If equal spacing in the column strip is used, then the additional reinforcement within the
47-in. width will be needed for a moment equal to My — 41.9 = 66 — 41.9 = 24.]1 K-ft.
The required A; = 0.73 in.2 and four no. 4 bars (A; = 0.8 in.2) may be used. An alternative
solution is to arrange the reinforcement within the column strip to increase the reinforcement
within a width of 47 in. The amount of steel needed within this width should be enough
to resist a moment of 0.6 times the negative moment in the column strip, or 0.6 x 107 =
64.2 Kt

A; = La assume «a = 1.0 in.
#(¢-3)
64.2(12) . 2
$ = 0.0 x 60(7.9 — 0.5) "
A 1.93 x 60
Check:a = s/y = X =0.73 in.

0.85fb  0.85 x4 x 47

Use 10 no. 4 bars within a width 47 in. divided equally at both sides from the center of the
column (Fig. 17.29). Additional reinforcement of four no. 4 bars, as indicated before, provides
a better solution.

4 1’ i
t—— 20—
%
Cs+ 3hy= 47" 20" to]g ggrs “
%
1 4 Y

Figure 17.29 Example 17.9: concentration of reinforcement within exterior coiumn
strip.
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S. Torque on slab: The torque from both sides of the exterior column is equal to 40% of the
column strip moment.

T, =0.4(107) =428 K ft
. 42.8 .
Torque on each side : - = 21.4 X-ft = 257 K-in.
A slab section of width equal to the column width will be assumed to resist the torsional

stresses: .
T. = §vm z x3_v

where x = 9 in. and y = 20 in. The critical section is at a distance d from the face of the
column (Fig. 17.30). Assuming that the torque varies in a parabolic curve to the center of the
slab, then the torque at a distance d is

140 - 7.9
140

For torsional strength of concrete, A, = 9 x 20 = 180 in., Pep = 2(9 + 20) = 58 in. By Eq.
15.19, ¢Tp = 0.75(4)+/4000(180)2/58 = 106 K-in. T, = 106/4 = 26.5 K-in. < T,.
Torsional reinforcement is needed. The required closed stirrups and the additional longitudinal
bars are determined as explained in Chapter 15. The final section is shown in Fig. 17.30. It
is advisable to provide an edge beam between the exterior columns to increase the torsional
stiffness of the slab,

2
T, =257 ( ) = 229 K-in.

Example 17.10

Determine the shear reinforcement required for an interior flat plate panel considering the following:
Punching shear is V,, = 195 K, slab thickness = 9 in., d = 7.5 in,, f! =4 ksi, f, = 60 ksi, and
column size is 20 x 20 in.

Solution
1. Determine ¢V, = ¢4\/7C’b0d for two-way shear,

b, =420+ d) =420+ 7.5) = 110 in.
oV, = 0.75(4)v/4000(110)(7.5) = 156.3 K

Because V, = 195 K > ¢ V., shear reinforcement is required.

2. Maximum allowable ¢ V, using shear reinforcement is equal to ¢6./f/b,d = 1.5(¢V,) =
234.5 K Because ¢ V,, > V,,, shear reinforcement can be used.

1 1%
2K6 246 246 11,68 .
9.}0“
\,4@4,, N |
] 2ok 1 4

7.9" —=] |-~

- 140°

Figure 17.30 Example 17.9: reinforcement in edge of slab to resist torque.
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Figure 17,31 Example 17.10: Shear reinforcement no. 3 at 3.5in.

3. Shear reinforcement may consist of reinforcing bars, structural steel sections such as I-beams,
or special large-head studs welded to a steel strip. In this example, an inexpensive solution
using normal shear reinforcement will be adopted. See Fig. 17.9 f. Shear reinforcement must
be provided on the four sides of the interior column (or three sides of an exterior column) for
a distance of d + a. See Fig. 17.31. The distance a is determined by equating ¢ V. = V, at
section b,, indicated by the dashed line, and assuming ¢V, = ¢24,/f/b,d.

b, = 4(c + v2a) = 4(20 + v2a)
0.75(2)7/4000(4) (20 + v2a)(7.5) = 195,000 Ib

Here, a = 343 in., and (@ + d) = 34.3 + 7.5 = 41.8 in., so use 42 in.
4. Calculate shear reinforcement:

oV, =(V, — pV,) = 195 — 156.3 = 38.7 V, =516K

V 51.6
V. (for one face of critical section) = TS = e =129K

Use no. 3 U-stirrups, A, = 0.22 in.2 (for two legs). The spacing is § = A,f,d/V, =
0.22(60)(7.5)/12.9 = 7.7 in. Maximum spacing is 4/2 = 7.5/2 = 3.75 in.; let s = 3.5 in.

5. Distribution of stirrups: The number of stirrups per one side of column is 43/3.5 = 12.3, or 13
stirrups. Total distance is 13(3.5) = 45.5 in. (Fig. 17.31).

Example 17.11: Flat-Slab Floor System

Using the direct design method, design a typical 24 x 20-ft interior flat-slab panel with drop panels
only (Fig. 17.32). All panels are supported by 20 x 20-in. columns, 12 ft long. The slab carries a
uniform service live load of 100 psf and a service dead load of 24 psf, excluding self-weight. Use
f! =4 ksi, and f, = 60 ksi. (The solution is similar to Example 17.3.)
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Figure 17.32 Example 17.11: flat slab with drop panel.
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Figure 17.32 (continued)

Solution
1. Determine slab and drop panel thicknesses using Table 17.1.

a. The clear span is 24 — f—g = 22.33 ft. For an exterior panel, minimum k = [,/33 = 8.12 in,,
whereas for an interior panel, minimum 4 = /,/36 = 7.44 in. Use a slab thickness of 8 in.
The projection below the slab is h/4 = % = 2.0 in.; thus, the drop panel thickness is 10 in.

b. Extend the drop panels L/6 = 36‘1 =4 ft in each direction from the centerline of support in
the long direction and %’ = 3.33 ft, or 3.5 ft, in the short direction. Thus, the total size of

one drop panel is 8 x 7 ft (Fig. 17.32).
2. Calculate factored loads:

8(150)

Slab load = 24 + = 124 psf
W, = 1.2(124) + 1.6(80) = 277 psf
10(150
Drop panel load = 24 + 0(125 ) = 149 psf

W, = 1.2(149) + 1.6(80) = 307 psf

Because the drop panel length is L/3 in each direction, the average W, is (%) (277) + ()
(307) = 287 psf.

3. Check two-way shear (at distance d/2 from the face of column):
a. In the drop panel: d = 10 — 0.75 — 0.5 = 8.75 in.

b, = 4(20 +-8.75) = 115 in.
2
V. = 0.287 [24 x 20 — (281%) ] = 136.1 K

¢V, = ¢4/ Flb,d = 0.85(4)v/4000(115)(8.75) = 2144 K > V,
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b. In the slab: d = 8 — 0.75 — 0.5 = 6.75 in. and b, is measured at 6.175/2 in. (in slab)
beyond the drop panel.

bo =2(8 x 124+ 6.75) + 2(7 x

12 +6.75) = 387 in.

Vi = 0.287[24 x 20 — (102.75)(90.75)/144] = 1192 K

¥ V. = 0.75(4)v/4000(387)(6.75)

¢. One-way shear is not critical.

=4956K > V,

4. Calculate the total static moments in the tong and short directions:

0.287(20)(22.33)?
ol =
8
_0.287(24)(18.33)
B 8

(s3]

= 357.8 K-ft

= 289.3 K-fi

The width of column strip in each direction is % = 10 ft, whereas the width of the middle
strip is 10 ft in the long direction and 14 ft in the short direction.

5. Calculations of moments and steel reinforcement are shown in Table 17.11. Use an average d
= 10 — 1.5 = 8.5 in. in the column strip and d = 8 — 1.5 = 6.5 in. in the middle strip.
Bars are chosen for adequate distribution in both the column and middle strip. Reinforce-
ment details are similar to those in flat-plate examples.

Table 17.11 Design of an Interior Flat-Siab Floor System

Long Direction
M, = 358 K-ft Column Strip Middle Strip
M factor -0.49M, 0.21M, —-0.16M, 0.14M,
M, (K-ft) —1754 +75.2 —-57.3 +50.1
Width of strip (in.), & 120 120 120 120
Effective depth (in.), d 8.5 6.5 6.5 6.5
R, = &4 (psi) 243 178 129 119
Steel ratio p (%) 0.48 0.34 0.25 0.23
A, = pbd (in.?) 49 2.65 1.95 1.79
Min. A, = 0.0018bk; (in.2) 2.16 2.16 1.73 1.73
Selected bars 16 no. 5 14 no. 4 10 no. 4 9 no. 4

Short Direction

Moe = 2893 K1 Column Strip Middle Strip
M factor —0.49M, 0.21M, —0.16M, 0.14M,
M, (K.ft) —142 +60.8 —46.3 +40.5
Width of strip (in.), b 120 120 168 168
Effective depth (in.), d 8.5 6.5 6.5 6.5
R, = M4 (psi) 196 144 78 68
Steel ratio o (%) 0.38 0.28 0.15 0.13
A, = pbd (in.2) 3.9 2.2 1.64 1.42
Min. A, = 0.0018b4; (in.?) 2.16 2.16 242 242
Selected bars 13 no. 5 11 no. 4 12 no. 4 12 no. 4
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17.11 WAFFLE SLABS

A two-way waffle slab system consists of concrete ribs that normally intersect at right angles.
These slabs might be constructed without beams, in which case a solid column head is made
over the column to prevent any punching due to shear. Wide beams can also be used on the
column centerlines for uniform depth construction. Square metal or fiberglass pans are com-
monly used to form these joists. A thin slab of 3 to 5 in. is cast with these joists to form the
waffle slab.

Each panel is divided into a column and a middle strip. The column strip includes all joists
that frame into the solid head; the middle strip is located between consecutive column strips.
Straight or bent bars could be used as a reinforcement in a waffle slab. The design of a two-way
waftle slab is similar to that of flat slabs by considering the solid head as a drop panel. To
prevent any excess in the diagonal tension in the head, a sufficient size of column must be used
or a shear cap must be provided.

In the design of a waffle slab, the top slabs with each rib form a T-section, with considerable
depth relative to flat plates. Consequently, long spans carrying heavy loads may be designed with
great savings in concrete. Waffle slabs also provide an attractive ceiling, which is achieved by
leaving the rib pattern or by integrating lighting fixtures. The standard pans that are commonly
used in waffle slabs can be one of the following two types:

1. 30 x 30-in. square pans with a 3-in. top slab, from which 6-in.-wide ribs at 36 in. (3 ft) on
centers are formed. These are available in standard depths of § to 20 in. in 2-in. increments.
Refer to Example 17.12 and Fig. 17.33.

2. 19 x 19-in. square pans with a 3-in. top slab, from which 5-in.-wide ribs at 24 in. (2 ft)
on centers are formed. These are available in standard depths of 4, 6, 8, 10, and 12 in.
Other information about pans is shown in Table 17.12 [17].Other types, ranging from 19
X 19-in. pans to 40 x 40-in. pans, are available in the construction industry.

Example 17.12: Waffle Slab

Design a waffle floor system that consists of square panels without beams considering the following
data (Fig. 17.33):

Span, center to ¢enter of columns = 33 ft
Width of rib = 6 in., spaced at 36 in. on centers
Depth of rib = 14in. and slab thickness = 3 in.
Column size = 20 x 20 in.
Dead load (excluding self-weight) = 50 psf
Live load = 100 psf  f/=5ksi  f, =60 ksi

Solution
20 _

1. Determine minimum slab thickness using Table 17.1: Minimum A = 1,/30, {, =33 — 5=
31.33 ft, A = 31.33(12)/30 = 12.5 in. for exterior panels, and # = 1,/33 = 11.4 in. for interior
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Figure 17.33 (a) Plan of the waffle slab, (b} cross section, (c) pan and rib dimensions, and {d) spacing and dimensions of solid

heads (Example 17.12).
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Figure 17.33  (continued)

panels. Equations 17.1 and 17.2 may be used. Assume the total depth is 17 in. consisting of
3-in. slab thickness and 14-in. rib depth.

2. Calculate loads on the waffle slab:
a. Factored load of solid head part = 1.2(150)(17/12) = 255 psf.
b. Voided volume of 14-in. rib = 6.54 ft> on 3 x 3-ft*> area. Total weight of 9-ft> area is
1.2(150)(9 x -:% — 6.54) = 1118 Ib. Weight per square foot is % = 125 psf.
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Table 17.12 Gross Section Properties [17]
For the Joists (30 x 30-in. pans)
Top Slab Rib Depth Volume Gross Area Yeq Iy
(in.) (in.) {ct/pan) (in3) (in.) (in.%)
3 8 3.85 161.3 3.28 1393
3 10 4.78 176.3 3.95 2307
3 12 5.53 192 4,66 3541
3 14 6.54 208.3 542 5135
3 16 7.44 2233 6.20 7127
3 20 9.16 261.3 7.83 12,469
4.5 g 3.85 2153 3.77 2058
4.5 10 4.78 2303 4.35 3227
4.5 12 5.53 246.0 4.97 4783
45 14 6.54 262.3 5.66 6773
4.5 16 7.44 279.3 6.36 9238
4.5 20 9.16 3153 7.86 15,768
For the Joists (19 x 19-in. pans)
3 6 1.09 105 2.886 598
3 8 1.41 1174 3.564 1098
3 10 1.9 1304 4.303 1824
3 12 2.14 144 5.083 2807
4.5 6 1.09 141 3.457 957
4.5 8 1.41 153 4.051 1618
4.5 10 1.9 166.4 4.709 2550
4.5 12 2.14 1830 5.417 3794

¢. Factored additional dead plus live load is 1.2(50) + 1.6(100) = 220 psf. Uniform w, (at
solid head) = 255 + 220 ~ 500 psf. Uniform w,, (at ribbed area) = 125 + 220 = 345 psf.

d. Loads on one panel (refer to Fig. 17.34): At the solid head, W = 0.5(12) + 0.345(21) =
13.22 K/ft. At the ribbed area, W = 0.345(33) = 11.39 K/t

3. Calculate shear and total static moment:

4, Check punching shear (refer to Fig. 17.35):
a.

V. (at the face of column) = 13.22(5.17) +

M, (at midspan) = 188(15.67) — 13.22(5.17)(13.09) —

(11.39)(21)

11.39(10.5)%

=188 K

= 1424 Kft

In solid head at 4/2 from column face, # = 17 in., d = 17 — 1.25 = 15.75 in., ¢ (column)
=20in., b, = 420 + 15.75) = 143 in., V, = 11.39(21 ft) + 13.22(12 ft} — 0.5(37.75/12)?
=3934K and ¢V, = ¢4\/7c’bod = 0.75(4)(+/5000) (143)(15.75) =478 K > V.
In the slab at distance d/2 from the edge of the solid head, slab thickness is 3 in.; let

d = 2.15 in. Then

b, = 4(150 + 2.5) = 610 1n.
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Watffle slab (looking upward).

152.5\°
Vo = 11.39(21) + 13.22(12) — 0.5 (T) =3174 K

¢V, = 0.75(4)(v5000)(610)(2.5) =324 K > V,

5. Design moments and reinforcement:
a. Exterior panel: M, = 1424 K-ft

Exterior negative moment = 0.26M, = —370 K-t
Positive moment = 0.52M, = +740 K-ft

Interior negative moment = 0.7M,, = —997 K-ft
b. Interior panel: M, = 1424 K-ft

Negative moment = 0.65(1424) = —925.6 K-ft
Positive moment = 0.35(1424) = 498.4 K. ft

Design details are shown in Table 17.13 and Fig. 17.36. Note that all steel ratios are low

and ¢ = 0.9.

6. Calculate the unbalanced moments in columns and check shear for V,, and M,, as in Examples

17.8 and 17.9.




17.11  Waffle Slabs

¢ , 2
e 33 »]
| l |
. Column face ; !
| | 13.22 KAt |
' 1 ) 11.39 K/t |
| |
| Y ¥ Y Y Y Y Y Y Y Y Y Y Yy Y Y Y Y Y Y Y ¥ Y Y Y VY |
— I(— :
! T4 ! ! Column centcrline——)!
I | I
LS 10.5' L 10.5° L sAT
~ g P > >
I
L 13.09' o
= ™
[
(a)
188 K —»
\\
119.7K
(b) N
~ /
\\\ //
M, = 1424 Kft
(c)
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(b) shear force diagram, and (¢) bending moment diagram.



Chapter 17 Design of Two-Way Slabs

13

"

a

A
1.25” 1.25"
ol i 150" i
> >

(b)

Figure 17.35 Punching shear locations: (@) punching shear in column head and
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Table 17.13 Design of an Exterior and an Interior Waffle Slab (5 Ribs in Column Strip and 6 Ribs in
Middle Strips)
Column Strip Middle Strip
Exterior interior
Exterior Panel (-M) M -M -M +M
Moment factor (%) 100 60 75 25 40
M, (K.ft) 370 444 748 249 296
Strip width, & (in.) 150 198 150 36 (6 ribs) 198
d (in.) 15.75 15.75 15.75 15.75 15.75
R, = t% (psi) 120 108 241 334 72
Steel ratio, p (%) 0.226 0.204 0.465 0.657 0.135
A; = pbd (in%) 5.33 6.36 11.0 3.73 42
Min. A, = 0.0018bh 2.6 1.22 4.6 1.1 1.47
Bars selected 14 no. 6 2 no. 8/rib 26 no. 6 10 no. 6 2. no. 7/rib
Column Strip Middie Strip
Exterior Interior
Exterlor Panel (-M) +M -M -M M
Moment factor (%) —_ 60 75 25 40
M, (K-ft) — 299 694.2 231.4 200
Strip width, & (in.) — 198 150 36 (6 ribs) 198
d (in.) —_ 15.75 15.75 15.75 15.75
M

R, = BE% (psi) _ 73 224 311 49
Steel ratio, p (%) = 0.137 0.431 0.61 0.091
As = pbd (in2) — 427 10.18 345 2.84
Min. A; = 0.10018bA - 1.22/rib 46 1.1 1.47
Bars selected — 2 no. 7/rib 24 no. 6 10 no. 6 2 no. 6/rib

17.12 EQUIVALENT FRAME METHOD

When two-way floor systems do not satisfy the limitations of the direct design method, the
design moments must be computed by the equivalent frame method. In the latter method, the
building is divided into equivalent frames in two directions and then analyzed elastically for all
conditions of loadings. The difference between the direct design and equivalent frame methods
lies in the way by which the longitudinal moments along the spans of the equivalent rigid frame
are determined. The design requirements can be explained as follows.

1. Description of the equivalent frame: An equivalent frame is a two-dimensional building
frame obtained by cutting the three-dimensional building along lines midway between
columns (Fig. 17.4). The resulting equivalent frames are considered separately in the lon-
gitudinal and transverse directions of the building. For vertical loads, each floor is analyzed
separately, with the far ends of the upper and lower columns assumed to be fixed. The
slab-beam may be assumed to be fixed at any support two panels away from the support
considered, because the vertical loads contribute very little to the moment at that support.
For lateral loads, the equivalent frame consists of all the floors and extends for the full
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height of the building, because the forces at each fioor are a function of the lateral forces on
all floors above the considered level. Analysis of frames can also be made using computer
programs.

2. Load assumptions: When the ratio of the service live load to the service dead load is less
than or equal to 0.75, the structural analysis of the frame can be made with the factored
dead and live loads acting on all spans instead of a pattern loading. When the ratio of the
service live load to the service dead load is greater than 0.75, pattern loading must be used,
considering the following conditions:

a. Only 75% of the full-factored live load may be used for the pattern loading analysis.

b. The maximum negative bending moment in the slab at the support is obtained by loading
only the two adjacent spans.

¢. The maximum positive moment near a midspan is obtained by loading only alternate
spans.

d. The design moments must not be less than those occurring with a full-factored live load
on all panels (ACI Code, Section 13.7.6).

e. The critical negative moments are considered to be acting at the face of a rectangu-
lar column or at the face of the equivalent square column having the same area for
nonrectangular sections.

3. Slab-beam moment of inertia: The ACI Code specifies that the variation in moment of
inertia along the longitudinal axes of the columns and slab beams must be taken into
account in the analysis of frames. The critical region is located between the centerline of
the column and the face of the column, bracket, or capital. This region may be considered
as a thickened section of the floor slab. To account for the large depth of the column and
its reduced effective width in contact with the slab beam, the ACI Code, Section 13.7.3.3,
specifies that the moment of inertia of the slab beam between the center of the column
and the face of the support is to be assumed equal to that of the slab beam at the face
of the column divided by the quantity (1 — ¢»/lh)?, where ¢; is the column width in the
transverse direction and /, is the width of the slab beam. The area of the gross section can
be used to calculate the moment of inertia of the slab beam.

4. Column moment of inertia: The ACI Code, Section 13.7 4, states that the moment of inertia
of the column is to be assumed infinite from the top of the slab to the bottom of the column
capital or slab beams (Fig. 17.37).

5. Column stiffness, K, is defined by

1 1 + 1
Kec Z KC K!
where X K, is the sum of the stiffness of the upper and lower columns at their ends,

9E..C
K, = Z s (17.19)

h(1-%)
c=Y" (1 ~0.63 %) (?) (17.20)

6. Column moments: In frame analysis, moments determined for the equivalent columns at
the upper end of the column below the slab and at the lower end of the column above the
slab must be used in the design of a column.

(17.17)
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Figure 17.37 Critical sections for column moment, equivalent frame method.

Negative moments at the supports: The ACI Code, Section 13.7.7, states that for an interior
column, the factored negative moment is to be taken at the face of the column or capital
but at a distance not greater than 0.1175/; from the center of the column. For an exterior
column, the factored negative moment is to be taken at a section located at half the distance
between the face of the column and the edge of the support. Circular section columns must
be treated as square columns with the same area.

Sum of moments: A two-way slab floor system that satisfied the limitations of the direct
design method can also be analyzed by the equivalent frame method. To ensure that both
methods will produce similar results, the ACI Code, Section 13.7.7, states that the computed
moments determined by the equivalent frame method may be reduced in such proportion
that the numerical sum of the positive and average negative moments used in the design
must not exceed the total statical moment, M,,.

Example 17.13: Wafile Slab

By the equivalent frame method, analyze a typical interior frame of the flat-plate floor system given
in Example 17.3 in the longitudinal direction only. The floor system consists of four panels in each
direction with a panel size of 25 by 20 ft. All panels are supported by a 20- by 20-in. columns, 12
ft long. The service live load is 80 psf and the service dead load is 124 psf (including the weight of
the slab). Use f; =3 ksi and f;, = 60 ksi. Edge beams are not used. Refer to Fig. 17.38.

Solution

1. A slab thickness of 8.0 in. is chosen, as explained in Example 17.3.

2. Factored load is w, = 1.2 x 124 + 1.6 x 60 = 245 psf. The ratio of service live load to
service dead load is 60/124 = 0.48 < 0.75; therefore, the frame can be analyzed with the full
factored load, w,, acting on all spans instead of pattern loading.

3. Determine the slab stiffness, K;: £l
Ry

I

K;=k

where & is the stiffness factor and
_hhl!  (20x12)

3 _ . 4
T B (8)" = 10,240 in.

I
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Figure 17.38 Example 17.13.

The stiffness factor can be determined by the column analogy method described in books on
structural analysis. Considering the moment of inertia for the slab Is to be 1.0 as a reference,
the moment of inertia between the column centerline and the face of the column is

1.0 = 1.0 1.19

(-2) (o)
A @0 x 12)
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The width of the analogous column varies with 1/1, as shown in Fig. 17.385: (1/1.19) = 0.84
Slab stiffness factork = {, (—1— + &)
A, 1,
where
A, = area of the analogous column section

« = moment of inertia of analogous column

M = moment due to a unit load at the extreme fiber of the analogous column located
at the center of the slab

M=10x4%
Ay =2333 4+ 2 x (0.83 £1)(0.84) = 23.33 + 1.40 = 24.72
I, = I (for slab portion of 23.33) + I (of end portion) about the centerline

(23.33)° 0.83\?
lo = "3 +1.4(1z.5— 5 ) = 1263

neglecting the moment of inertia of the short end segments about their own centroid.
1 1.0 x 12.5(12.5)]
+

Stiffness factork = 25 [

24.72 1263
=1.01+4+3.09 =4.1
Carryover factor = w = 0.509
Therefore, slab stiffness is L1E x ;0 240
K, = W = 140E

. Determine the column stiffness, X_:

El
Kc=k'(l‘) x 2

for columns above and below the slab.

k' = column stiffness factor
_ @

L=12f/ I= 5 = 13,333 in.?

The stiffness factor, &', can be determined as follows:

1 Mc
K=l —+—
c(&+a)
For the column, ¢ = .2 and M = 1.0(./2) = {./2.

8
Aazlc_h3=12__=11.33

12
I = (e *lzhs)3 _ (lli:’;)3 1212
1 x 12y12
k=12 [11?33 +! X1221)2( : )} =462
K. = 4.62E x 23 L 5 _gser

12 x 12

i e e e L e e
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In a flat-plate floor system, the column stiffness, K can be calculated directly as follows:

Ko L, 3112
Ec (ic - hs) (lc - hs)3

(17.33)

5. Calculate the torsional stiffness, X,, of the slab at the side of the column:

- LRC g C-:Z( ~0.63% )xy

12(1— 2) 3

In this example, x = 8.0 in. (slab thickness) and y = 20 in. (column width). See Fig. 17.17.

(8% x 20) . 4
_ X I =2 .
(1 0.63 x 20) ( 3 553 in

K, = 9E s x 2553 . = 124E,

20
20 x 12) (1 = ol

For two adjacent slabs, X; = 2 x 124F, = 248E,.
6. Calculate the equivalent column stiffness, Kec:

1 1 1 1 1

e S K. K " 856E, T 243E,

or Kec = 192EC‘
7. Moment distribution factors (D.F.): For the exterior joint,
K, 140

D.F. (slab) = - — 042
(slab) = T~ = Ti0+ 192

D.F. (columns) =

KCC
=0.58
K

The columns above and below the slab have the same stiffness; therefore, the distribution factor
of 0.58 is divided equally between both columns, and each takes a D.F. of 0.58/2 = 0.29. For
the interior joint,

K B 140
2K, + Kee 2 x 140+ 192
192

D.F. (columns) = Z K =53 120 7 192 = 0.41

=0.295

D.F. (slab) =

Each column will have a D.F. of 0.41/2 = 0.205.

8. Fixed-end moments: Because the actual L.L./D.L. is less than 0.75, the full-factored load is
assumed to act on all spans.

Fixed-end moment = k" w,l(L1)*
The factor £” can be determined by the column analogy method: For a unit load w = 1.0 K/ft

over the longitudinal span of 25 ft, the simple moment diagram is shown in Fig. 17.385. The
area of the bending moment diagram, considering the variation of the moment of inertia along
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the span, is
Total area (A,;) = A1 + Ax + 245

= % x 23.33(78.1 - 1) +23.33 x 10
+2 (% x 0.83 x 10) (0.84) = 1300

Fixed-end moment coefficient =

”
2
atl

where A, for the slab is 24.72, as calculated in step 3.

1300
T 27.32(25)2

It can be seen that the fixed-end moment coefficient, k" = 0.084, is very close to the coefficient
Tl:z = 0.0833 usuvally used to calculate the fixed-end moments in beams. This is expected,
because the part of the span that has a variable moment of inertia is very small in flat plates
where no column capital or drop panels are used. In this example, only parts AB and CD,
each equal to 0.83 ft, have a higher moment of inertia than /;. In flat plates where the ratio
of the span to column width is high, say, at least 20, the coefficient 0.0833 may be used to
calculate approximately the fixed-end moments. Fixed-end moment (due to w, = 276 psf) =
0.084(0.245)(20)(25)> = 256 K-ft. The factors K, K’s, and K” can be obtained from tables
prepared by Simmonds and Misic [18] to meet the ACI requirements for the equivalent frame
method.

7’

=0.084

. Moment distribution can be performed on haif the frame due to symmetry. Once the end

negative moments are computed, the positive moments at the center of any span can be obtained
by subtracting the average value of the negative end moments from the simple beam positive
moment. The moment distribution is shown in Fig. 17.39. The final bending moments and shear
forces are shown in Fig. 17.40.

Slabs can be designed for the negative moments at the face of the columns as shown in
Fig. 17.40.

Example 17.14: SI Units

Use the direct design method to design a typical interior flat slab with drop panels to carry a dead
load of 8.6 kN/m? and a live load of 11 kN/m?. The floor system consists of six panels in each
direction, with a panel size of 6.0 by 5.4 m. All panels are supported by 0.4-m-diameter columns
with 1.0-m-diameter column capitals. The story height is 3.0 m. Use f! =28 MPa and f, = 400

MPa.

Solution
1. All the ACT limitations to using the direct design method are met. Determine the minimum slab

thickness, kg, using Eqs. 17.1 and 17.2. The diameter of the column capital equals 1.0 m. The

equivalent square column section of the same area will have a side of vVrr? = /7 (500)? =
885 mm or 900 mm.

Clear span (long direction) = 6.0—0.19 =51 m
Clear span (short direction) =54 —-09=4.5m

Because no beams are used s, = 0, 8; = 1.0, and f = 6.0 m/5.4 m = 1.11. From Table
17.1, minimam 4, = {,/33 = 5100/33 = 155 mm, but because a drop panel is used, 4, may
be reduced by 10% if drop panels extend a distance of at least /6 in each direction from the



17.12 Equivalent Frame Method 659

D 2z /777724
Mas
.@”“
+ 012
Moo ~ 028 -— ~ 055 Mes
— 89 w—— _ 7%
N 2'28 +1210 — + 605 - 038 T
; ~124
-289 ’
] +83‘6 + 289 .
(o | C
18 ) 0.51 :
F 2] 225 [ 295 & 295 | - §
B 9’ )
+83.6 — —288.3 +288.3
+ 26 —124 - 178 —— — 89
+ 008 - 038 - 08§ —— — 028
8628
Mag Mgs Mac Mce
7 E VA
Figure 17.39 Example 17.13: Analysis by moment distribution. All moments are
in K-ft.

centerline of support and project below the slab a distance of at least h;/4. Therefore, use a
slab thickness #; = 0.9 x 155 x 140 mm and a drop panel length and width as follows:
6.0

!
Long direction El =3 = 20 m

4
Short direction %2 = §-3——- =18m

The thickness of the drop panel is 125k, = 1.25 x 140 = 175 mm. Increase drop panel
thickness to 220 mm to provide adequate thickness for punching shear and to avoid the use of
a high percentage of steel reinforcement. All dimensions are shown in Fig. 17.41.

2. Calculate factored loads:
wy = 1.2 %x 8.6+ 1.6 x 11 = 28 kKN/m?

3. Check two-way shear, first in the drop panel: The critical section is at a distance d/2 around
the column capital. Let 4 = 220 — 30 mm = 190 mm. Diameter of shear section = 1.0 m 4+

d=119m
Vv, =28 [6.0x5.4 - %(1.19)2] = 876 kN

1.19
b, =2n (T) =374 m

V. = ¢ x 033 x \/flb,d

0.75x0.
- __R))%.O—BJZ_sx3740x190 = 930 kN
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w, = 02756 X 20 = 5.52 K/ft

€ ¢ € ¢
172. - 27,
72 3 5.52 K/tt \ 30685, N 5.52 K/ft § 27972
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Design moments Design moments

Va = 552X 125 — %(332.3 —172.56) = 625K
Vp (left) = 5,52 X 125 + (3323 —172.56) = 753 K
Vs (right) = 5.52 X 12.5 + %(306.65 — 279.12) = 70K
Ve = 552 X 12.5 — 25(306.65 — 279.12) = 678 K
Figure 17.40 Example 17.13: equivalent frame method — finat bending moments and

shear forces. (Slabs can be designed for the negative moments at the face of the
columns as shown.)

which is greater than V, of 876 kN. Then check the two-way shear in the slab; the critical
section is at a distance d/2 outside the drop panel.

d(slab) = 140 — 30 = 110 mm

Critical area = (2.0 + 0.11)(1.8 + 0.11) = 4.03 m?
bo =2(2.11 + 1.91) = 8.04 m
V, = 28(6x5.4 — 4.03) = 794 kN

75 % 0.33
V. = %\/ﬁx&)@x 110 = 1003 kN > V,

One-way shear is not critical.
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Figure 17.41 Example 17.14: interior flat slab with drop panel.

4. Calculate the total static moments in the long and short directions:
28
My = 31;&1213, = S G4G.1)? = 4916 KN-m

28
M, = %zlzgz = S(6)457 = 4252 kNm

661
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Table 17.14 Design of an Interior Flab Slab With Drop Panels

Mo = 491.6 kN-m
M, = +0.35M, = -319.5 kN-m
Mp = +0.35M, = +172.1 kN-m

Long Direction Column Strip Middle Strip
Moment factor 0.75M, 0.60M, 0.25M,, 0.40M,
M, (kN-m) — 239.6 + 103.3 —79.9 + 68.8
d (mm) 190 110 110 110
Strip width b (m) 2.7 27 2.7 2.7
Ry = g{%(MP“) 2.46 3.16 2.44 2.10
Steel ratio, o (%) 0.71 0.93 0.7 0.6
A; = pbd (mm?) 3642 2762 2079 1782
Min. A; = 0.0018bh (mm?) 1070 680 680 630
Bars selcted (straight bars) 18 x 16mm 14 x 16 mm 20 x 12mm 16 x 12mm
Spacing (mm) 150 193 135 170

M, = 425.2 kN.m
M, = —0.65M, = —276.4 kN-m
M, = +0.35M, = +148.8 kN-m

Short Direction Column Strip Middle Strip
Moment factor 0.75M, 0.60M, 0.25M, 0.40M,
M, (kN-m) 2073 + 89.3 —69.1 + 595
d (mm) 180 100 100 100
Strip width & (m) 27 2.7 33 33
M
R, = bT;;(MPa) 2.37 3.30 2.10 1.80
Steel ratio, p (%) 0.69 1.00 0.6 0.5
A; = p bd (mm?) 3353 2700 1980 1650
Min. A; = 0.0018b% (mm 2) 1070 680 832 832
Bars selected (straight bars) 18 x 16 mm 14 x 16 mm 18 x 12 mm 16 x 12mm
Spacing (mm) 150 195 185 205

Because I; < I, the width of the column strip in the long direction is 2(0.25 x 5.4) = 2.7
m. The width of the column strip in the short direction is 2.7 m. Assuming that the steel bars
are 12 mm in diameter and those in the short direction are placed on top of the bars in the
long direction, then the effective depth in the short direction will be about 10 mm less than
the effective depth in the long direction. The 4 values and the design procedure are shown in
Table 17.14. Minimum lengths of the selected reinforcement bars should meet the ACI Code
length requirements shown in Fig. 17.16. Note that all steel ratios are less than pmax. Thus,
$ =09

5. The column stiffness is

DL. 8.6 I
Ratioc — = — =0.782 and - = 1.11
LT A
Determine apmin from Table 17.7, taking into account that the relative beam stiffness is 0
because no beams are used. By interpolation, e, = 1.15. An approximate method is used
here to determine the stiffness of the column with its capital.
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I; (moment of inertia of slab, short direction)

4 3
= 6000(112) = 1372 x 10°mm*
4E.1, 4E.x 1372 x 10° 3
K, = = = 1016 x 10°E
I 5400 X Ee
I. (for circular column, diameter 400 mm)
nD* & 4 6 4
P o 400) 57 x 10°mm
4E 1. 4E. x 1257 x 10° 3
K = = = 167
¢ I 000mm 1676 x 10°E,

Ratio of column stiffness/slab stiffness

_ K. 1676 x10°
T K, 1016 x 10?
which is greater than amn of 1.15. If I, in the long direction is used, the calculated ratio of
column to slab stiffness will be greater than 1.65. Therefore, the column is adequate.

6. Determine the balanced moment in the column and check the shear stresses in the slab, as
explained in Examples 17.8 and17.9.

= 1.65

SUMMARY

Sections 17.1-17.5

1. A two-way slab is one that has a ratio of length to width less than 2. Two-way slabs may
be classified as flat slabs, flat plates, waffle slabs, or slabs on beams.

2. The ACI Code specifies two methods for the design of two-way slabs: the direct design
method and the equivalent frame method. In the direct design method, the slab panel is
divided (in each direction) into three strips, one in the middle (referred to as the middle
strip) and one on each side (referred to as column strips).

Section 17.6

To control deflection, the minimum slab thickness, %, is limited to the values computed by
Table 17.1 or Eqgs. 17.1 and 17.2 and as explained in Examples 17.1 and 17.2.

Section 17.7

For two-way slabs without beams, the shear capacity of the concrete section in one-way shear is

V. = 2)/flbd

The shear capacity of the concrete section in two-way shear is

V.= (2 + g—) M Flbod <4/ flbod

When shear reinforcement is provided, V, < 6./ f/b.d.
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Section 17.8

In the direct design method, approximate coefficients are used to compute the moments in the
column and middle strips of two-way slabs. The total factored moment is

2
M, = (wulz)l—sl— (17.11)

The distribution of M, into negative and positive span moments is given in Fig. 17.14. A
summary of the direct design method is given in Section 17.8.8. The modified stiffness method
is explained in Section 17.8.7.

Sections 17.9-17.11

1. Unbalanced loads on adjacent panels cause a moment in columns that can be computed by
Eq. 17.22.

2. Approximately 60% of the moment transferred to both ends of a column at a joint is
transferred by flexure, My, and 40% is transferred by eccentric shear, M,. The fraction
of the unbalanced moment transferred by flexure, My, is y s M,, where y ¢ is computed
from Eq. 17.25. The shear stresses produced by M, must be combined with shear stresses
produced by the shearing force V,.

3. Waffle slabs are covered in Section 17.11.

Section 17.12

1. In the equivalent frame method, the building is divided into equivalent frames in two
directions and then analyzed for all conditions of loadings. Example 17.13 explains this
procedure.

2. Example 17.14 is an example of a two-way flat slab with drop panel (SI units).

REFERENCES

1. Wy. G. Corley and J. O. Jirsa. “Equivalent Frame Analysis for Slab Design”. ACI Journal 67 (November
1970).

2. W. L. Gamble. “Moments in Beam Supported Slabs”, ACI Journal 69 (March 1972).

3. M. A. Sozen and C. P. Siess. “Investigation of Multipanel Reinforced Concrete Floor Slabs”. ACT
Journal 60 (August 1963).

4. W. L. Gamble, M. A. Sozen, and C. P. Siess. “Tests of a Two-way Reinforced Concrete Slab”. Journal
of Structural Division, ASCE 95 (June 1969).

5. R. Park and W. Gamble. Reinforced Concrete Slabs. New York: John Wiley, 1980.

6. S. P. Timoshenko and S. W. Krieger. Theory of Plates and Shells, 2d ed. New York: McGraw-Hill,
1959.

7. R. H. Wood. Plastic and Elastic Design of Slabs and Plates. London: Thames and Hudson, 1961.

8. O. C. Zienkiewicz. The Finite Element Method in Engineering Science. New York: McGraw-Hill,
1971.

9. K. W. Johansen. Yield-Line Formulae for Slabs. London: Cement and Concrete Association, 1972,
10. A. Hillerborg. Strip Method of Design. London: Cement and Concrete Association, 1975.
11. R. K. Dhir and J. G. Munday. Advances in Concrete Slab Technology. New York: Pergamon, 1980.



Problems 665

12. W. C. Schnorbrich. “Finite Element Determination of Non-linear Behavior of Reinforced Concrete
Plates and Shells”. In Proceedings of Symposium on Structural Analysis. TRRL, 164 VC. Crowthorne,
1975.

13. M. Fintel, ed. Handbook of Concrete Engineering. New York: Van Nostrand Reinhold, 1974.

14. American Concrete Institute. Building Code Requirements of Structural Concrete. ACI 318—08. Detroit,
Michigan, 2008.

15. N. W. Hanson and J. M. Hanson. “Shear and Moment Transfer Between Concrete Slabs and Columns”.
PCA Journal 10 (January 1968).

16. J. Moe. “Shear Strength of Reinforced Concrete Slabs and Footings under Concentrated Loads”. PCA
Bulletin D47 (April 1961).

17. Brochure, Molded Fiber Glass Concrete Forms Co. (MFG), Union City, Pennsylvania, 1990.

18. S. H. Simmonds and J. Misic. “Design Factors for the Equivalent Frame Method”. ACI Journal 68
(November 1971).

19. A. W. Hago and P. Bhatt. “Tests on Reinforced Concrete Slabs Designed by the Direct Design Method
Procedure”. ACI Journal 83 (November—December 1986).

20. D.F. Fraser. “Simplified Frame Analysis for Flat Plate Construction”. Concrete International 6 (Septem-
ber 1984).

PROBLEMS

17.1 (Flat plates) Determine the minimum slab thickness according to the ACI Code for the flat-plate
panels shown in Fig. 17.42 and Table 17.15. The floor panels are supported by 24 x 24-in. columns,

Corner Exterior

Exterior Interior
_e

Figure 17.42 Problem 17.1.
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Table 17.15 Problem 17.1

Panel Dimensions (ft)

Number Panel
(Flat Plate}) Ly L Numbers
{a) 20 20 1 and 4
(b) 24 24 2 and 4
(c) 26 26 3 and 4
(d) 20 16 1and 2
(e) 24 20 3 and 4
() 26 22 1 and 4
€9 30 24 1and 2
(h) 30s 30 1 and 4

12 ft long, with no edge beams at the end of the slab. Use f! =4 ksi, f, = 60 ksi, dead load
(excluding self-weight) = 55 psf, and live load = 120 psf.

17.2 (Flat plates) Use the direct design method to design the interior flat-plate panel (no. 4} of Problems
17.1a, b, c, and e, using the data given earlier. Check the shear and moment transfer at an interior
column. Draw sketches showing the reinforcement distribution and the shear stresses.

17.3 (Flat plates) Repeat Problem 17.2 for the exterior panel no. 3. Check the shear and moment transfer
at the exterior column. If shear stresses are not adequate, use shear reinforcement involving stirrups.

17.4 (Flat stabs with drop panels) Determine the minimum slab and drop panel thicknesses according to
the ACI Code for the slabs shown in Fig. 17.42 and Table 17.15. The floor panels are supported
by 24 x 24 -in. columns with no edge beams. Use f = 4 ksi, f, = 60 ksi, additional dead load
(excluding self-weight) = 60 psf, and live load = 120 psf.

17.5 (Flat slabs) Use the direct design method to design the interior flat slab panel no. 4, of Problem
17.4a, b, c, and ¢, using the data given in Problem 17.4. Check the shear and moment transfer at an
interior column. Draw sketches showing the reinforcement distribution and the shear stresses. Use a
4-ft-column capital diameter for part ¢ only.

17.6 (Flat slabs) Repeat Problem 17.5 for the exterior panel no. 3.

17.7 (Slabs on beams) Redesign the slabs in Problem 17.2, using the same data when the slabs are
supported by beams on all four sides. Each beam has a width b, = 14 in. and a projection below
the bottom of the slab of 18 in.

17.8 (Slabs on beams) Redesign the slabs in Problem 17.7 as exterior panels.

17.9 (Waffle slabs) Repeat Example 17.12 when the spans are (a) 36 ft and (b) 42 ft. Use the same data
and 24 x 24-in. columns.

17.10 (Waffle slabs) Redesign the waffle slabs in Problem 17.9 as exterior panels.

17.11 (Equivalent frame method) Redesign the flat-plate floor system of Problem 17.2a and b using the
equivalent frame method.

17.12 (Equivalent frame method) Redesign the waffie slabs of Problem 17.9 using the equivalent frame
method.

i
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INTRODUCTION

Stairs must be provided in almost all buildings, either low-rise or high-rise, even if adequate
numbers of elevators are provided. Stairs consist of rises, runs (or treads), and landings. The total
steps and landings are called a staircase. The rise is defined as the vertical distance between
two steps, and the run is the depth of the step. The landing is the horizontal part of the staircase
without rises (Fig. 18.1).

The normal dimensions of the rises and runs in a building are related by some empirical
rules.

Rise +run =17 in
2 x rise + run = 25 in. (635 mm)

rise x run = 75 in.2 (0.05 m?)

The rise depends on the use of the building. For example, in public buildings the rise is about
6in., whereas in residential buildings it varies between 6 and 7.5in. The run is about 1ft in
public buildings and varies between 9in. and 12in. in residential buildings. In general, a rise
should not exceed 8 in. or be less than 4 in., and the number of rises is obtained by dividing the
structural floor-to-floor dimension by the assumed rise.

The finishing on the stairs varies from troweling Alundum grits to adding asphalt tiles,

terrazzo tiles, marble, or carpets. In addition to dead loads, stairs must be designed for a minimum
live load of 100 psf.

667
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Load: w K/ft
L EELEEEE R e gy ] Bepgegogoel)

(a)

(b)

. i

nEm—]

(c)

Figure 18.1 Plan of a single-flight staircase: (a) loads, (b) section B-B, and (c) plan.
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18.2 TYPES OF STAIRS

There are different types of stairs, which depend mainly on the type and function of the building
and on the architectural requirements. The most common types are as follows.

1. Single-flight stairs: The structural behavior of a flight of stairs is similar to that of a
one-way slab supported at both ends. The thickness of the slab is referred to as the waist
(Fig. 18.1). When the flight of stairs contains landings, it may be more economical to
provide beams at B and C between landings (Fig. 18.2). If such supports are not provided,
which is quite common, the span of the staircase will increase by the width of two landings
and will extend between A and D. In residential buildings, the landing width is in the range
of 4 to 6ft, and the total distance between A and D is about 20 ft.

An alternative method of supporting a single flight of stairs is to use stringers, or
edge beams, at the two sides of the stairs; the steps are then supported between the beams
(Fig. 18.3).

2. Double-flight stairs: Tt is more convenient in most buildings to build the staircase in double
flights between floors. The types commonly used are quarter-turn (Fig. 18.4) and closed-or
open-well stairs, as shown in Fig. 18.5. For the structural analysis of the stairs, each flight
is treated as a single flight and is considered supported on two or more beams, as shown
in Fig. 18.2. The landing extends in the transverse direction between two supports and
is designed as a one-way slab. In the case of open-well stairs, the middle part of the
landing carries a full load, whereas the two end parts carry half-loading only, as shown
in Fig. 18.5(d). The other half-loading is carried in the longitudinal direction by the stair
flights, sections A-A and B-B.

3. Three or more flights of stairs: In some cases, where the overall dimensions of the staircase
are limited, three or four flights may be adopted (Fig. 18.6). Each flight will be treated
separately, as in the case of double-flight staircases.

4. Cantilever stairs: Cantilever stairs are used mostly in fire-escape stairs, and they are sup-
ported by concrete walls or beams. The stairsteps may be of the full-flight type, projecting
from one side of the wall, the half-flight type, projecting from both sides of the supporting
wall, or of the semispiral type, as shown in Fig. 18.7. In this type of stairs, each step acts
as a cantilever, and the main reinforcement is placed in the tension side of the run and
the bars are anchored within the concrete wall. Shrinkage and temperature reinforcement
is provided in the transverse direction.

Another form of a cantilever stair is that using open-riser steps supported by a central
beam, as shown in Fig. 18.8. The beam has a slope similar to the flight of stairs and
receives the steps on its horizontally prepared portions. In most cases, precast concrete
steps are used, with special provisions for anchor bolts that fix the steps into the beam.

5. Precast flights of stairs: The speed of construction in some projects requires the use of
precast flights of stairs (Fig. 18.8). The flights may be cast separately and then fixed
to cast-in-place landings. In other cases, the flights, including the landings, are cast and
then placed in position on their supporting walls or beams. They are designed as simply
supported one-way slabs with the main reinforcement at the bottom of the stair waist.
Adequate reinforcement must be provided at the joints, as shown in Fig. 18.9.

Provisions must be made for lifting and handling the precast stair units by providing
lifting holes or inserting special lifting hooks into the concrete. Special reinforcement must
be provided at critical locations to account for tensile stresses that will occur in the stairs
from the lifting and handling process.
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Figure 18.2 Supporting systems of one flight.
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| One step
Beam

Beam
Section C-C

(Fig. 18.1) le— B —

Figure 18.3 Steps supported by stringer beams.

Quarter |
landing T

| ]

Figure 18.4 Quarter-turn staircase.

6. Free-standing staircase: In this type of stairs, the landing projects into the air without any
support at its end (Fig. 18.10). The stairs behave in a springboard manner, causing torsional
stresses in the slab.

Three systems of loading must be considered in the design of this type of stairs,

taking into consideration that torsional moments will develop in the slab in all cases:

When the live load acts on the upper flight and half the landing only (Fig. 18.11), the
upper flight slab will be subjected to tensile forces in addition to bending moments,
whereas the lower flight will be subjected to compression forces, which may cause
buckling of the slab.

When the live load acts on the lower flight and half the landing only (Fig. 18.12), the
upper flight slab will be subjected to tensile forces, whereas the lower flight will be
subjected to bending moment and compression forces.

. When the live load acts on both upper and lower flights, the loading of one flight will

cause the twisting of the other. The torsional stresses developed in the stairs require
adequate reinforcement in both faces of the stair slabs and the landing. Transverse
reinforcement in the slab and the landing must be provided in both faces of the concrete
in the shape of closed U-bars lapping at midwidth of the stairs. Typical reinforcement
details are shown in Fig. 18.13.
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Figure 18.5 Double-flight stairs: (a) closed-well staircase, (b) open-well staircase,
(c) section B-B, and (d) section C-C.
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Figure 18.6 Three- and four-stair flights.

This type of stairs is favored by architects and sometimes called a pliers-shaped
staircase or jackknife staircase.

A study was made to determine the effect of the following parameters on the free-
standing staircases forces and moments considering a live load of 100 psf (Figs. 18.10
and 18.13).

1. The width of the stairs (Fig. 18.10). An increase in the width from 4 to 10ft, will
increase the forces and moments sharply. For example, the torsional moment along the
flight increases by about 1,400%. Therefore, it is desirable to restrict the flight width
between 4.0 and 6.0 ft. Other moments increase by about 450%.

2. The span length L. An increase in the span L will increase the forces and moments
in the stair flight and landing significantly. For example, if L is increased from 8 ft to
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Figure 18.7 Steps projecting from one or two sides of the supporting wall.

16 ft, the shearing forces at the top edge of the stairs increases by about 230%. Moments
increase by about 100% to 150%.

3. The total flight height h. If h is increased from 10ft to 16 ft, the shearing force at the
top edge increases by about 150%. Moments increase by about 50 to 100%.

4. The flight slab thickness t. This parameter has the least effect on forces and moments.
For example, if ¢ is increased from 6 to 10 in., the moments increase by about 25% and
the shearing force by about 20%.

5. For practical design, the parameters may be chosen as follows: flight width between
4- and 6 ft, horizontal span L between 9- and 12 ft, total flight height between 10- and
15 ft, and slab thickness between 6- and 10 in.

The above information is a guide to help the designer to choose the right parameters for

an economical design.

7. Run-riser stairs: Run-riser stairs are stepped underside stairs that consist of a number of
runs and risers rigidly connected without the provision of the normal waist slab (Fig. 18.14a).

This type of stairs has an elegant appearance and is sometimes favored by architects. The
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Figure 18.8 Precast cantilever stair supported by central beam: {a} section A-A, (b) part
plan, and {c) supporting beam.
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Figure 18.9 Joint of a precast concrete flight of stairs.
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Figure 18,10 Plan of a free-standing staircase.

structural analysis of run-riser stairs can be simplified by assuming that the effect of axial
forces is negligible and that the load on each run is concentrated at the end of the run
(Fig. 18.145). For the analysis of a simply supported flight of stairs, consider a simple flight
of two runs, ABC, subjected to a concentrated load P at B’ (Fig. 18.14b). Because joints
B and B’ are rigid, the moment at joint B is equal to the moment at B, or

PS

Mp =My =—

where § is the width of the run. The moment in rise, BB’, is constant and is equal to PS/2.
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Loaded steps
7 Compression Unloaded
D (buckling) steps
PLAN
Figure 18.11 Case 1, ABC loaded.
Unloaded steps
Loaded
steps
PLAN

Figure 18.12 Case 2, DBC loaded.

When the rise is absent, the stairs, ABC, act as a simply supported beam, and the

maximum bending moment occurs at midspan with value
PL PS§

42
For a flight of stairs that consists of a number of runs and risers, the same approach can be
used; the bending moment diagram is shown in Fig. 18.154. The moment in BB’ is constant
and is equal to the moment at joint B, or 2PS. Similarly, Mc = M, = 3PS, Mp = M}, =
3PS, and Mg = M =2PS

If a landing is present at one or both ends, the load on the landing practically may be
represented by concentrated loads similar to the runs. The structural analysis may also be
performed by considering a load uniformly distributed on the flight of stairs. The moment
in every riser is constant and is obtained from the bending moment diagram of a simply
supported beam subjected to a uniform load (Fig. 18.15b). Example 18.3 illustrates the
design of a staircase using the two assumptions of concentrated loads and uniform loads.

Mg
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Figure 18.13 Section of a free-standing staircase.
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Figure 18.14 Run-riser staircase: (a) cross-section, (b) elastic curve, and (c) bending
moment diagram.

If the stair flight is fixed or continuous at one or both ends, the moments can be
obtained using any method of structural analysis. To explain this case, consider a flight of
stairs that consists of two runs and is fixed at both ends (Fig. 18.16a). The moments at
the fixed ends, A and B, due to a concentrated load at B are equal to PL/8 = PS/4. This
result is obtained by assuming that the rise does not exist and the stairs, ABC, act as a
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Figure 18.15 Distribution of moments: (a) bending moment due to concentrated loads
and (b) bending moment due to uniform load.
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Figure 18.16 Fixed-end staircase: (g} loaded steps and (b) loaded beam.
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fixed-end beam subjected to a concentrated load at midspan (Fig. 18.165). The moment at
midspan, section B, is equal to

The bending moment of a flight of stairs with one riser is shown in Fig. 18.16a. Note that
the moment in the riser BB’ is constant, and Mp = M} = P5/4.

For a symmetrical stair flight, fixed at both ends and subjected to a number of con-
centrated loads at the node of each run, the moment at the fixed end can be calculated as
follows:

PS
M (fixed end) = E(n2 -1

where

P = concentrated load at the node of the run
S = width of run
7 = number of runs

When n = 2, then
PS PS
M (fixedend) = —(4— 1) = —
(hxed end) 12( ) 2

which is the same result obtained earlier.
If a landing is present at one or both ends, the load on the landing may be represented
by concentrated loads at spacing §.

8. Helical stairs (open-spiral stairs): A helical staircase is a three-dimensional structure,
which usually has a circular shape in plan (Fig. 18.17). It is a distinctive type of stairs used
mainly in entrance halls, theater foyers, and special low-rise office buildings. The cost of
a helical stair is much higher than that of a normal staircase.

The stairs may be supported at some edges within adjacent walls or may be designed as a
free-standing helical staircase, which is most popular. The structural analysis of helical staircases
is complicated and was discussed by Morgan [1] and Scordelis [2] using the principles of strain
energy. Design charts for helical stairs are also prepared by Cusens and Kuang [3]. Under load,
the flight slab will be subjected to torsional stresses throughout. The upper landing will be
subjected to tensile stresses, whereas compressive stresses occur at the bottom of the flight. The
forces acting at any section may consist of vertical moment, lateral moment, torsional moment,
axial force, shearing force across the waist of the stairs, and radial horizontal shearing force.
The main longitudinal reinforcement consists of helical bars placed in the concrete waist of the
stairs and runs from the top landing to the bottom support. The transverse reinforcement must be
in a closed stirrup form to resist torsional stresses or in a U-shape lapped at about the midwidth
of the stairs.

A study was made to determine the effect of the following parameters on the forces and
moments that develop on helical staircases. These parameters are:

1. The total arc subtended by the helix with an angle that normally ranges from 240° to 360°.
Referring to Fig. 18.17, for 16 equal runs at 20° pitch, the total arc equals 320°. If the arc
is increased from 240° to 360° the vertical moment may increase by about 1,200% for a
live load of 100 psf. Other forces increase appreciably.
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Reinforced concrete helical staircase.

2. The width of stairs that normally ranges from 4 to 8 ft. All other parameters are constant.
The increase of stair width by 100%, from 4 to 8 ft, increases the torsional moment by
about 700%.

3. Variation in the interior and exterior radii (R; and R.) keeping the stair width of 6ft
constant. The increase in R, (from 9 to 12 ft) and R; (from 3 to 6 ft) with a ratio of R¢/R;
that varies between 3 and 2, increases the lateral moment by about 230%.

4. The thickness of stair slab is not as critical as the other parameters. For a variation in
slab thickness between 6 and 12 in., the lateral moment increases by about 70%, while the
torsional moment increases by about 170%.

5. The total height of the helical stair, h, has the least effect on all forces (for h between 9

and 15 ft) The increase in lateral moment is about 70% and in torsional moment is about
40%. Other forces decrease by about 80%.
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Figure 18.17 Plan of a helical staircase (16 equal runs at 20" pitch).

6. Based on this study, the possible practical dimensions may be chosen as follows: Total
subtended arc between 120° and 320°, stair width between 4 and 6 ft, stairs slab thickness
between 6 and 10in., and stair height between 10 and 15 ft.

The above information can be used as a guide to achieve a proper and economical design
of helical staircase.

An alternative method of providing a helical stair is to use a central helical girder located
at the midwidth of the stairs and have the steps project equally on both sides of the girder. Each
step is analyzed as a cantilever, and the reinforcement bars extend all along the top of the run.
Precast concrete steps may be used and can be fixed to specially prepared horizontal faces at
the top surfaces of the girder.

18.3 EXAMPLES

Example 18.1

Design the cantilever stairs shown in Fig. 18.18 to carry a uniform live load of 100 psf. Assume the
rise of the steps equals 6.0in. and the run equals 12 in. Use normal-weight concrete with f’ = 3 ksi
and fy = 60ksi.
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Figure 18.18 Example 18.1: cantilever stairs: (a) plan, (b) section in one step, (c)
section A-A, and (d) section B-B.
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Solution

1. Loads: Assume the thickness of the slab (waist) is 4.0in. Weight of the assumed slab (areas
Al and Az) is
49+109
2x12
Refer to Fig. 18.18h. Assume the weight of the step cover is 51b/ft. Total D.L. = 119 1bft.
W,=12D4+16L=12x 119+ 1.6 x 100 = 302 Ib/ft

2. Maximum bending moment per step is W, /%/2.

0.302
M, =—
2
Average thickness of a step is (10.9 + 4.9)/2 = 7.9in. Let d = 7.9 — 0.75 (concrete cover) —
0.25 (4 bar diameter) = 6.9in.

trapezoidal area man'm’ = ( ) (1)(150) = 98.8 Ib/ft

(6)*> = 5.44 K fi

M, = ¢Asfy (d - g) Assume a = 0.5 in.

B 5.44 x 12
0.9 x 60(6.9 — 0.25)

As =0.19 in.?

Check

L ALy __019x60
T 085 fib 0.85x3x12

Minimum A, = 0.00333(12)(6.9) = 0.28 in.?

= 0.38 in. (close to 0.5 in.)

Use two no. 4 bars per step. A smaller depth may be adopted, but to avoid excessive defiection
and vibration of stairs, a reasonable depth must be chosen.

3. Check flexural shear at a distance d from the face of the support.
6.9
Ve=0315 {6—- —|=17K
’ ( 12)

0.75
V. = 07521/ flbd) = o0 X 2x 1 x V3000 x 12 x 6.9 =68 K

Because V, < ¢V /2, no shear reinforcement is required. But it is recommended to use no. 3
stirrups spaced at 4in, to hold the main reinforcement,

4. The stairs must remain in equilibrium either by the weight of the wall or by a reinforced
concrete beam within the wall. In this case, the beam will be subjected to torsional moment of
5.7 K-ft/ft.

5. Reinforcement details are shown in Fig. 18.18.

Example 18.2

Design the staircase shown in Fig. 18.19, which carries a uniform live load of 120 psf. Assume a rise
of 7.0in. and a run of 10.75in. Use f = 3 ksi and f), = 60ksi.

Solution

1. Structural system: If no stringer beam is used, one of the four possible solutions shown in
Fig. 18.2 may be adopted. When no intermediate supports are used, the flight of stairs will be
supported at the ends of the upper and lower landings. This structural system will be adopted
in this example.
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2. Loads: Assume the thickness of the slab (waist) is 8.0in.
Weight of one step = trapezoidal area x 150 pcf

9.5+ 1635 10.75
B ( 2x12 ) ( 12 ) (150) = 145.6 1b per step

12
Average weight per foot length = 145.6 (ﬁ) = 162.5 Ib/ft

8
Weight of 8 in. landing = T X 150 = 100 1b/ft

Assume weight of step cover is 7.51b/ft and weight of landing = 21b/ft. The total D.L. on
stairs i8 162.5 + 7.5 = 170 Ib/ft. The total D.L. on landing is 100 + 2 = 102 Ib/ft.

W, (on stairs) = 1.2 x 170 + 1.6 x 120 = 400 1b/ft
W, (on landing) = 1.2 x 102 + 1.6 x 120 = 314 Ib/ft

Because the load on the landing is carried into two directions, only half the load will be
considered in each direction.

3. Calculate the maximum bending moment and steel reinforcement (Fig. 18.194):
a. The moment at midspan is

17.2

M, =222 (T) (0.157 x 5)6.1) — (0.400) 8

= 1171 KAt

Let d = 8.0 — 0.75 (concrete cover) — 0.25 (1 bar diameter) = 7.0 in.
b. M, = ¢A; f, (d — a/2); assume a = 0.8in.

11.71 x 12

= = 0.4 in.2
0.9 x 60(7 — 0.4) m

A

Check:
o Ak 04x60
T 0851 0.85%x3x12

Minimum A, = 0.0033 x 12 x 8 = 0.32 in.2 < 0.4 in.2

= 0.78 in., ¢ =092 in.

Use no. 4 bars spaced at 6in. (A; = 0.4in.2). For 5-ft-wide stairs, use 10 no. 4 bars.
dy, =7 1in. ¢ =092 in.

Net tensile strain,

d —_
& =( = C)=0.0198 in.

& > 0.005 ¢ =09
¢. Transverse reinforcement must be provided to account for shrinkage.
As = 0.0018 x 12 x 8 = 0.18 in.2/ft

Use no. 4 bars spaced at 12in. (A; = 0.2 in.%).

d. If the slab will be cast monolithically with its supporting beams, additional reinforcement
must be provided at the top of the upper and lower landings. Details of stair reinforcement
are shown in Fig. 18.19.
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Figure 18.20 Example 18.2: loads on landing.

4. Minimum slab thickness for deflection is
L 172x12
25 25
(for a simply supported slab). In the case presented here, where the slab ends are cast with the

supporting beams and additional negative reinforcement is provided, minimum thickness can
be assumed to be

= 8.26 in.

28 = 7.4 in. < 8 in. used

5. Design of landings: Considering a 1-ft length of the landing, the load on the landing is as
shown in Fig. 18.20. The middle 2 ft will carry a full load, whereas the two 5-ft lengths on
each side will carry haif the ultimate load.

1 2
Maximum bending moment = (1.1 x 6) — (0.157 x 5)(3.5) — (0.314)% = 3.7 KAt

Because the bars in the landing will be placed on top of the main stair reinforcement,

4
d=80-0.75- i 0.25 = 6.375 in. say, 6.3 in.

Assume a = (0.41in.
B 3.7 x 12
T 0.9 x 60(6.3 — 0.2)

Use A; = 0.32in.2 Use no. 4 bars spaced at 7in. (A; = 0.34 in.2).

6. The transverse beams at the landing levels must be designed to carry loads from stairs (2.3 K/ft)
in addition to their own weight and the weight of the wall above.

7. Check shear as usual.

As = 0.14 in.% < A, (min) of 0.32 in.2

Example 18.3

Design the simply supported run-riser stairs shown in Fig. 18.21 for a uniform live load of 120 psf.
Use f/ =3 ksi and f, = 60ksi.

Solution

1. Loads: Assume the thickness of runs and risers is 6in. The concentrated load at each riser is
calculated as follows (refer to Fig. 18.215). Due to dead load per foot depth of run,

6 6 1 6
,oD:(Exl_ZJrl—sz)wo_loolb

Note that the node dead load on the landing is less than 106 Ib but can be assumed to be equal to
Pp to simplify calculations. Due to live load peer foot depth of run, P = % X (120) = 100 Ib.

Factored load, P, = 1.2Pp + 1.6 P,
= 1.2x 106 + 1.6 x 100 =290 Ib
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2. Calculate the bending moments at midspan: Loads in this example are symmetrical about

midspan section B. Reaction at A, Ry is %(15)(290) =21751b = (7%P x 290)
Moment at B = R4(8S) — 7P,(45)
= 2.175(8 x 10) — 7(0.29)(4 x 10) = 92.8 K-in.

3. Calculate the reinforcement required at midspan section: For & = 6in.,d =6 — 1.0 = 5.0in,,

Ri=3d2 = Tagsop SO ps

For f! =3 ksi, f, = 60ksi, and R, = 309 psi, the steel ratio is p = 0.0061 < pmax = 0.0135
(¢ = 0.9).
A, = 0.0061 x 12 x 5.0 = 0.366 in.

Use no. 4 bars spaced at 6in. (4, = 0.39in.2) horizontally and vertically in closed stirrap form.
For distribution bars, use minimum p of 0.0018.

A; =0.0018 x 16 x 6 = 0.18 in.?

¢
| L4y
. 1 o
| B e
I Y 4 &
. ‘ 5
N 6 e
Y —
P 2 il Jen
P 8 xie
P, = 029K , r 's a
P P P s 7
V 6 f
PR R 5 , !
é ( 2 3 4
Ry = 1,; 4" >l 8% 10 = 80" e 40" >
2175 K
b 134 >

>

)

ol

=
—

s

Lok

5'0"

Plan

Up -

l qn N
* 134 >
{a) Plan and section X-X

Figure 18.21 Example 18.3.
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(b) Section in steps.

343 T
<6
o l 4
4 2
s ., a— — ey s 3#3each
/ R corner, all steps
#@8" "
” #@6
e all steps
Horizontally:
l\’ #4 @ 6"
7 all steps
Vertically:
#4@6"
all steps \

(c) Reinforcement details.

Figure 18.21 (continued)

Use no. 3 bars spaced at 6in. (A; = 0.22 in.?). For each step corner, use three no. 3 bars
(As = 0.33in.2), as shown in Fig. 18.21c.
4. The moments and reinforcement required for other sections can be prepared in table form, as

follows:
Location A 1 2 3 4 5 6 7 8
B.M. (K in.) 0 22 41 57 70 80 87 9] 92.8
R, (psi) 0 73 137 190 233 267 290 303 309
p (%) 0 0.18 0.26 0.38 046 0.52 0.58 0.60 0.61
A (in2) 0 0.11 0.16 0.23 0.28 0.31 0.35 036 037
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Use no. 4 bars at 8 in. for the landing and no. 4 bars at 6in. for the steps. For distribution bars,
use minimum p of 0.0018. For A; = 0.18in.2, use no. 4 bars spaced at 8in. in the landing.
Details of reinforcement are shown in Fig. 18.21c.

5. Check reinforcement required in the transverse direction of landing: Load per square foot on
the landing is 3%]- x 12 = 348 psf.

0.348
M, = -~§—(112)2 x 12 = 75 K.in.
75 x 1000
= 22X 250 psi =0. =0.29 in.2
Ry 13(5.0)2 pst p = 0.0049 A; =0.29 in

Use no. 4 bars spaced at 8in. (A4, = 0.29in.%)

6. If a uniform load is assumed to be acting on the flight of stairs, similar results will be obtained.
For example, ultimate node load was calculated to be 2901b acting over a 10-in. run width.

Load per foot is %%9 x 12 = 348 1b/ft. Maximum moment is at midspan, section B:

M, = 9%4—8(13.33)2 = 92.8 K-in.

Mements at other sections can be easily calculated, and the design can be arranged in a table
form, as explained in step 4.

SUMMARY

Sections 18.1-18.2

The different types of stairs are single and multiple flights, cantilever and precast concrete flights,
free-standing and helical staircases, and run-riser stairs.

Section 18.3

Design examples are presented in this section.
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PROBLEMS

18.1 Design a typical flight of the staircase shown in Fig. 18.22, which is a part of a multistory building.
The height between the concrete floors is 10ft (3.0 m). The stairs are supported at the ends of the
landings and carry a live load equal to 120 psf (5.75 kN/m?); fL =3 ksi (20MPa) and f, = 60ksi
(400 MPa)

18.2 Repeat Problem 18.1 if the stairs are supported by four transverse beams at A, B, C, and D and the
live load is increased to 150 psf (7.2 kN/m?).

18.3 The stairs shown in Fig. 18.23 are to be designed for a live load equal to 100 psf (4.8 kN/m). The
stairs are supported by beams, as shown. Design the stairs and the supporting beams for f] =3 ksi
(20MPa) and f, = 60ksi (400 MPa).

10 X 12” column

ﬁ/A C D

>

0 —> f—

L's}
10 X 6" risers _L
- 60” J §°
9 runs X 127 B, (I
= 108" T
1=
in
- ‘Le
1> [40"—>le 90" »le—2a'0" | 1

1907

h 4

Figure 18.22 Problem 18.1.

/ Beam £ Beam A ._L

] ' 0“ m T ]’ 0"

6 0"
I Beam C
Vo o h A
92—
10 runs X 11" = 110”
Beam B All columns g 3" 9runs X 11" = 99~

12 % 11” j
Beamn D Y

Ground level

Figure 18.23 Problem 18.3.
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Figure 18.24 Problem 18.4.

18.4 Design a typical flight of stairs in a public building for the staircase arrangement shown in Fig. 18.24.
The stairs are supported by central beams, A and B. Design only one flight and the supporting beams
A and B. The runs are 1.0ft (300 m) deep and the rises are 6.5in. high. Use f] =3 ksi (20 MPa),
fv = 60ksi (400 MPa), and a live load equal to 80 psf (3.85 kN/m?).
Note : Design the beams for bending moments and shear, and neglect torsional moments caused by
loading one-half of the steps.

18.5 Repeat Example 18.3 if the run is 12in. (300 mm) and the rise is 61in. (150 mm).

18.6 Repeat Example 18.3 if the landing is 5ft (6 x 10”), runs are 8.33ft (10 x 10”), risers at 5.5ft
(11 x €), and the live load is 120 psf.
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19.1.1 Principles of Prestressing

To prestress a structural member is to induce internal, permanent stresses that counteract the
tensile stresses in the concrete resulting from external loads: this extends the range of stress
that the member can safely withstand. Prestressing force may be applied either before or at
the same time as the application of the external loads. Stresses in the structural member must
remain, everywhere and for all states of loading, within the limits of stress that the material can
sustain indefinitely. The induced stresses, primarily compressive, are usually created by means of
hightensile steel tendons, which are tensioned and anchored to the concrete member. Stresses are
transferred to the concrete either by the bond along the surface of the tendon or by anchorages
at the ends of the tendon.

To explain this discussion, consider a beam made of plain concrete, which has to resist
the external gravity load shown in Fig. 19.1a. The beam section is chosen with the tensile
flexural stress as the critical criterion for design; therefore, an uneconomical section results.
This is because concrete is considerably stronger in compression than in tension. The maximum
flexural tensile strength of concrete, the modulus of rupture, f,, is equal to 7.5)\\/—f? (Fig. 19.1a).

In normal reinforced concrete design, the tensile strength of concrete is ignored and steel
bars are placed in the tension zone of the beam to resist the tensile stresses, whereas the concrete
resists the compressive stresses (Fig. 19.1b).

In prestressed concrete design, an initial compressive stress is introduced to the beam to
offset or counteract the tensile stresses produced by the external loads (Fig. 19.1¢). If the induced
compressive stress is equal to the tensile stress at the bottom fibers, then both stresses cancel
themselves, whereas the compressive stress in the top fibers is doubled; in this case, the whole
section is in compression. If the induced compressive stress is less than the tensile stress at the
bottom fibers, these fibers will be in tension, whereas the top fibers are in compression.

In practice, a concrete member may be prestressed in one of the following methods.

1. Posttensioning: In posttensioning, the steel tendons are tensioned after the concrete has
been cast and hardened. Posttensioning is performed by two main operations: tensioning
the steel wires or strands by hydraulic jacks that stretch the strands while bearing against
the ends of the member and then replacing the jacks by permanent anchorages that bear on
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the member and maintain the steel strands in tension. A tendon is generally made of wires,
strands, or bars. Wires and strands can be tensioned in groups, whereas bars are tensioned
one at a time. In the posttensioning process, the steel tendons are placed in the formwork
before the concrete is cast and the tendons are prevented from bonding to the concrete by
waterproof paper wrapping or a metal duct (sheath). Tendons bonded to the concrete are
called bonded tendons. Unbonded tendons, left without grout or coated with grease, have
no bond throughout the length of the tendon.

2. Pretensioning: In pretensioning, the steel tendons are tensioned before the concrete is cast.
The tendons are temporarily anchored against some abutments and then cut or released
after the concrete has been placed and hardened. The prestressing force is transferred to
the concrete by the bond along the length of the tendon. Pretensioning is generally done
in precasting plants in permanent beds, which are used to produce pretensioned precast
concrete elements for the building industry.

3. External prestressing: In external prestressing, the prestressing force is applied by flat jacks
placed between the concrete member ends and permanent rigid abutments. The member
does not contain prestressing tendons, as in the previous two methods (also called internal
prestressing). External prestressing is not easy in practice because shrinkage and creep in

concrete tend to reduce the induced compressive stresses unless the prestressing force can
be adjusted.

The profile of the tendons may be straight, curved (bent), or circular, depending on the
design of the structural member. Straight tendons are generally used in solid and hollow-cored
slabs, whereas bent tendons are used in beams and most structurai members. Circular tendons
are used in circular structures such as tanks, silos, and pipes. The prestressing force may be
applied in one or more stages, either to avoid overstressing concrete or in cases when the loads
are applied in stages. In this case, part of the tendons are fully prestressed at each stage.

A considerable number of prestressing systems have been devised, among them Freyssinet,
Magnel Blaton, B.B.R.V., Dywidag, CCL, Morandi, VSL, Western Concrete, Prescon, and
INRYCO. The choice of the prestressing system for a particular job can sometimes be a problem.
The engineer should consider three main factors that govern the choice of the system:

1. The magnitude of the prestressing force required
2. The geometry of the section and the space available for the tendons
3. Cost of the prestressing system (materials and labor)

The following example illustrates some of the features of prestressed concrete.

Example 19.1

For the simply supported beam shown in Fig. 19.2, determine the maximum stresses at midspan
section due to its own weight and the following cases of loading and prestressing:

1. A uniform live load of 900 Ib/ft

2. A uniform live load of 9001b/ft and an axial centroidal longitudinal compressive force of
P =259.2K

3. A uniform live load of 2100 1b/ft and an eccentric longitudinal compressive force P = 259.2K
acting at an eccentricity ¢ = 4in.

4. A uniform live load of 2733 Ib/ft and an eccentric longitudinal compressive force P = 259.2K
acting at the maximum practical eccentricity for this section (¢ = 6in.)
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5. The maximum live load when P = 259.2K acting at ¢ = 0in.

Use » = 12in., h = 24in., normal-weight concrete with f! = 4500 psi, and an allowable
f! = 2050 psi.

Solution

1. Stresses due to dead and live loads only are Self-weight of beam = (1 x 2) x 150 = 300 Ib/ft
wl?  0.300(24)

Dead-load moment Mp1, = 3 2 =21.6 K-t
Stresses at the extreme fibers are
_ Me  Mh/2) 6M
T 1 T bR3/12  bR?
6 % 21.6 x 12,000
= = +225 psi
op 12(24)° pet
225 675 Q00 psi
l 7 é Z“* +
BN 225 675 900 psi
N 7. 7
- 24 .
(@)
225 Q00 1125 675 1800 psi

24" -

NN

4 U4

225 %00 675 675 O psi
e=0 \
P= 2502 K Dead Prestress Live foad Finat

load (lcaded state)
— S
J > . - P
(Unloaded state) P=2502 K 71— e=0
7 h2 k2 ;
(b)

Figure 19.2 Example 19.1.
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| 225 0 225 1575 1800 psi
N / /
2 % =4 + B = - + =
%%
\ g
225 1800 1575 1875 0 psi
g=4" . .
_ Dead Prestress Live load Final
R=259.2K load (loaded state)
(Unloaded state)
(c)
225 450 228 2050 1825 psi
177878 U —
%% _ _ |
2 " _— —+— —
p y. V. _ .
bk +
' 225 2250 2050 2050 0 psi
e=¢" . .
Dead Prestress Live load Final
P=292K o (loaded state)
(Unloaded state)
(d)
225 450 225 2275 2050 psi
T%% 7 N XN - -
24" ,/ ,é + = + =
%/r@ = ¢ /
////j + B B + A ‘
225 2250 2050 2275 225 psi
e=¢ . )
_ Dead Prestress Live load final
P=202K  oud (loaded state)

(Unloaded state)
(e)
(continued)

Figure 19.2

Stresses due to the live load L, = 900 Ib/ft are

0.9(24)
LL = (24) = 64.8 K-ft
o OM _ 6 64.8 x 12,000
BT bRz 12(24)2

= +675 psi
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Adding stresses due to the dead and live loads (Fig. 19.2a) gives

Top stress = —225 — 675 = —900 psi  (compression)
Bottom stress = +225 + 675 = +900 psi  (tension)

The tensile stress is higher than the modulus of rupture of concrete, f, = 7.51,/f! = 503 psi;
hence, the beam will collapse.

2. In the case of stresses due to uniform prestress, if a compressive force P = 259.2K is applied
at the centroid of the section, then a uniform stress is induced on any section along the beam.

P _ 259.2 x 1000
area 12 x 24

op = = —900 psi (compression)

Final stresses due to live and dead loads plus prestress load at the top and bottom fibers are
1800 psi and O, respectively (Fig. 19.2b). In this case, the prestressing force has doubled the
compressive stress at the top fibers and reduced the tensile stress at the bottom fibers to 0. The
maximum compressive stress of 1800 psi is less than the allowable stress of 2050 psi.

3. For stresses due to an eccentric prestress (¢ = 4in.), if the prestressing force P = 259.2K is

placed at an eccentricity of ¢ = 4in. below the centroid of the section, the stresses at the top
and bottom fibers are calculated as follows. Moment due to eccentric prestress is Pe:

op = _.{ n {(Pe)c _ P 6(Pe)

A I A bh?
_ 2592 x 1000 N 6(259.2 x 1000 x 4)
12 x 24 12(24)2
= —900 £ 900
= —1800 psi

at the bottom fibers and 6 p = 0 at the top fibers. Consider now an increase in the live load of
Ly = 21001Ib/ft:

_21x (24)?

M. L = 151.2 K-ft

. _ 6(151.2 x 12,000)
L. = 12(24)2

Final stresses due to the dead, live, and prestressing loads at the top and bottom fibers are
1800 psi and O, respectively (Fig. 19.2c). Note that the final stresses are exactly the same as
those of the previous case when the live load was 900 ib/ft; by applying the same prestressing
force but at an eccentricity of 4in., the same beam can now support a greater live load (by
1200 1b/ft).

4. For stresses due to eccentric prestress with maximum eccentricity, assume that the maximum
practical eccentricity for this section is at ¢ = 6in., leaving a 2-in. concrete cover; then the
bending moment induced is Pe = 259.2 x 6 = 1555.2K-in. = 129.6 K-fi. Stresses due to the
prestressing force ate

259.2 x 1000 = 6 x (129.6 x 12,000)
12 x 24 12(24)?
= —900 & 1350 psi

==2250psi and <450 psi

op =
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Increase the live load now to Lz = 2733 1b/ft. The stresses due to the live load, L3, are
2.733 x (24)?

Mo = —5 = 1968 Kt
6(196.8 x 12,000 :
oL, = 3024y ) = 42050 psi

The final stresses at the top and bottom fibers due to the dead load, live load (L3), and the
prestressing force are 1825 psi and 0, respectively (Fig. 19.2d). Note that the final stresses are
about the same as those in the previous cases, yet the live load has been increased to 2733 Ib/ft.
A tensile stress of 225 psi is developed when the prestressing force is applied on the beam,
This stress is less than the modulus of rupture of concrete, f, = 503 psi; hence, cracks will not
develop in the beam.

5. The maximum live load when the eccentric force P acts at e = 6in. is determined as follows.
In the previous case, the final compressive stress is equal to 1825 psi, which is less than the
allowable stress of 2050 psi. Therefore, the live load may be increased to Ly = 3033 Ib/ft.

3.033 x (24)°

Mo = 3
6(218.4 x 12,000) .
- = +2275
L 12(24)2 .

Final stresses due to the dead load, live load (L4), and the prestressing force are —2050 psi and
+225 psi (Fig. 19.2¢). The compressive stress is equal to the allowable stress of 2050 psi, and
the tensile stress is less than the modulus of rupture of concrete of 503 psi. In this case, the
uniform live load of 3033 Ib/ft has been calculated as follows: Add the maximum allowable
compressive stress of 2050 psi to the initial tensile stress at the top fibers of 225 psi to get
2275 psi. The moment that will produce a stress at the top fibers of 2275 psi is equal to

M_g(ﬁ)
B 6

= 3?3(12)(24)2 = 2620.8 K-in. = 218.4 K ft

W, L2 8 x 2184
LY and Wy = *)(;4—)2 = 3.033 K/ft

Notes:

1. The entire concrete section is active in resisting the external loads.

2. The final tensile stress in the section is less than the modulus of rupture of concrete, which
indicates that a crackless concrete section can be achieved under full load.

3. The allowable load on the beam has been increased appreciably due to the application of the
prestressing force.

4. An increase in the eccentricity of the prestressing force will increase the allowable applied
load, provided that the allowable stresses on the section are not exceeded.

19.1.2 Partial Prestressing

A partially prestressed concrete member can be defined as one in which (1) there have been
introduced internal stresses to counteract part of the stresses resulting from external loadings,
(2) tensile stresses are developed in the concrete under working loads, and (3) nonprestressed
reinforcement may be added to increase the moment capacity of the member. That definition
implies that there are two cases that could be considered as partially prestressed concrete:
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1.

Partially prestressed concrete beams.

A combination of prestressed and nonprestressed steel is used in the same section. The pre-
stressed cables induce internal stresses designed to take only part of the ultimate capacity of
the concrete section. The rest of the capacity is taken by nonprestressed steel placed along
the same direction as the prestressed cables. The steel used as nonprestressed steel could
be any common grade of carbon steel or high-tensile-strength steel of the same kind as the
prestressing cables with ultimate strength of 250 ksi (1725 N/mm?). The choice depends on
two main factors; allowable deflection and allowable crack width. As for deflection, the ACI
Code specifies a maximum ratio of span to depth of reinforced concrete members. With the
smaller depth expected in partially prestressed concrete, and because a smaller steel percent-
age is used, excessive deflection under working loads must not be allowed. Cracks develop
on the tension side of the concrete section or at the steel level because tensile stresses are
allowed to occur under working loads. The maximum crack width that may be allowed is
0.016in. (0.41 mm) for interior members and 0.013 in. (0.33 mm) for exterior members.

Internal stresses act on the member from prestressed steel only, but tensioned to a lower limit.
In this case cracking develops earlier than in a fully prestressed member under similar loadings.

Partially prestressed concrete can be considered an intermediate form between reinforced

and fully prestressed concrete. In reinforced concrete members, cracks develop under working
loads; therefore, reinforcement is placed in the tension zone. In prestressed concrete members,
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Prestressing jack with a load cell.

cracks do not usually develop under working loads. The compressive stresses due to prestressing
may equal or exceed the tensile stresses due to external loadings. Therefore, a partially prestressed
concrete member may be considered a reinforced concrete member in which internal stresses
are introduced to counteract part of the stress from external loadings so that tensile stresses in
the concrete do not exceed a limited value under working load. It reduces to reinforced concrete
when no internal stresses act on the member. Full prestressing is an upper extreme of partial
prestressing in which nonprestressed reinforcing steel reduces to 0.

Between a reinforced cracked member and a fully prestressed uncracked member, there
exists a wide range of design in partial prestressing (Fig. 19.3). A proper choice of the degree
of prestressing will produce a safe and economical structure.

Figure 19.3 shows the load deflection curves of concrete beams containing different amounts
and types of reinforcement. Curve a represents a reinforced concrete beam, which normally
cracks at a small load W,,. The cracking moment M, can be determined as follows:

M, — frl

where

Jfr = the modulus of rupture of concrete = 7.51,/ f/
I = moment of inertia of the gross concrete section
¢ = distance from the neutral axis to the tensile extreme fibers

The cracking load can be determined from the cracking moment when the span and the
type of loading are specified. For a simply supported beam subjected to a concentrated load at
midspan, W, = (4M,,)/L.

Curves ¢ and f represent underreinforced and overreinforced fully prestressed concrete
beams, respectively. The overreinforced concrete beam fails by crushing of the concrete before
the steel reaches its yield strength or proof stress. The beam has small deflection and undergoes
brittle failure. The under-reinforced beam fails by the steel reaching its yield or ultimate strength.
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Load W

Ronge of prestressing:
@ = Reinkorced concrete
b = Partial prestressing with fengion
strass 1, > 7.50/7] ot senvice lad
¢ = Portiol preshessing, f, = 2.5 /17
at senvice load
d = Umied prestressing, 0 <7, < 78 /72
o' = Umited preshessing, 0 <f, < 67
@ = Full prestressing, f,= 0

& = il preshressing, 7., > 0
} {compresion siremes, NO fONEION )
Wer 1 = Overa0iniorced presiened beam

Deflection

Figure 19.3 Load-deflection curves of concrete beams with different prestressing.
The cracking load is We;.

It shows appreciable deflection and cracking due to elongation of the steel before the gradual
crushing of the concrete and the collapse of the beam.

Between curves a and e is a wide range of concrete beams with varying amounts of
reinforcement and subjected to varying amounts of prestress. The beam with little prestressing
is closer to curve a, while the beam with a large prestress is closer to curve e. Depending upon
the allowable concrete stress, deflection, and maximum crack width, a suitable combination of
prestressed and nonprestressed reinforcement may be chosen for the required design.

Curve b represents a beam that will crack under full working load. If only part of the live
load L occurs frequently on the structure, then W; represents the total dead load and that part
of the live load L;.

Curve c¢ represents a beam that starts cracking at working load. The maximum tensile stress
in the concrete = 7.5,/ f!.

Curve d represents a beam with limited prestress. The critical section of the beam will not
crack under full working load, but it will have a maximum tensile stress of 0 < f;, < 7.5,/ f/.

The maximum tensile stress in concrete allowed by the current ACI Code is 6,/ f/.

Curves e and ¢’ represent fully prestressed concrete beams with no tensile stress under
working loads. (See Fig. 19.4.)

The most important advantage of partial prestressing is the possibility of controlling camber.
By reducing the prestressing force, the camber will be reduced and a saving in the amount of the
prestressing steel, the amount of work in tensioning, and the number of end anchorages is realized.
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Prestressing bed for T-beam sections.

Depending on the magnitude of the prestressing force, earlier cracking may occur in par-
tially prestressed rather than in fully prestressed concrete members under service loads. Once
cracks develop, the effective moment of inertia of the critical section is reduced and a greater
deflection is expected. However, partial prestressing has been used with satisfactory results, and
its practical application is increasing.

19.1.3 Classification of Prestressed Concrete Flexural Members

The ACI Code, Section 18.3.3, divided prestressed concrete members into three classes based
on the computed extreme tensile fiber stress, f;, in the tension zone at service load as follows:

1. Class U (uncracked section), with f, < 7.5\/7(5. In this uncracked concrete section, the
gross section properties are used to check deflection at service load. No cracks will develop
in this section and no skin reinforcement is needed.

2. Class T (section in the transition zone), with 7.5,/ f < f, < 12,/ f!. This type of sections

has a tensile stress in concrete higher than the modulus of rupture of concrete, f, = 7.5,/ f!
producing a case between uncracked and cracked sections. In this case, the gross section
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Figure 19.4 Distribution of stresses in beams with varying amounts of prestressed
and nonprestressed reinforcement.

properties are used to check stresses, while the cracked section bilinear section is used to
calculate deflection. No skin reinforcement is needed in the tension zone.

3. Class C (Cracked section), with f;, > 12\/)7;. The tensile stress in the section exceeds 1.6
times the modulus of rupture. Therefore, cracks will develop as in the case of partially
prestressed concrete members. In this case a cracked section properties should be used to
check stresses, cracking, and deflection. Crack control provisions and skin reinforcement
should be used as explained in Section 6.7 for reinforced concrete members with the
effective depth of d > 361n.

19.2 MATERIALS AND SERVICEABILITY REQUIREMENTS

19.2.1 Concrete

The physical properties of concrete were discussed in Chapter 2. Although reinforced concrete
members are frequently made of concrete with a compressive strength of 3 to 5 ksi (21 to 35 MPa),
prestressed concrete members are made of higher strength material, usually from 4 to 8 ksi (28 to
56 MPa). High-strength concrete may be adopted for precast, prestressed concrete members where
components are prepared under optimum control of mixing concrete, placing, vibrating, and curing.

The allowable stresses in concrete according to the ACI Code, Section 18.4, are as follows.

1. Stresses after prestress transfer and before prestress losses:
a. Maximum compressive stress of 0.6 f;
b. Maximum compressive stress at ends of simply supported 0.7 f;
¢. Maximum tensile stress (experts as permitted below in d) of 3,/f,
d

. Maximum tensile stress at the ends of simply supported members of 6,/ f where f is
the strength of concrete at transfer
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If the maximum tensile stresses are exceeded in ¢ or d, then reinforcement must be provided
in the tensile zone to resist the total tensile force in concrete (based on uncracked gross
section).

2. Stresses at service loads after all losses (for class U and class T) are as follows: Maximum
compressive stress of 0.45 f; due to prestresses plus sustained loads and of 0.6,/ due to
prestress plus total load.

3. These stresses may be exceeded if it is shown by tests or analysis that performance is
satisfactory.

19.2.2 Prestressing Steel

The most common type of steel tendons used in prestressed concrete are strands (or cables)
made with several wires, usually seven or 19. Wires and bars are also used. The strands and
wires are manufactured according to ASTM Standard A42! for uncoated stress-relieved wires
and A416 for uncoated seven-wire stress-relieved strands. Properties of prestressing steel are
given in Table 19.1.

Table 19.1 Properties of Prestressing Steel, Nominal Diameters, Areas, and Weights

Diameter Area Weight Diameter Area Mass
Type (in.) {in.2) (Ib/ty) (mm)  (mm?) (kg/m)
Seven-wire strand (grade 250) }1 (0.250) 0.036 0.12 6.350 232 0.179

£ (0313) 0058 0.20 7950 374 0.298
2(0.375)  0.080 0.27 9.525 516 0.402
7% (0.438)  0.108 037 11125 69.7 0551

% (0.500) 0.14 0.49 12.700 92.9 0.729
(0.600) 0.216 0.74 15.240 139.4 1.101

Seven-wire strand (grade 270) 2(0375) 0085 0.29 9.525 548 0432
& (0438) 0115 040 11125 742 0595

105000 0153 0.53  12.700 987  0.789

(0.600) 0215 074 15250 1387 1.101

Prestressing wire grades (250) 0.192 0.029 0.10 4.877 18.7 0.146
(250) 0.196  0.030 0.10 4.978 194 0.149

(240) 0250  0.049 0.17 6.350 316 0253

(235) 0276  0.060 0.20 7.010 387  0.298

Prestressing bars (smooth) 2(0.750) 044 150 19.050 2839 2232
(grade 145 or 160) 3 (0.875)  0.60 204 22225 3871 3.036
1(1.000) 078 267 25400 5032 3973

13 (1.125)  0.99 338 28575 6387  5.030

11 (1.250)  1.23 417 31750 7935  6.206

12 (1.385) 148 505 34925 9548  7.5I1S

Prestressing bars (deformed) 2(0.625) 0.8 0.98 15.875 180.6 1.458
(grade 150-160) 307500 042 149 19050  271.0 2218
1(1.000) 085 301 25400 5484 4480

14 (1.2500  1.25 439 31750 8065 = 6.535

| % (1.385) 1.58 5.56 34925 1006 8.274
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Seven-wires prestressing strands (shipped in coils as shown).

Prestressing steel used in prestressed concrete must be of high-strength quality, usually of
ultimate strength, fpu, of 250ksi to 270ksi (1730-1860 MPa). High-strength steel is necessary
to permit high elongation and to maintain a permanent sufficient prestress in the concrete after
the inelastic shortening of the concrete.

The allowable stresses in prestressing steel according to the ACI Code, Section 18.5, are
as follows:

1. Maximum stress due to tendon jacking force must not exceed the smaller of 0.8 f,, or
0.94 fp,y. (The smaller value must not exceed that stress recommended by the manufacturer
of tendons or anchorages.)

2. Maximum stress in pretensioned tendons immediately after transfer must not exceed the
smaller of 0.74 fp, or 0.82 f,y.

3. Maximum stress in posttensioning tendons after tendon is anchored is 0.70 fj,y.

19.2.3 Reinforcing Steel

Nonprestressed reinforcing steel is commonly used in prestressed concrete structural members,
mainly in the prestressed, precast concrete construction. The reinforcing steel is used as shear
reinforcement, as supplementary reinforcement for transporting and handling the precast ele-
ments, and in combination with the prestressing steel in partially prestressed concrete members.
The types and allowable stresses of reinforcing bars were discussed in Chapters 2 and 5.

19.3 LOSS OF PRESTRESS

19.3.1 Lump-Sum Losses

Following the transfer of the prestressing force from the jack to the concrete member, a con-
tinuous loss in the prestressing force occurs; the total loss of prestress is the reduction in the
prestressing force during the lifespan of the structure. The amount of loss in tendon stress
varies between 15% and 30% of the initial stress, because it depends on many factors. For
most normal-weight concrete structures constructed by standard methods, the tendon stress loss
due to elastic shortening, shrinkage, creep, and relaxation of steel is about 35 ksi (241 MPa) for
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pretensioned members and 25 ksi (172 MPa) for posttensioned members. Friction and anchorage
slip are not included.

Two current recommendations for estimating the total loss in prestressed concrete members
are presented by AASHTO and the Posttensioning Institute (PTI). AASHTO [23] recommends a
total loss (excluding friction loss) of 45 ksi (310 MPa) for pretensioned strands and 33 ksi (228 MPa)
for posttensioned strands and wires when a concrete strength of £ = 5 ksi is used. The PTI [24]
recommends a total lump-sum prestress loss for posttensioned members of 35 ksi (241 MPa) for
beams and 30 ksi (207 MPa) for slabs (excluding friction loss). These values can be used unless a
better estimate of the prestress loss by each individual source is made, as is explained shortly.

In general, the sources of prestress loss are

Elastic shortening of concrete
Shrinkage of concrete

Creep of concrete

Relaxation of steel tendons
Friction

Anchorage set

*

19.3.2 Loss Due to Elastic Shortening of Concrete

In pretensioned members, estimating loss proceeds as follows. Consider a pretensioned concrete
member of constant section and stressed uniformly along its centroidal axis by a force F,. After
the transfer of the prestressing force, the concrete beam and the prestressing tendon shorten by
an equal amount, because of the bond between the two materials. Consequently, the starting
prestressing force F, drops to F; and the loss in the prestressing force is F,—F;. Also, the strain
in the concrete, &., must be equal to the change in the tendon strain, Ag;. Therefore, £. = Asg;,
or (f/E;) = (A f,/E;), and the stress loss due to the elastic shortening is

E nF; nF,
Afs:Eixfc="fc= A, ~ A:

(19.1)

where
A, = the area of the concrete section
n = E{/E. = modular ratio
Je = the stress in the concrete at the centroid of the prestressing steel

Multiply the stress by the area of the prestressing steel, Agp, to get the total force; then the elastic
loss is

nk, .
ES=F,— F, = Af;Agp = (nf)Ap ~ ( A )Asp (19.2)

F;=F, - (nfc)Asp (19.3)

For practical design, the loss in the prestressing force, A f; per unit Ay, may be taken to be
approximately nF,/A.. If the force F, acts at an eccentricity e, then the elastic loss due to the
presence of F, and the applied dead load at transfer is

ES = —(nf.)Ay (due to prestress) + (n f)Asp (dead load)
Fi  Feé

Mpe
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An approximate value of F; = (0.63 f,u)Asp may be used in the above equation.

1 2
Fo+ fe(DL)nAgp = F; [1 + nAg (Z + 67)] (19.5)
F = Fo+ (nAsp)fc(D'L’)

1 e
For posttensioned members where the tendons or individual strands are not stressed simul-
taneously, the loss of the prestress can be taken as half the value ES for pretensioned members.
Also, it is practical to consider the elastic shortening loss in slabs equal to one-quarter of

the equivalent pretensioned value, because stretching of one tendon will have little effect on the
stressing of the other tendons.

19.3.3 Loss Due to Shrinkage

The loss of prestress due to shrinkage is time dependent. It may be estimated as follows:
SH = Af; (shrinkage) = e E; (19.6)

where E, = 29 x 10° psi and &g, = shrinkage strain in concrete.

The average strain due to shrinkage may be assumed to have the following values: for
pretensioned members, eg,, = 0.0003; for posttensioned members, £, = 0.0002. If posttension-
ing is carried out within 5 to 7 days after concreting, the shrinkage strain can be taken to be
0.8e4,. If posttensioning is carried out between 1 and 2 weeks, e = 0.7e, can be used, and
if it occurs more than 2 weeks later, £g, = £, can be adopted. Shrinkage loss, SH, can also be
estimated as follows [28]:

0.06V
SH =8.2 x 10 K E, (1 — T) (100 — RH)

where V/S = volume-to-surface ratio and RH = average relative humidity. K¢, is 1.0 for pre-
tensioned members and is 0.8, 0.73, 0.64, and (.58 for posttensioned members if posttensioning
is carried out after 3, 10, 20, and 30 days, respectively.

19.3.4 Loss Due to Creep of Concrete

Creep is a time-dependent deformation that occurs in concrete under sustained loads. The devel-
oped deformation causes a loss of prestress from 5% to 7% of the applied force.

The creep strain varies with the magnitude of the initial stress in the concrete, the relative
humidity, and time. The loss in stress due to creep can be expressed as follows:

CR = Af; (creep) = C.(nf.) = ColeccEs) (19.7)

where )
creep strain, £

C. = creep coefficient = — - -
¢ P initial elastic strain, &;

The value of C, may be taken as follows 22.

Concrete strength f. < 4 ksi f; > 4 ksi

Relative humidity % 50% 100% 50%
C. 1-2 2-4 0.7-1.5 1.5-3
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Linear interpolation can be made between these values. Considering that half the creep
takes place in the first 134 months of the first 6 months after transfer and under normal humidity
conditions, the creep strain can be assumed for practical design as follows:

1. For pretensioned members, g, = 48 x 1077 stress in concrete (ksi).

2. For posttensioned members, £, = 36 x 107> x stress in concrete (ksi). This value is
used when posttensioning is made within 2 to 3 weeks. For earlier posttensioning, an
intermediate value may be uvsed.

These values apply when the strength of concrete at transfer is f/; > 4 ksi. When f, <
4 ksi, the creep strain should increase in the ratio of (4/actual strength).

Total loss of prestress due to creep = &, E; (19.8)

19.3.5 Loss Due to Relaxation of Steel

Relaxation of steel causes a time-dependent loss in the initial prestressing force, similar to creep
in concrete. The loss due to relaxation varies for different types of steel; its magnitude is usunally
furnished by the steel manufacturers. The loss is generally assumed to be 3% of the initial steel
stress for posttensioned members and 2% to 3% for pretensioned members. If test information
is not available, the loss percentages for relaxation at 1000 h can be assumed as follows:

1. In low-relaxation strands, when the initial prestress is 0.7 fp, and 0.8 f,,, relaxation (RE)
is 2.5% and 3.5%, respectively.

2. In stress-relieved strands or wire, when the initial prestress is 0.7 fy or 0.8 fp,, relaxation
(RE) is 8% and 12%, respectively.

19.3.6 Loss Due to Friction

With pretensioned steel, friction loss occurs when wires or strands are deflected through a
diaphragm. This loss is usually small and can be neglected. When the strands are defiected to
follow a concordant profile, the friction loss may be considerable. In such cases, accurate load
measuring devices are commonly used to determine the force in the tendon.

With posttensioned steel, the effect of friction is considerable because of two main factors:
the curvature of the tendon and the lack of alignment (wobble) of the duct. The curvature effect
may be visualized if a belt around a fixed cylinder is tensioned on one end with a force P3; then
the force, Py, at the other end to initiate slippage in the direction of P, is

P = Pyet¥r< (19.9)

where u = the coefficient of static angular friction and «,, = the angle between Py and P,. It
is a general practice to treat the wobbling effect similarly:

P, = P;e”(““""“-‘)

Pyy = PpetKlptipap)
Pyy = Py~ Kiptupap) (19.10)

where

P,; = the prestressing tendon force at any point x
P, = the prestressing tendon force at the jacking end
tp = curvature friction coefficient
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a p; = total angular change of prestressing tendon profile, in radians, from tendon jacking
end to any point x
length of curve

= radius of curvature
K = wobble friction coefficient per foot of the prestressing tendon

As an approximation, the ACI Code gives the following expression:
Pur = Ppi(1+ Klpx + tpaps)™"  (ACI Code, Eq. 18.2) (19.11)

provided that (1,0, + Klx) < 0.30.

The frictional coefficients o and K depend on the type of prestressing strands or wires,
type of duct, and the surface conditions. Some approximate values for 4 and K are given in the
ACIT Code, Section R.18.6.2, and in Table 19.2.

Friction loss in the jack is variable and depends on many factors, including the length of
travel of the arm over a given load range. The use of accurate load cells to measure directly
the force in the tendon is recommended. The use of pressure gauges may lead to inaccuracies
unless they are calibrated against a known force in the tendon.

The friction loss in the anchorage is dependent mainly upon the type of anchorage and the
amount of deviation of the tendon as it passes through the anchorage. This loss is usually small
and may be neglected. Guidance in particular cases should be obtained from the manufacturers.

19.3.7 Loss Due to Anchor Set

When the force in a tendon is transferred from the jack to the anchorage unit, a small inward
movement of the tendon takes place due to the seating of the gripping device or wedges. The
slippage causes a shortening of the tendon, which results in a loss in the prestressing force. The
magnitude of slippage varies between 0.1 and 0.25in. (2.5 and 6 mm) and is usually specified
by the manufacturer. The loss due to the anchor set may be calculated as follows:

AL
Af;- = QSES = T X E_;- (1912)

where

Age = magnitude of the anchor slippage
E, =29 x 106psi
L = length of the tendon

Table 19.2 Friction Coefficients for Posttensioned Tendons

Wobble Coefficient K
Type of Tendon Per Foot (x 107%) Curvature Coefficient x
Tendon in flexible meta! sheathing (grouted)
Wire tendons 1.0-1.5 0.15-0.25
Seven-wire strand 0.5-2.0 0.15-0.25
High-strength bars 0.1-0.6 0.08-0.30
Pregreased unbonded tendon
Wire tendons and seven-wire strand 0.3-2.0 0.05-0.15

Mastic-coated unbonded tendons
Wire tendons and seven-wire strand 1.0-2.0 0.05-0.15
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Because the loss in stress is inversely proportional to the length of the tendon (or approximately
half the length of the tendon if it is stressed from both ends simultaneously), the percentage loss
in steel stress decreases as the length of the tendon increases. If the tendon is elongated by Ae
at transfer, the loss in prestress due to slippage is neglected.

Example 19.2

A 36-ft-span pretensioned simply supported beam has a rectangular cross-section with 5 = 18in.
and £ = 32in. Calculate the elastic loss and all time-dependent losses. Given: prestressing force
at transfer is F; = 435K, area of prestressing steel is Aps = 3.0in.2, f/ =5 ksi, E, = 5000ksi,
E; = 29,000ksi, profile of tendon is parabolic, eccentricity at midspan = 6.0in., and eccentricity at
ends = 0.

Solution

1. Elastic shortening: Stress due to the prestrepssing force at transfer is

F; 435
— = =~ =145 ksi
L. . fs 145
Str tre teel = — = = (0.005
ain in prestressing stee E. = 29.000
Using Eq. 19.1,
E 2
= — = 9’000=5.8 or 6
E. 5000
i 435
Af, =20 _0x®5 s
A 32 x 18
Considering the variation in the eccentricity along the beam,
: 435
Strain at end of section = —— = =0.151 x 1072
in at end of section AL (18 % 32) = 5000 X
F; Fié?
Strain at midspan = AclEc + I‘;
bh®  18(32)%
= —_—= = 49,152 in.?
1 7 2 9,152 in
. 435(6)? _
=015l x 1073+ ————— =0215x 107
Strain 10 19.1526000) X

1
Average strain = 5(0.151 +0215) x 1073 =0.183 x 1072
Prestress loss = strain x E; = 0.183 x 1072 x 29,000 = 5.3 ksi

5.3
= — =366
Percent loss 145 %

2. Loss due to shrinkage:
Shrinkage strain = 0.0003
Afs = e Es = 0.0003 x 29,000 = 8.7 ksi

8.7
J? = — =
Percent loss 145 6%
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3. Loss due to creep of concrete: Assuming C. = 2.0, then A f; = Cc(eaEy)

F.
Elastic strain = A(::EC =0.151 x 1073

Af, = 2(0.151 x 107 x 29,000) = 8.8 ksi

Percent loss = —8—8 = 0.1%

145
Or, approximately, £, = 48 x 1073 x stress in the concrete (ksi):
435
= 107° =36 x 1073
Eer =48 X 10 (32x18) 6 x
Af, = e Es = 36 x 107° x 29,000 = 10.4 ksi
10.4

= — =72%

Percent loss 145 7.2%

This is a conservative value, and the same ratio is obtained if C. = 2.38 is adopted in the
preceding calculations.

4. Loss due to relaxation of steel: For low-relaxation strands, the loss is assumed to be 2.5%.
Af; =0.025 x 145 = 3.6 ksi

5. Assume the losses due to bending, friction of cable spacers, and the end block of the preten-
sioning system are 2%.
Af; =0.02 x 145 = 2.9 ksi

6. Loss due to friction in tendon is O.
7. Total losses are as follows.

Elastic shortening loss 5.3ksi 3.6%
Shrinkage loss 8.7 ksi 6.0%
Creep of concrete loss 8.8ksi 6.1%
Relaxation of steel loss 3.6ksi 2.5%
Other losses 2.9ksi 2.0%
Total losses 29.3 ksi 20.2%

Effective prestress = 145 — 24 = 121 ksi
Effective prestressing force F = 121 x 3in.2 = 363 ksi
F=(1-0.166)F, =0.834F;
For F = nF;, n = 0.834.

Example 19.3

Calculate all losses of a 120-ft-span posttensioned beam that has an I-section with the following
details. Area of concrete section (A.) = 760 in.2; moment of inertia (/) = 1.64 x 10° in.%; prestressing
force at transfer (F;) = 1110K; area of prestressing steel (Aps) = 7.5in.%; f = 5 ksi, E. = 5000 ksi,
and E; = 29,000ksi; profile of tendon is parabolic; eccentricity at midspan = 20in; and eccentricity
at ends = 0.
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Solution

1. Loss due to ¢lastic shortening:
Fi 1110

Steel stress at transfer = — = —— = 148 ksi

eel stress at transfer Ay 73 8 ksi
. . 1110 .
Stress in concrete at end section = -7~563 = 1.46 ksi

Stress in concrete at midspan = = +——-

Weight of beam = % x 150 = 790 Ib/ft

(120)?
8

Mp=10.79 = 1422 K-fi

. 1110 111020)2 (1422 x 12)(20)
Stress at midspan = -

760 164,000 164,000
= 1.46 +2.71 — 2.08 = 2.09 ksi
46 +2.09
Average stress = ]—-2—1_——-—— = 1.78 ksi
1.78 1.78
A in = =— =0356x107?
verage stran E. 3000 X

Elastic loss is A f; = ¢.E; = 0.356 x 103 x 29,000 = 10.3ksi, assuming that the tendons
are tensioned two at a time. The first pair will have the greatest loss, whereas the last pair will
have 0 loss. Therefore, average A f, = 10.3/2 = 5.15ksi.

5.15
t loss = — =3.5%
Percent loss a8 35

2. Loss due to shrinkage of concrete:

Afs (shrinkage) = 0.0002E; = 0.0002 x 29,000 = 5.8 ksi

Percent loss = ﬁ =39%

148
3. Loss due to creep of concrete: Assume C, = 1.5.
F; 1110
Elastic strain = ~— =0.92 x 107?

AE. 760 x 5000
Afs (creep) = C. (e Ey)

= 1.5(0.292 x 1073 x 29,000) = 12.7 ksi
12.7
Percent loss = — = 8.6%

148
4. Loss due to relaxation of steel: For low-relaxation strands, the loss is 2.5%.
Af; =0.025 x 148 = 3.7 ksi
S. Slip in anchorage: For tensioning from one end only, assume a slippage of 0.15in. The length
of the cable is 120 x 12 = 144Qin.
AL _ 0I5

Afs = T x Ey = 1440 % 29,000 = 3 ksi (19.12)
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To allow for anchorage slip, set the tensioned force to 148 + 3 = 151 ksi on the pressure gauge
to leave a net stress of 148 ksi in the tendons.

6. Loss due to friction: The equation of parabolic profile is
4e
ey = 72 (Lx — x2)

where ¢, = the eccentricity at a distance x measured from the support and e = eccentricity at
midspan.
dlex) 4de
— = (L =2
dx L? ( *)

is the slope of the tendon at any point. At the support, x = 0 and the slope

d(e,)_4e_ 4 x20 _
dx “L“120x12_0'056

The slope at midspan is 0; therefore, ap, = 0.056. Using flexible metallic sheath, 1, = 0.5
and K = 0.001. At midspan, x = 60 ft. Check if (u,0p, + Ki ) < 0.30:

ptp + Kl = 0.5 x 0.056 + 0.001 x 60 = 0.0088 < 0.3
Ppr = Poj(1 + Kl + ptptpy)
= P.(1 + 0.088) = 1.088P,
= 1.088 x 148 = 161 K (force at jacking end) (19.11)
Af, = 161 — 148 = 13 ksi

13
Percent loss = — = 8.8%

148
7. Total losses:
Elastic shortening loss 5.2ksi 3.5%
Shrinkage loss 5.8ksi 3.9%
Creep of concrete loss 12.7 ksi 8.6%
Relaxation of steel loss 3.7ksi 2.5%
Friction losses 13.0ksi 8.8%
Total losses 40.4 ksi 27.3%

Effective prestress = 148 — 35.2 = 112.8 ksi
Effective prestressing force(F} = (1 — 0.238)F; = 0.762F;
F=0762x 1110 =846 K
For F = nF;, n = 0.762.

19.4 ANALYSIS OF FLEXURAL MEMBERS

19.4.1 Stresses Due to l.oaded and Unloaded Conditions

In the analysis of prestressed concrete beams, two extreme loadings are generally critical. The
first occurs at transfer, when the beam 1is subjected to the prestressing force, F;, and the weight
of the beam or the applied dead load at the time of transfer of the prestressing force. No live
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load or additional dead loads are considered. In this unloaded condition, the stresses at the top
and bottom fibers of the critical section must not exceed the allowable stresses at transfers, fi
and f;, for the compressive and tensile stresses in concrete, respectively.

The second case of loading occurs when the beam is subjected to the prestressing force
after all losses F and all dead and live loads. In this loaded condition, the stresses at the top
and bottom fibers of the critical section must not exceed the allowable stresses, f. and f;, for
the compressive and tensile stresses in concrete, respectively.

These conditions can be expressed mathematically as follows.

1. For the unloaded condition (at transfer):

« At top fibers,
E n (Fie)y; _ Mpy,
A 1 f

< fa (19.14)

= —

» At bottom fibers,

F,  (Fe) Mpv
op = —X‘ - ‘I Y + ;)}' > — fe (19.15)

2. For the loaded condition (all loads are applied after all losses):
+ At top fibers,

F a9y _ Mpy Miy

Oy = ——

A I I I -

—f. (19.16)

« At bottom fibers,

F (Fe)yp My My
- _ < 19.16
Op = ! 7 + ] + ;] = I ( )

where

F; and F = the prestressing force at transfer and after all losses
fi and f, = allowable tensile stress in concrete at transfer and after all losses
fei and f, = allowable compressive stress in concrete at transfer and after ail
losses
Mp and M; = moments due to dead load and live load
y: and y, = distances from the neutral axis to the top and bottom fibers

In this analysis, it is assumed that the materials behave elastically within the working
range of stresses applied.

19.4.2 Kem Limits

If the prestressing force is applied at the centroid of the cross-section, uniform stresses will
develop. If the prestressing force is applied at an eccentricity, e below the centroid such that
the stress at the top fibers is equal to 0, that prestressing force is considered acting at the lower
Kern point (Fig. 19.5). In this case ¢ is denoted by K, and the stress distribution is triangular,
with maximum compressive stress at the extreme bottom fibers. The stress at the top fibers is
5 = —ﬂ-l- (Fie)ye _
A ! I (19.17)
e = K, =lower Kern = —
Ay;
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Similarly, if the prestressing force is applied at an eccentricity ¢’ above the centroid such that
the stress at the bottom fibers is equal to 0, that prestressing force is considered acting at the
upper Kern point (Fig. 19.5). In this case the eccentricity it ¢’ is denoted by K, and the stress
distribution is triangular, with maximum compressive stress at the extreme top fibers. The stress
at the bottom fibers is
/

oy = _%_{_(F:i)yb -0

I (19.18)

= K = er Kern = ——
e ¢ == upp ™

The Kern limits of a rectangular section are shown in Fig. 19.5.

19.4.3 Limiting Values of Eccentricity

The four stress equations, Eqs. 19.13 through 19.16,can be written as a function of the eccentricity
e for the various loading conditions. For example, Eq. 19.13 can be rewritten as follows:

F; Fie M
Uti=——“+( i ))’r_ DY < fu

A I I
(fie)y: Mpy,
I

I
1 Fi  Mpy
e< e ; 19.19
s (G s (19.19)
If the lower Kern limit K, = I/Ay, is used, then
Mp fuAK,

<K 19.20
e < Kp+ F, + F ( )
This value of ¢ represents the maximum eccentricity based on the top fibers, unloaded condition.

F;
_<_fti+X+

e = K, = Lower Ketn

_Centrold |
e= K, i (> {
fe | S
(o) I yhi6=K
irglé -
1
|
C [ blbji \blé
. e=x}] !
Cenfroid [T @' = K; = Upper Kemn b
—_ «©)
0
(b}

Figure 19.5 Kern points: (a) lower, (b) upper, and (¢} central.
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Similarly, from Eq. 19.14,

I F M
e < — ('X + ?y” + fd) (19.21)

JiAK;
< —K, + —
A
This value of e represents the maximum eccentricity based on the bottom fibers, unloaded
condition. The two maximum values of ¢ should be calculated from the preceding equations and
the smaller value used.
From Eq. 19.15,

(19.22)

I F MTy,
> {= -~ f. 19.23
e > 5, (A + f) ( )
Mr fCAKb
> K e 19.24
e s+ F 7 ( }

where My = moment due to dead and live loads = (Mp + M, ). This value of ¢ represents the
minimum eccentricity based on the top fibers, loaded condition. From Eq. 19.17,

I F Mryb
P - 19.25
= Fr ( it f‘) (19:2)
M'}‘ f}AK,
> K — 19.26
€ : + F F ( )

This value of e represents the minimum eccentricity based on the bottom fibers, loaded condition.
The two minimum values of e should be calculated from the preceding equations and the larger
of the two minimum eccentricities used.

19.4.4 Limiting Values of the Prestressing Force at Transfer F;

Considering that F = nF;, where n represents the ratio of the net prestressing force after all
losses, and for the different cases of loading, Egs. 19.20, 19.22, 19.24, and 19.26 can be rewritten
as follows:

(e — Kp)F; < Mp + fiAKy (19.27)
(e+ K)F; < Mp + fuAK, (19.28)
Mp My
(e — KpF; > — + —= — (chK} (19.29)
n noon
Mp M, 1
(e+ K)F; > TD + TL - ;(f,AK, (19.30)

Subtract Eq. 19.29 from Eq. 19.32 to get

1 M AK
) L S f_ pAK,

F.—(Kb+K,)2MD(——1 +=£ -
n n n

1 1 M (f,AK;) ]
> — -1\ M - — (fiiAK 19.31
Ky + Ky) [( ) Pt n (fulKo) (1550

or
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This value of F; represents the minimum value of the prestressing force at transfer without
exceeding the allowable stresses under the loaded and unloaded conditions. Subtract Eq. 19.29
from Eq. 19.28 toget

1 1 My chKb) ]
Fi<——|{1=—=) Mp - SAK, 19.32
<(Kb+K:) [( n) S +( n + (. ) ( )

This value of F; represents the maximum value of the prestressing force at transfer without
exceeding the allowable stresses under the loaded and unloaded conditions. Subtracting Eq. 19.31
from Eq. 19.32,

(1 :}) 21\419—%+(fn ff) AKb+(fci J;') AK, >0 (19.33)

This equation indicates that (maximum ;) — (minimum F;) > 0. If this equation is checked
for any given section and proved to be satisfactory, then the section is adequate.

Example 194

A pretensioned simply supported beam of the section shown in Fig. 19.6 is to be used on a span of
48 ft. The beam made with normal-weight concrete must carry a dead load of 900Ib/ft (excluding
its own weight), which will be applied at a later stage, and a live load of 11001b/ft. Assuming that
prestressing steel is made of 20 tendons that are 716in. in diameter, with E; = 29 x 108 psi, F, =
175ksi, and ultimate strength fp, = 250Kksi, it is required to do the following:

1. Determine the location of the upper and lower limits of the tendon profile (centroid of the
prestressing steel) for the section at midspan and for three other sections between the midspan
section and the beam end.

2. Locate the tendon to satisfy these limits by harping some of the tendons at one-third points of
the span. Check the limiting values of the prestressing force at transfer.

3. Revise the prestress losses, taking into consideration the chosen profile of the tendons and the
variation of the eccentricity, e.
Use £ (at transfer) = 4ksi, f. =5 ksi, E. = 4000ksi, and E; = 3600ksi.

Solution
1. Determine the properties of the section:
Area = 18 x 6 + 24 x 6+ 12 x 10 = 372 in?

Determine the centroid of the section by taking moments about the base line.
1
Vb = 5(120x5+l44><22+108x37)=20.8 in.
v =40-20.8= 192 in.

Calculate the gross moment of inertia, /,:

3 3 3
zg=[18(6) +108(16.2)2]+[6(22) + 144(1. 2)2] []2(1120) +120(15.8)2]

12
= 66,862 in.?
! 66,862
=—=——-—-=941in.
Ke =y = 3% 192 0
! 66,862
K,:—:L-:s.éin.

Ayy,  372x20



