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5. Confinement of bars by lateral ties. Adequate confinement by ties or stirrups prevents the
spalling of concrete around bars.

7.2 DEVELOPMENT OF BOND STRESSES

7.2.1 Flexural Bond

Consider a length dx of a beam subjected to uniform loading. Let the moment produced on one
side be M and on the other side be M, with M, being greater than M>. The moments will
produce internal compression and tension forces, as shown in Fig. 7.1. Because M) is greater
than M, T| is greater than 73; consequently, C is greater than 5.

At any section, T = M/jd, where jd is the moment arm:

aM
T] - Tz - dT = —_
jd
but
Ti=T,4+uX0dx
where « is the average bond stress and £ O is the sum of perimeters of bars in the section at
the tension side. Therefore,
aM
T —hHh=uXO0dx = —
jd
aM o l
U= -—
dx jdZoO

The rate of change of the moment with respect to x is the shear, or dM/dx = V. Therefore,
1%
H =
Jjdz o
The value u is the average bond stress; for practical calculations, j can be taken to be approxi-
mately equal to 0.87:

(7.1)
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Figure 7.1 Flexural bond.
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In the strength design method, the nominal bond strength is reduced by the capacity reduction

factor, ¢ = 0.85. Thus,
Vi

U= #(0.87)dX 0

(7.2)

Based on the preceding analysis, the bond stress is developed along the surface of the reinforcing

bar due to shear stresses and shear interlock.

7.2.2 Tests for Bond Efficiency

Tests to determine the bond stress capacity can be made using the pullout test (Fig. 7.2). This
test evaluates the bond capacity of various types of bar surfaces relative to a specific embedded
length. The distribution of tensile stresses will be uniform around the reinforcing bar at a specific
section and varies along the anchorage length of the bar and at a radial distance from the surface
of the bar (Fig. 7.2). However, this test does not represent the effective bond behavior in the
surface of the bars in flexural members, because stresses vary along the depth of the concrete
section. A second type of test can be performed on an embedded rod (Fig. 7.3). In these tests, the
tensile force, P, is increased gradually and the number of cracks and their spacings and widths
are recorded. The bond stresses vary along the bar length between the cracks. The strain in the
steel bar is maximum at the cracked section and decreases toward the middle section between

cracks.
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Figure 7.2 Bond stresses and development length. (a) Distribution of stress along /y
and (b) radial stress in concrete around the bar.
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Strain distribution
in steel

Strain distribution
in concrete

Stress distribution for

Bond

Concrete

Steel

(b)

Figure 7.3 Bond mechanism in an embedded bar. Strain (a) and stress (b) distribution
between cracks.
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Figure 7.4 Examples of spalling of concrete cover. (a) High bottom cover, (b) wide
spacing, and (c) small bottom cover.

Tests on flexural members are also performed to study the bond effectiveness along the
surface of the tension bars. The analysis of bond stresses in the bars of these members was
explained earlier, and they are represented by Eq. 7.2.

Based on this discussion, it is important to choose an appropriate length in each reinforcing
bar to develop its full yield strength without a failure in the bond strength. This length is called
the development length, 1,. If this length is not provided, the bond stresses in the tension zone
of a beam become high enough to cause cracking and splitting in the concrete cover around
the tension bars (Fig. 7.4). If the split continues to the end of the bar, the beam will eventually
fail. Note that small spacings between tensile bars and a small concrete cover on the sides and
bottom will reduce the bond capacity of the reinforcing bars (Fig. 7.4).

7.3 DEVELOPMENT LENGTH IN TENSION

7.3.1 Development Length, Iy

If a steel bar is embedded in concrete, as shown in Fig. 7.2, and is subjected to a tension force
T, then this force will be resisted by the bond stress between the steel bar and the concrete. The
maximum tension force is equal to A fy, where A is the area of the steel bar. This force is
resisted by another internal force of magnitude U, Oly, where U, is the ultimate average bond
stress, I, is the embedded length of the bar, and O is the perimeter of the bar (7 D). The two
forces must be equal for equilibrium:

As fy
A f, =U,0I d ;= :
5 4 S M=
For a combination of bars,
As Iy
[ — = i
¢ s (7.3)

The length I, is the minimum permissible anchorage length and is called the development length.
g, dj fy _dpfy

4U,(ndp)  4U,
where dj, = diameter of reinforcing bars.

Ly (7.4)
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This means that the development length is a function of the size and yield strength of the
reinforcing bars in addition to the ultimate bond stress, which in turn is a function of ./f7. The
bar length {; given in Eq. 7.4 is called the development length, ;. The final development length
should also include the other factors mentioned in Section 7.1. Equation 7.4 may be written as

follows:
la‘ fy
— =K 75
l (f) )

where K is a general factor that can be obtained from tests to include factors such as the bar
characteristics (bar size, spacing, epoxy coated or uncoated, location in concrete section, and
bar splicing), amount of transverse reinforcement, and the provision of excess reinforcement
compared to that required from design.

The ACI Code, Section 12.2.3, evaluated K as follows:

—_— 3 wf"lfews
“= (a0r) G ko 79
dp

and Eq. 7.5 becomes

o _ 3 f  Wbeys
dy ~ 400 /f! (Cb + K.r)

dp

7.7

where

Y, = bar location
¥, = coating factor
s = bar-size factor
A = lightweight aggregate concrete factor (ACI Code, Section 8.6.1)
= 1.0 normal-weight concrete
= shall not exceed 0.75 unless splitting tensile strength is specified, then
A= fu/(67/f) <1
¢p = spacing or cover dimension (in.), whichever is smaller
K, = transverse reinforcement index '
= 40A,/sn
n = number of bars or wires being developed along the plane of splitting
s = maximum spacing of transverse reinforcement within I, center to center (in.).
Sy = yield strength of transverse reinforcement (psi)

Ay = total sectional area of all transverse reinforcement within spacing s that crosses the
potential plane of splitting through to the reinforcement being developed (in.?)

Notes:

1. (cp + Ky )/dy shall not exceed 2.5 to safeguard against pullout-type failures.

2. The value of \/f7 shall not exceed 100 psi (ACI Code, Section 12.1.2).
3. K = 0 can be used as a design simplification (ACI Code, Section 12.2.3).
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7.3.2 ACI Code Factors for Calculating /4 for Bars in Tension

1. i, = bar location factor
¥ = 1.3 for top bars defined as horizontal reinforcement, placed so that more than
12 in. of fresh concrete is below the development length, or splice
¥, = 1.0 for all other reinforcement
2. 1, = coating factor
W. = 1.5 for epoxy-coated bars or wires with cover less than 3d; or clear spacing
less than 6d}
¥, = 1.2 for all other epoxy coated bars or wires
¥. = 1.0 for uncoated and zinc-coated (galvanized) reinforcement (However, the vaiue
of the product ¥, should not exceed 1.7)
3. o, = bar size factor
W, = 0.8 for no. 6 bars or smaller bars and deformed wires
¥, = 1.0 for no. 7 bars and larger bars
4. 1 = lightweight aggregate concrete factor
A = A shall not exceed 0.75 unless f,, is specified
A = 1.0 for normal-weight concrete

5. The ACI Code permits using K, = 0 even if transverse reinforcement is present. In this case,

b (2)(L) (e
i~ (w0) (\/?) G/ (70

The value of ./f/ should not exceed 100 psi.

6. R, is the reduction factor due to excess reinforcement. The ACI Code, Section 12.2.5,
permits the reduction of /; by the factor Ry when the reinforcement in a flexural mem-
ber exceeds that required by analysis, except where anchorage or development for f, is
specifically required or the reinforcement is designed considering seismic effects.

_ A; (required)
$TA (provided)
7. The development length, Z4, in all cases shall not be less than 12in.

7.3.3 Simplified Expressions for ly

The ACI Code, Section 12.2.2, permits the use of simplified expressions to calculate the ratio
I7/dy. This is based on the fact that current practical construction cases utilize spacing and cover
values along with confining reinforcement, such as stirrups and ties, that produce a value of (¢,
+ Ku)ldy > 1.5. Moreover, tests indicated that the development length, /;, can be reduced by
20% for no. 6 and smaller bars. Based on these assumptions and assuming (¢, + Ky)dp = 1.5,
Eq. 7.7 can be reduced to the following expressions:

b S\ ¥be
dy _( f;) 201 (7.8)

For no. 6 and smaller bars and deformed wires,

Id _ fy IIIIWe
dy (m) 25A (7.9)

1. For no. 7 and larger bars,
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The ratio 1;/dy in Eq. 7.9 represents 80% of that in Eq. 7.8. These equations are used
when one of the following conditions is met:

a. Clear spacing of bars or wires being developed or spliced not less than dy, clear cover
not less than dp, and stirrups or ties throughout /; not less than the code minimum.

b. Clear spacing of bars or wires being developed or spliced not less than 2d; and clear
cover not less than dp.

2. For all other cases, the value of I;/d;, in Eqs. 7.8 and 7.9 must be multiplied by 1.5 to
restore them to equivalence with Eq. 7.7.

These equations are relatively simple to use for the general conditions involved in practical
design and construction. For example, in all structures with normal-weight concrete (¢, = 1.0),
uncoated reinforcement (1, = 1.0), no. 7 or larger bars (¢, = 1.0), Eq. 7.8 becomes

la _ Jy (7.10)

dy  QOA/FD

This equation is used when conditions a and & are met, whereas for all other cases, {;/d} is
multiplied by 1.5, or

)
la _ 35 (7.11)
dp  (40L/fD
Similarly, for the same conditions and for no. 6 or smaller bars, Eq. 7.9 becomes
a__ b (7.12)

s (250/F])

This is used when conditions @ and b are met, for all other cases, I;/d; is multiplied by 1.5, or
Iy 3fy

dy ~ (501/f7)

It is quite common to use f! =4 ksi and f, = 60 ksi in the design and construction of
reinforced concrete buildings. If these values are substituted in the preceding equations, and
assuming normal-weight concrete (A = 1.0) then

(7.13)

Equation 7.10 becomes 1y = 47.5d, (> no. 7 bars). (7.10a)
Equation 7.11 becomes 1y =71.2d, (> no. 7 bars). (7.11a)
Equation 7.12 becomes 13 = 38dy (< no. 6 bars). (7.12a)
Equation 7.13 becomes lg =57d, (< no. 6 bars). (7.13a)

Other values of i;/d}, ratios are shown in Table 7.1. Table 7.2 gives the development length, Iy,
for different reinforcing bars (when f, = 60 ksi and f; = 3 ksi and 4 ksi) for both cases, when
conditions a and b are met and for all other cases.

7.4 DEVELOPMENT LENGTH IN COMPRESSION

The development length of deformed bars in compression is generally smaller than that required
for tension bars, due to the fact that compression bars do not have the cracks that develop in
tension concrete members that cause a reduction in the bond between bars and the surrounding
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Table 7.1 Values of /y/d;, for Various Values of f; and f, (Tension Bars), (A = 1.0}
fy = 40 ksi f, = 60 ksi
No. 6 Bars > No. 7 Bars No. 6 Bars > No. 7 Bars
fe Conditions Other Conditions Other Conditions Other Conditions Other
{ksi} met cases met cases met cases met cases
3 29.3 43.9 36.6 54.8 439 65.8 54.8 82.2
4 25.3 38.0 31.7 47.5 38.0 57.0 475 712
5 22.7 340 28.3 425 34.0 51.0 42.5 63.7
6 20.7 31.0 25.9 38.8 31.0 46.5 38.8 58.1
Table 7.2 Development Length /4 (in.) for Tension Bars and f, = 60 ksi ({y = e = A = 1.0)
Development Length I3 (in.) — Tension Bars
Bar f, = 3ksi f;, =4 ksi
Bar diameter Conditions Other Conditions Other
number (in.) met cases met cases
3 0.375 17 25 15 21
4 0.500 22 33 19 29
5 0.625 28 41 24 36
6 0.750 33 50 29 43
7 0.875 48 72 42 63
8 1.000 55 83 48 72
9 1.128 62 93 54 81
10 1.270 70 105 61 92
11 1.410 78 116 68 102

concrete. The ACI Code, Section 12.3.2, gives the basic development length in compression for
all bars as follows:

lac

_ 0.02ds fy

vy

> 0.0003d, f,

(7.14)

which must not be less than 8in. The development length, /4, may be reduced by multiplying
la. by R, = (A, required)/(As provided). For spirally reinforced concrete compression members
with spirals of not less than i in. diameter and a spacing of 4in. or less, the value of /4 in Eq.
7.14 may be multiplied by Ry = 0.75. In general, I; = lic X (R; or Ry, if applicable} > 8in.
Tables 7.3 and 7.4 give the values of Iy./d, when f, = 60 ksi.

Table 7.3 Values of I4/dp for Various Values of £, and f, (Compression Bars), 2 = 1.0, Minimum /ge =
8in. lac/dp = 0.02f,/1,/T; > 0.0003f,

fl(ksi)
fy =40 ksi
fv = 60 ksi

3
15
22

13
19

5 or more

12
18
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Table 7.4 Development Length, /4. (in.), for Compression Bars {f, = 60 ksi), A = 1.0

Development Length, /4. (in.) when f, =

Bar number Bar diameter (in.} 3 (ksi) 4 (ksi) 5§ (ksi) or more
3 0.375 9 8 8
4 0.500 11 10 9
5 0.625 i4 12 12
6 0.750 17 15 14
7 0.875 20 17 16
8 1.000 22 19 18
9 1.128 25 22 21
10 1.270 28 25 23
1 1.410 31 27 26

7.5 SUMMARY FOR THE COMPUTATION OF /4 IN TENSION

Assuming normal construction practices, (¢, + Ky )dp = 1.5.

1. If one of the following two conditions is met:
a. Clear spacing of bars > dp, clear cover > dj, and bars are confined with stirrups not

less than the code minimum.
b. Clear spacing of bars > 24, and clear cover > dj; then

for no. 7 and larger bars, [ﬁ = e fy
dy  200/f!
for no. 6 or smaller bars, la = Yiely
dy  25\/F!

For all other cases, multiply these ratios by 1.5.

(7.8)

7.9

Note that f! < 100 psi and ¥, < 1.7; values of v, ¥, and X are as explained earlier.
For bundled bars, either in tension or compression, I; should be increased by 20% for
three-bar bundles and by 33% for four-bar bundles. A unit of bundled bars is considered
a single bar of a diameter and area equivalent to the total area of all bars in the bundle.
This equivalent diameter is used to check spacings and concrete cover.

Example 7.1

Figure 7.5 shows the cross-section of a simply supported beam reinforced with four no. 8 bars that
are confined with no. 3 stirrups spaced at 6in. Determine the development length of the bars if the
beam is made of normal-weight concrete, bars are not coated, fl=3ksi, and fy = 60 ksi.

Solution

1. Check if conditions for spacing and concrete cover are met:
a. For no. 8 bars, d;, = 1.0in.
b. Clear cover = 2.5 — 0.5 = 2.0in. > d}
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Figure 7.6 Example 7.1.

12-5

-1.0=133 in. > 4,

d. Bars are confined with no. 3 stirrup. The conditions are met. Then

¢. Clear spacing between bars =

é.‘:': = % (for bars > no. 7) (7.8)

2. Determine the multiplication factors: ¥, = 1.0 (bottom bars), ¢, = 1.0 (no coating), and X =
1.0 {(normal-weight concrete). Also check that \/Tc’ = 54.8 psi < 100 psi.
la 60, 000
dp (20 x 1 x /3000)

So, I; = 54.8(1.0) = 54.8in., say, 55in. These values can be obtained directly from Tables 7.1
and 7.2. Note that if the general formula for I;/d, (Eq. 7.7) is used, assuming K, = 0, then

:d _ i fy 1/’111’"9
d (4m) (ﬁ) (cb/db) o

In this example, ¢; = ¥, =A = 1.
Also, ¢; = smaller of distance from center of bar to the nearest concrete surface (c;) or one-half
the center-to-center of bars spacing (¢2).

_ 05012 -5)
B 3
Hllcy + Keldy = 1.17/1.0 = 1.17 < 1.5, so use (¢p + Kw)idy, = 1.5. Consequently, {;/d, =
60.000(20%,/f)) as in step 2, and [y = 55in.

Note : If the bars are not confined by stirrups, this value of /; must be multiplied by 1.5 (s =
1.33in. < 2dp = 2.0in.).

=548

cp=25in. ¢ = 1.17 in. (controls}

Example 7.2

Repeat Example 7.1 if the beam is made of lightweight aggregate concrete, the bars are epoxy coated,
and A, required from analysis is 2.79in.?
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Solution

1. Determine the multiplication factors: ¥, = 1.0 (bottom bars), ¥, = 1.5 (epoxy coated),
A = 0.75 (lightweight aggregate concrete), and R; = (A; required)/(A; provided) = 2.7/
3.14 = 0.89. The value of ¥, is 1.5, because the concrete cover is less than 3d, = 3in. Check
that ¥, ¢, = L.O(L.S) = 1.5 < 1.7.

2.
b (RO o )
dy  20A/F
0.89(1.0)(1.5)(60, 000) . '
- =73.1in, say,74 in.
((20)(0.75)+/3000) ., say,74in

3. The development length /; can be obtained from Table 7.2 (I; = 55 in. for no. 8 bars) and then
divided by the factor 0.75.

Example 7.3

A reinforced concrete column is reinforced with eight no. 10 bars, which should extend to the
footing. Determine the development length needed for the bars to extend down in the footing. Use
normal-weight concrete with f = 4 ksi and f, = 60 ksi.

Solution

The development length in compression is

0.024, £,
lo6e = ———— > 0.0003d,
de W7 > ‘ b Sy
_ 0.02(1.27)(60, 000)
(1)4/4000

The minimum /y. is 0.0003(1.27)(60,000) = 22.86in., but it cannot be less than 8in. Because there
are no other muitiplication factors, then {; = 24.11n., or 25 in. (The same value is shown in Table 7.4.)

=24.1 in. (controls)

7.6 CRITICAL SECTIONS IN FLEXURAL MEMBERS

The critical sections for development of reinforcement in flexural members are

+ At points of maximum stress

« At points where tension bars within the span are terminated or bent
+ At the face of the support

« At points of inflection at which moment changes signs

The critical sections for a typical uniformly loaded continuous beam are shown in Fig. 7.6. The
sections and the relative development lengths are explained as follows:

1. Three sections are critical for the negative moment reinforcement: Section 1 is at the face
of the support, where the negative moment as well as stress are at maximum values. Two
development lengths, x; and x;, must be checked.
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Figure 7.6 Critical sections (circled numbers) and development lengths (X; — Xa).

Section 2 is the section where part of the negative reinforcement bars can be termi-
nated. To develop full tensile force, the bars should extend a distance x; before they can
be terminated. Once part of the bars are terminated, the remaining bars develop maximum
stress.

Section 3 is at the point of inflection. The bars shall extend a distance x3 beyond
sectlon 3:x3 must be equal to or greater than the effective depth, d, 12 bar diameters, or

76 clear span, whichever is greater. At least one-third of the total reinforcement provided
for negative moment at the support shall be extended a distance x3 beyond the point of
inflection, according to the ACI Code, Section 12.12.3.

2. Three sections are critical for positive moment reinforcement: Section 4 is that of maximum
positive moment and maximum stresses. Two development lengths, x; and x;, have to be
checked. The length x; is the development length I; specified by the ACI Code, Section
12.11, as mentioned later. The length x; is equal to or greater than 4 or 12 bar diameters.

Section 7.5 is where part of the positive reinforcement bars may be terminated. To
develop full tensile force, the bars should extend a distance x2. The remaining bars will
have a maximum stress due to the termination of part of the bars. At the face of support,
section 7.1, at least one-fourth of the positive moment reinforcement in continuous members
shall extend along the same face of the member into the support, according to the ACI
Code, Section 12.11.1. For simple members, at least one-third of the reinforcement shall
extend into the support.

At points of inflection, section 7.6, limits are according to Section 12.11.3 of the ACI
Code.
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Example 7.4

A continuous beam has the bar details shown in Fig. 7.7. The bending moments for maximum positive
and negative moments are also shown. We must check the development lengths at all critical sections.
Given: f] = 3 ksi normal-weight concrete, fy, = 40 ksi, b = 12in., d = 18in., and span L = 24ft.

Solution

The critical sections are (1) at the face of the support for tension and compression reinforcement
(section 1), (7.2) at points where tension bars are terminated within the span (sections 2 and 5), (3)
at point of inflection (sections 3 and 6), and (4) at midspan (section 4).

1. Development lengths for negative-moment reinforcement, from Fig. 7.7. are as follows: Three

no. 9 bars are terminated at a distance x; = 4.5ft from the face of the support, whereas the
other three bars extend to a distance of 6 ft 0in. (72in.) from the face of the support.
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Figure 7.7 Example 7.4: Development length of a continuous beam.
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a. The development length of no. 9 tension bars is 36.3d, (Table 7.1) if conditions of spacing
and cover are met.

For no.9bars, d, = 1.128 in.

Cover = 2.5 — 1—}22—8 =194 1in. > dp

12-5
Clear spacing = —5— - 1.128 = 2.37 in. > 2d,

Then conditions are met, and I; = 36.6(1.128) = 41.3 in. For top bars, x| = {4 = 1.3(41.3)
= 54in. = 4.50ft = x; > 12in. (minimum).

b. The development length x; shall extend beyond the point where three no. 9 bars are not
needed, either d = 18in. or 12d, = 13.6in., whichever is greater. Thus, xo = 18in. The
required development length is x4 = 4.50ft, similar to x;. Total length required is y = x;
+ 1.5t = 6.0ft.

¢. Beyond the point of inflection (section 3), three no. 9 bars extend a length x3 =y —
39 = 72 — 39 = 33in. The ACI Code requires that at least one-third of the bars should
extend beyond the inflection point. Three no. 9 bars are provided, which are adequate.
The required development length of x3 is the greatest of d = 18in., 12d, = 13.6in., or
L/16 =24 x {Z in. = 18 in., which is less than x3 provided.

Compressive reinforcement at the face of the support (section 7.1) (no. 8 bars): The development

length x5 is equal to

| _ 002dpfy _ 002 140,000
W I x +/3000

So, we can use 15in.
Minimum I3 = 0.0003d, f, = 0.0003 x 1 x 40, 000 = 12 in.

" but it cannot be less than 8 in. The length 15 in. controls. For no. 8 bars, dp = 1in.; I provided
= 15in., which is greater than that required.

Development length for positive moment reinforcement: Three no. 8 bars extend 6t beyond
the centerline, and the other bars extend to the support. The development length xg from the
centerline is {; = 36.6d, = 37in. (Table 7.1), but it cannot be less than 12in. That is, x5
provided is 6 ft = 72in. > 37in.

The length x5 is equal to d or 12d}, that is, 18in. or 12 x 1 = 12in. The provided value
is 181in., which is adequate.

The actual position of the termination of bars within the span can be determined by the
moment-resistance diagram, as will be explained later.

=146 in.

3

7.7 STANDARD HOOKS (ACI CODE, SECTIONS 12.5 AND 7.1}

A hook is used at the end of a bar when its straight embedment length is less than the necessary
development length, /;. Thus the full capacity of the bar can be maintained in the shortest
distance of embedment. The minimum diameter of bend, measured on the inside of the main
bar of a standard hook Dy, is as follows (Fig. 7.8) [[9]):

« For no. 3 to no. 8 bars (10-25mm), Dy = 6d;.
« For no. 9 to no. 11 bars (28, 32, and 36 mm), D, = 8dp.
« For no. 14 and no. 18 bars (43 and 58 mm), D = 10d;.
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Figure 7.8 Hooked-bar details for the development of standard hooks [9]. Courtesy
of ACI.

The ACI Code, Section 12.5.2, specifies a development length Zgy, for hooked bar as follows:

0.02 ,
lah = (%) (Modification Factor) dj (7.15)

where

V. = 1.2 for epoxy-coated bars
A = (.75 for lightweight aggregate concrete unless f, is specified then

h= fu/67G/FD <1

. and A = 1.0 for all other cases
For grade 60 hooked bar (f, = 60 ksi) with ¢, = A = 1, [y, becomes:
12004,

lgh = NE7

{Modification Factor) 4, (7.15a)
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Figure 7.9 (a) Concrete cover limitations, (b and ¢) stirrups or ties placed perpendicular
or paralle! to the bar being developed [9]. Courtesy of ACL.

Based on different conditions, the development length, I4,, must be multiplied by one of
the following factors:

1. For 90° hooks of no. 11 or smaller bars are used and the hook is enclosed vertically or
horizontally within stirrups or ties spaced not greater than three times the diameter of the
hooked bar, the basic development length is multiplied by 0.8.

2. When no. 11 or smaller bars are used and the side concrete cover, normal to the plane of
the hook, is not less than 2.5in., the development length is multiplied by 0.7. The same
factor applies for a 90° hook when the concrete cover on bar extension beyond the hook
is not less than 21in.

3. For 180° hooks of no. 11 or smaller bars that are enclosed with ties or stirrups perpendicular
to the bar and spaced not greater than 3dj, the development length is multiplied by 0.8.

4. When a bar anchorage is not required, the basic development length for the reinforcement
in excess of that required is multiplied by the ratio

A, (required)
A; (provided)
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Figure 7.10 Stress distribution in 80° hooked bar.

5. When standard hooks with less than a 2.5-in. concrete cover on the side and top or bottom
are used at a discontinuous end of a member, the hooks shall be enclosed by ties or stirrups
spaced at no greater than 3dp. Moreover, the factor 0.8 given in item 1 shall not be used.

The development length, /44, of a standard hook for deformed bars in tension must not be
less than 84, or 6in., whichever is greater. Note that hooks are not effective for reinforcing bars
in compression and may be ignored (ACI Code, Section 12.5).

Details of standard 90° and 180° hooks are shown in Fig. 7.8 [9]. The dimensions given are
needed to protect members against splitting and spalling of concrete cover. Figure 7.9a shows
details of hooks at a discontinuous end with a concrete cover less than 2.5 in. that may produce
concrete spalling [9]. The use of closed stirrups is necessary for proper design. Figures 7.95 and
¢ show placement of stirrups or ties perpendicular and parallel to the bar being developed, spaced
along the development length. Figure 7.10 shows the stress distribution along a 90° hooked bar
under a tension force p.

The development length required for deformed welded wire fabric is covered in Section
12.7 in the ACI Code. The basic development length (measured from the critical section) with
at least one cross wire within the development length and not less than 2in. shall be the greater
of (fy — 35,000)/f, (units in psi) or 5d,/S, but should not be taken greater than 1.0, where
Sw = spacing of wire to be developed or spliced (in.).

Example 7.5

Compute the development length required for the top no. 8 bars of the cantilever beam shown in
Fig. 7.11 that extend into the column support if the bars are

a. Straight
b. Have a 90° hook at the end
¢. Have a 180° hook at the end

The bars are confined by no. 3 stirrups spaced at 6in. and have a clear cover = 1.5in. and
clear spacings = 2.0in. Use f = 4 ksi normal-weight concrete and f, = 60 ksi.
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a. Straight bars: For no. 8 bars, d, = 1.0in. Because clear spacing = 2dj and clear cover is
greater than dp with bars confined by stirrups, then conditions @ and b are met. Equation 7.10
can be used 1o calculate the basic Iy or you can get it directly from Table 7.2: iy = 48in. For
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Figure 7.11 Example 7.5.

top bars, ¥, = 1.3 and final {; = 1.3(48) = 63in.

b. Bars with 90° hook: For no. 8 bars, d5 = 1.0in. development length for f, = 60 ksi lqn =
1200d,/ \/T: = 1200(1.0)/+/4000 = 19 in. Because no other modifications apply, then g, =
19in. > 84, = 8in. or 6in. Other details are shown in Fig. 7.11. The factor ¥, = 1.3 for top
bars does not apply to hooks.

¢. Bars with 180° hook: Ig, = 19in., as calculated before. No other modifications apply; then

(b}

lah = 19in, > 8d;, = 8in. Other details are shown in Fig. 7.11.

7.8 SPLICES OF REINFORCEMENT

7.8.1 General

Steel bars that are used as reinforcement in structural members are fabricated in lengths of 20,
40, and 60ft (6, 12, and 18 m), depending on the bar diameter, transportation facilities, and
other reasons. Bars are usually tailored according to the reinforcement details of the structural
members. When some bars are short, it is necessary to splice them by lapping the bars a sufficient

distance to transfer stress through the bond from one bar to the other.

Splices may be made by lapping or welding or with mechanical devices that provide positive
connection between bars. Lap splices should not be used for bars larger than no. 11 (36 mm).
For noncontact lap splices in fiexural members, bars should not be spaced transversely farther
apart than one-fifth the required length or 6in. (150 mm). An approved welded splice is one in
which the bars are butted and welded to develop in tension at least 125% of the specified yield
strength of the bar. The ACI Code, Section 12.14, also specifies that full positive mechanical
connections must develop in tension or compression at least 125% of the specified yield strength

of the bar.
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Figure 7.12 Lap splice failure due to the development of one or more cracks.

Splices should not be made at or near sections of maximum moments or stresses. Also,
it is recommended that no bars should be spliced at the same location to avoid a weakness in
the concrete section and to avoid the congestion of bars at the same location, which may cause
difficulty in placing the concrete around the bars.

The stresses developed at the end of a typical lap splice are equal to 0, whereas the lap
length, /;, embedded in concrete is needed to develop the full stress in the bar, f,. Therefore, a
minimum lap splice of /; is needed to develop a continuity in the spliced tension or compression
bars. If adequate splice length is not provided, splitting and spalling occurs in the concrete shell
(Fig. 7.12).

Splices in tension and compression are covered by Sections 12.15 and 12.16 of the ACI
Code.

7.8.2 Lap Splices in Tension, /s

Depending upon the percentage of bars spliced on the same location and the level of stress in
the bars or deformed wires, the ACI Code introduces two classes of splices (with a minimum
length of 12in.):

1. Class A splices: These splices have a minimum length /4 = /; and are used when (a)
one-half or less of the total reinforcement is spliced within the required lap length; and
(b) the area of reinforcement provided is at least twice that required by analysis over the
entire length of the splice. The length /; is the development length of the bar, as calculated
earlier.

2. Class B splices: These splices have a minimum length I = 1.3/, and are used for all other
cases that are different from the aforementioned conditions. For example, class B splices
are required when all bars or deformed wires are spliced at the same location with any
ratio of (A provided)/(A; required). Splicing all the bars in one location should be avoided
when possible.

3. Iy in class A and B splice is calculated without the 12 in. minimum requirement and without
the modification factor of (A required)/(A; provided).

7.8.3 Lap Splice in Compression, /s

The splice lap length of the reinforcing bars in compression, /., should be equal to or greater than
the development length of the bar in compression, /; (including the modifiers), calculated earlier
(Eq. 7.14).Moreover, the lap length shall satisfy the following (ACI Code, Section 12.16.1):
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Table 7.5 Lap-Splice Length in Compression, isc(in.), {f, = 3ksi and Minimum /sc = 12in.)

Bar Bar diameter fy (ksi)
number {in.) 40 60 80
3 0.375 12 12 18
4 0.500 12 15 24
5 0.625 13 19 30
6 0.750 15 23 36
7 0.875 18 27 42
8 1.000 20 30 48
9 1.128 23 34 55
10 1.270 26 39 61
11 1.410 29 43 68
I > (0.0005 fydp)  (for f, < 60,000 psi) (7.16)
lc = (0.0009 fy, — 24)dp (for f, > 60,000 psi) .17

For all cases, the lap length must not be less than 12in. Table 7.5 gives the lap-splice
length for various f, values. If the concrete strength, f/, is less than 3000 psi, the lap length,
I, must be increased by one-third.

In spirally reinforced columns, lap-splice length within a spiral may be multiplied by 0.75
but may not be less than 12in. In tied columns, with ties within the splice length having a
minimum effective area of 0.00154s, lap splice may be multiplied by 0.83 but may not be less
than 12in., where 2 = overall thickness of column and s = spacing of ties (in.).

Example 7.6

Calculate the lap-splice length for six no. 8 tension bottom bars {(in two rows) with clear spacing =
2.5in. and clear cover = 1.51n. for the following cases:

a. When three bars are spliced and (A, provided)/(A; required) > 2
b. When four bars are spliced and (A, provided)/(A; required) < 2
¢. When all bars are spliced at the same location. Given: f! = 5 ksi and f, = 60 ksi.

Solufion

a. For no. 8 bars, d, = 1.0in., and ¢, = ¥, = A = 1.0.: check first for /5000 = 70.7 psi <
100 psi, and then calculate I; from Equation 7.8 or Table 7.1, Iy = 42.5d,, conditions for clear
spacings and cover are met. [; = 42.5(1.0) = 42.5 in., or 43 in. For (A, provided)/(A; required)
> 2, class A splice applies, Iy = 1.0{; = 43in. > 12in. (minimum). Bars spliced are less than
haif the total number.

b. I; = 43in., as calculated before. Because (A, provided)/(A; required) is less than 2, class B
splice applies, Iy = 1.3y = 1.3(42.5) = 55.25in,, say, 56in., which is greater than 12in.

¢. Class B splice applies and I = 56in. > 12in.
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Example 7.7

Calculate the lap-splice length for a no. 10 compression bar in a tied column when f =5 ksi and
when (a) f, = 60 ksi and (b) f, = 80 ksi.

Solution

a. For no. 10 bars, d, = 1.27 in., and the development length from Table 7.4 or 7.3 is 23 in. Because
no modifiers apply, {5 = 23in. > 12in. Check that I,. > 0.0005d,, f, = 0.0005(1.27)(60,000)
= 38.1in. Therefore, I;. = 391in. controls.

b. The basic Iz is 23in., as calculated before. Check that I > (0.0009f, — 24)d, = [0.0009
(80,000) ~ 24](1.27) = 61 in. Therefore, I;. = 61in. controls.

7.9 MOMENT-RESISTANCE DIAGRAM (BAR CUTOFF POINTS)

The moment capacity of a beam is a function of its effective depth, d, width, b, and the steel
area for given strengths of concrete and steel. For a given beam, with constant width and depth,
the amount of reinforcement can be varied according to the variation of the bending moment
along the span. It is a common practice to cut off the steel bars where they are no longer needed
to resist the flexural stresses. In some other cases, as in continuous beams, positive-moment steel
bars may be bent up, usually at 45°, to provide tensile reinforcement for the negative moments
over the supports.
The factored moment capacity of an under-reinforced concrete beam at any section is

n@=¢%g@—§) (7.18)

The lever arm (d — a/2) varies for sections along the span as the amount of reinforcement
varies; however, the variation in the lever arm along the beam length is small and is never less
than the value obtained at the section of maximum bending moment. Thus, it may be assumed
that the moment capacity of any section is proportional to the tensile force or the area of the
steel reinforcement, assuming proper anchorage lengths are provided.

To determine the position of the cutoff or bent points, the moment diagram due to external
loading is drawn first. A moment-resistance diagram is also drawn on the same graph, indicating
points where some of the steel bars are no longer required. The factored moment resistance of
one bar, My, is

a
M = ¢4sf, (4 -3) (7.19)
where
o= As fy
0.85f7b

Ag = area of one bar

The intersection of the moment-resistance lines with the external bending moment diagram
indicates the theoretical points where each bar can be terminated. To illustrate this discussion,
Fig. 7.13 shows a uniformly loaded simple beam, its cross-section, and the bending moment
diagram. The bending moment curve is a parabola with a maximum moment at midspan of
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Figure 7.13 Moment-resistance diagram.

2400 K-in. Because the beam is reinforced with four no. 8 bars, the factored moment resistance
of one bar is

a
M = ¢Asbfy (d - 5)
Asf, _ 4x0.79 x50

0855 085x3x12

a =52in.

5.2
My, =09 % 0.79 x 50 (20 - 7) = 620 K-in.

The factored moment resistance of four bars is thus 2480 K-in., which is greater than the
external moment of 2400 K-in. If the moment diagram is drawn to scale on the base line A-A,
it can be seen that one bar can be terminated at point a, a second bar at point b, the third bar at
point ¢, and the fourth bar at the support end a. These points are the theoretical positions for the
termination of the bars. However, it is necessary to develop part of the strength of the bar by bond,
as explained earlier. The ACI Code specifies that every bar should be continued at least a distance
equal to the effective depth, d, of the beam or 12 bar diameters, whichever is greater, beyond the
theoretical points a, b, and c. The Code (Section 12.11.1) also specifies that at least one-third of
the positive moment reinforcement must be continued to the support for simple beams. Therefore,
for the example discussed here, two bars must extend into the support, and the moment-resistance
diagram, My, shown in Fig. 7.13, must enclose the external bending moment diagram at all points.
Full load capacity of each bar is attained at a distance /4 from its end.
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For continuous beams, the bars are bent at the required points and used to resist the negative
moments at the supports. At least one-third of the total reinforcement provided for the negative
moment at the support must be extended beyond the inflection points a distance not less than
the effective depth, 12 bar diameters, or % the clear span, whichever is greatest (ACI Code,
Section 12.12.3).

Bent bars are also used to resist part of the shear stresses in beams. The moment—resistance
diagram for a typical continuous beam is shown in Fig. 7.14.

T ¢ of support ¢
"
6#09 20"
l 5#9 ! ' |
|A c ls <
e T e Ny t
Section at Section at !
supports midspan C N
Aand B |
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@ la Moment-resistance diagram
End of bars |-\ 7 o 1o0 i
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|..d/d or 120 or L6 ®
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extend at | ¢ N —
least 6 , | gor20  (2)
within support End of bars . Sllbdddd e |
2and 3 / { —— EXternal M,
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End of bar 1 capachty
Moment-resistance
diagram
Figure 7.14 Sections and bending moment diagram {fop) and moment-resistance

diagram {bottom) of a continuous beam. Bar diameter is signified by D.
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Example 7.8

For the simply supported beam shown in Fig. 7.15, design the beam for the given factored loads and
draw the moment—resistance diagram. Also, show where the reinforcing bars can be terminated.
Use b = 10in., a steel ratio of 0.018, f/ =3 ksi, and f, = 40 ksi.

Solution

For p = 0.018, R, = 556psi and M,, = R,bd>. M, = 132.5 K-ft. Now 132.5(12) = 0.556(10)d?,
sod = 17in.; let h = 20in. A, = 0.018(10¥17) = 3.06in.2; use four no. 8 bars (A, = 3.14in.2).
Actwal d =20 — 2.5 = 17.51n.

a 3.14(40) .
r = 5 A da= =%
My = A f, (d 2) ada = e =493 in

M, (for one bar) = 0.9(0.79)(40) (17.5 - 122?—)

= 427.7K.in. = 35.64 K-ft
M, (for all four bars) = 1710.8 K-in. = 142.6 K ft

For the calculation of ‘a’, the four no. 8 bars were utilized rather than calculating the ‘a’ for the
extended two bars. This assumption will slightly increase the length of the bars beyond the cutoff
point.

Details of the moment—resistance diagram are shown in Fig. 7.15. Note that the bars can be
bent or terminated at a distance of 17.5, say, 18 in. (or 12 bar diameters, whichever is greater), beyond
the points where (theoretically) the bars are not needed. The development length, /;, for no. 8 bars is
36.6d, = 37 in. (Table 7.1). The cutoff points of the first and second bars are at points A and B, but
the actual points are at A’ and B’, 18in. beyond A and B. From A’, a length /; = 37in. backward
is shown to establish the moment—resistance diagram (the dashed line). The end of the last two bars
extending to the support will depend on how far they extend inside the support, say, at C’. Normaily,
bars are terminated within the span at A" and B’ as bent bars are not commonly used to resist shear.

Sections 7.1~7.2

Bond is influenced mainly by the roughness of the steel surface area, the concrete mix, shrinkage,
and the cover of concrete. In general,

la = {23—)?(’) (7.3)
Sections 7.3 and 7.5
1. The general formula for the development length of deformed bars or wire shall be
4 (3) () e,

As design simplification, X, may be assumed to be zero. Other values of /;/d, are given
in Tables 7.1 and 7.2. v,, V., ¥, and A are multipliers defined in Section 7.3.1.
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Figure 7.15 Example 7.8: Details of reinforcing bars and the moment-resistance
diagram.
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2. Simplified expressions are used when conditions for concrete cover and spacings are met.

For no. 7 and larger bars,

a _( b (MM)_Q
d  \JE/\200 )

la
2 =0.80

For no. 6 and smaller bars,

3. For all other cases, multiply the previous ¢ by L.5.
4. Minimum length is 12in.
Section 7.4

Development length in compression for all bars is
_0.024, fy

Iy = AJ}E

For specific values, refer to Tables 7.3 and 7.4.

> 0.0003d; f; > 8 in.

Section 7.6

The critical sections for the development of reinforcement in flexural members are

+ At points of maximum stress

« At points where tension bars are terminated within the span
o At the face of the support

« At points of inflection

Section 7.7
The minimum diameter of bends in standard hooks is

« For no. 3 to no. 8 bars, 6d,
+ For no. 9 to no. 11 bars, 84,

The development length I, of a standard hook is

0.02
lah = ( vy ) (Modification factor) dp

W

Section 7.8

(7.8)

(7.9)

(7.14)

(7.15)

1. For splices in tension, the minimum lap-splice length is 12 in. If (a) one-half or less of the
total reinforcement is spliced within the required lap length and (b) the area of reinforcement
provided is at least twice that required by analysis over the entire length of the splice, then
I« = 1.0l; = class A splice.
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2. For all other cases, class B has to be used when [, = 1.31;.

3. For splices in compression, the lap length should be equal to or greater than /3. in com-
pression, but it also should satisfy the following: I, > 0.0005 f,d), (for f, < 60,000 psi).

REFERENCES

1. L. A. Lutz and P. Gergely. “Mechanics of Bond and Slip of Deformed Bars in Concrete”. ACI Journal
68 (April 1967).

2. ACI Committee 408. “Bond Stress—The State of the Art”. ACI Journal 63 (November 1966).

3. ACI Committee 408. “Opportunities in Bond Research”. ACI Journal 67 (November 1970).

4. Y. Goto. “Cracks Formed in Concrete around Deformed Tensioned Bars™. ACI Journal 68 (April 1971).
5. T. D. Mylrea. “Bond and Anchorage”. ACI Journal 44 (March 1948).

6. E. S. Perry and J. N. Thompson. “Bond Stress Distribution on Reinforcing Steel in Beams and Pulilout
Specimens”, ACI Journal 63 (August 1966).

7. C. Q. Orangum, J. O. Jirsa, and J. E. Breen. “A Reevaluvation of Test Data on Development Length and
Splices”. ACI Journal 74 {March 1977).

8. J. Minor and J. O. Jirsa. “Behavior of Bent Bar Anchorage”. ACI Journat 72 (April 1975).

9. ACI Code. Building Code Requirements for Structural Concrete. ACI (318-08). American Concrete
Institute Detroit, Mich. (2008).

PROBLEMS

7.1 For each assigned problem, calculate the development tength required for the following tension bars.
All bars are bottom bars in normal-weight concrete unless specified otherwise in the notes.

Clear Clear
f. fy cover spacing

No. Bar no. (ksi) {ksi) (in.) {in.) Notes

a 5 3 60 2.0 225

b 6 4 60 2.0 2.50 Lightweight aggregate concrete

c 7 5 60 2.0 2.13 Epoxy coated

d 8 3 40 2.5 2.30 Top bars, lightweight aggregate concrete
e 9 4 60 1.5 1.5

f 10 5 60 20 25 No. 3 stirrups at 6in.

g 11 5 60 3.0 3.0

h 9 3 40 20 1.5 Epoxy coated

i 8 4 60 2.0 1.75 (A; provided)/(A; required) = 1.5
] 6 4 60 1.5 1.65 Top bars, epoxy coated and no.

stirrup at 4in.

7.2 For each assigned problem, calculate the development length required for the following bars in
compression.
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No. Bar no. f, (ksi) fy (ksi) Notes

a 8 3 60

b 9 4 60

c 4 40

d 11 5 60 (A, required)/(A; provided) = 0.8
e 7 6 60 (A, required)/(A; provided) = 0.9
f 9 5 60 Column with spiral no. 3 at 2in.

7.3 Compute the development length required for the top no. 9 bars of a cantilever beam that extend into
the column support if the bars are
a. Straight
b. Have a 90° hook at the end
¢. Have a 180" hook at the end
The bars are confined with no. 3 stirrups spaced at 5 in. and have a clear cover of 2.0in. Use f, = 4 ksi
and fy = 60 ksi. (Clear spacing = 2.5in.)
7.4 Repeat Problem 7.3 when no. 7 bars are used.
7.5 Repeat Problem 7.3 when f, =3 ksi and f, = 40 ksi.
7.6 Repeat Problem 7.3 when no. 10 bars are used.
7.7 Calculate the lap-splice length for no. 9 tension bottom bars with clear spacing of 2.0in. and clear
cover of 2.0in. for the following cases:
a. When 50% of the reinforcement is spliced and (A, provided)/(A; required) = 2
b. When 75% of the reinforcement is spliced and (A; provided)/(4; required) = 1.5
c. When all bars are spliced at one location and (A, provided)/(A; required) = 2
d. When all bars are spliced at one location and (A, provided)/(A; required) = 1.3. Use [l =4ksi
and fy = 60 ksi.
7.8 Repeat Problem 7.7 using f/ = 3 ksi and f; = 60 ksi.
7.9 Calculate the lap splice length for no. 9 bars in compression when f; = 5 ksi and f, = 60 ksi.
7.10 Repeat Problem 7.9 when no. 11 bars are used.
7.11 Repeat Problem 7.9 when f) = 80 ksi.
7.12 Repeat Problem 7.9 when f! =4 ksi and f, = 60 ksi.

7.13 A continuous beam has the typical steel reinforcement details shown in Fig. 7.16. The sections at
midspan and at the face of the support of a typical interior span are also shown. Check the development
lengihs of the reinforcing bars at all critical sections. Use f = 4 ksi and f, = 60 ksi.

7.14 Design the beam shown in Fig. 7.17 using pyax. Draw the moment—resistance diagram and indicate
where the reinforcing bars can be terminated. The beam carries a uniform dead load, including
self-weight of 1.5 K/ft, and a live load of 2.2 K/ft. Use f; =4 ksi, f, = 60 ksi, and b = 12in.

7.15 Design the beam shown in Fig. 7.18 using a steel ratio p = 1/2 p;. Draw the moment—resistance
diagram and indicate the cutoff points. Use f! =3 ksi, fy, = 60 ksi, and b = 121in.

7.16 Design the section at support B of the beam shown in Fig. 7.19, pmax- Adopting the same dimensions
of the section at B for the entire beam ABC, determine the reinforcement required for part AB
and draw the moment—resistance diagram for the beam ABC. Use f! =4 ksi, f, = 60 ksi, and
b = 12in.
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SHEAR AND DIAGONAL
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Office building, Chicago, Illinois.

8.1 INTRODUCTION

When a simple beam is loaded as shown in Fig. 8.1, bending moments and shear forces develop
along the beam. To carry the loads safely, the beam must be designed for both types of forces.
Flexural design is considered first to establish the dimensions of the beam section and the main
reinforcement needed, as explained in the previous chapters.

The beam is then designed for shear. If shear reinforcement is not provided, shear failure
may occur. Shear failure is characterized by small deflections and lack of ductility, giving little
or no warning before failure. On the other hand, flexural failure is characterized by a gradual
increase in deflection and cracking, thus giving warning before total failure. This is due to the
ACI Code limitation on flexural reinforcement. The design for shear must ensure that shear
failure does not occur before flexural failure.

8.2 SHEAR STRESSES IN CONCRETE BEAMS

The general formula for the shear stress in a homogeneous beam is

Vo .

where

V = total shear at the section considered

Q = statical moment about the neutral axis of that portion of cross-section lying between
a line through the point in question parallel to the neutral axis and nearest face,
upper or lower, of the beam

I = moment of inertia of cross-section about the neutral axis

b = width of beam at the given point
The distribution of bending and shear stresses according to elastic theory for a homogeneous

rectangular beam is as shown in Fig. 8.2. The bending stresses are calculated from the flexural
251
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Figure 8.1 Bending moment and shearing force diagrams for a simple beam.
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Figure 8.2 Bending and shear stresses in a homogeneous beam, according to elastic
theory.

formula f = Mc/I, whereas the shear stress at any point is calculated by the shear formula of
Eq. 8.1. The maximum shear stress is at the neutral axis and is equal to 1.5v, {average shear),
where v, = V/bh. The shear stress curve is parabolic.

For a singly reinforced concrete beam, the distribution of shear stress above the neutral
axis is a parabolic curve. Below the neutral axis, the maximum shear stress is maintained down
to the level of the tension steel, because there is no change in the tensile force down to this point
and the concrete in tension is neglected. The shear stress below the tension steel is 0 (Fig. 8.3).
For doubly reinforced and T-sections, the distribution of shear stresses is as shown in Fig. 8.3.
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Figure 8.3 Distribution of shear stresses in reinforced concrete beams: (a) singly
reinforced, (b) doubly reinforced, {¢) T-section, (d) T-section with compression steel.

It can be observed that almost all the shear force is resisted by the web, whereas the flange
resists a very small percentage; in most practical problems, the shear capacity of the flange is
neglected.

Referring to Fig. 8.1 and taking any portion of the beam dx, the bending moments at
both ends of the element, M; and M, are not equal. Because M, > M) and to maintain the
equilibrium of the beam portion dx, the compression force C must be greater than C (Fig. 8.4).
Consequently, a shear stress v develops along any horizontal section a-a; or b-b) (Fig. 8.4a).
The normal and shear stresses on a small element at levels a-ay and b-b; are shown in Fig. 8.4b.
Notice that the normal stress at the level of the neutral axis b-b; is 0, whereas the shear stress is
maximum. The horizontal shear stress is equal to the vertical shear stress, as shown in Fig. 8.4b.
When the normal stress f is 0 or low, a case of pure shear may occur. In this case, the maximum
tensile stress f;, acts at 45° (Fig. 8.4¢).

The tensile stresses are equivalent to the principal stresses, as shown in Fig. 8.4d. Such
principal stresses are traditionally called diagonal tension stresses. When the diagonal tension
stresses reach the tensile strength of concrete, a diagonal crack develops. This brief analysis
explains the concept of diagonal tension and diagonal cracking. The actual behavior is more
complex, and it is affected by other factors, as explained later. For the combined action of
shear and normal stresses at any point in a beam, the maximum and minimum diagonal tension
(principal stresses) f), are given by the equation

2
fo= % =+ (“fz“) + v? (8.2)

where

f = intensity of normal stress due to bending
v = shear stress
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Figure 8.4 (a) Forces and stresses along the depth of the section, (b) normal and shear
stresses, (¢) pure shear, and (d) diagonal tension.
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The shear failure in a concrete beam is most likely to occur where shear forces are maxi-
mum, generally near the supports of the member. The first evidence of impending failure is the
formation of diagonal cracks.

8.3 BEHAVIOR OF BEAMS WITHOUT SHEAR REINFORCEMENT

Congcrete is weak in tension, and the beam will collapse if proper reinforcement is not provided.
The tensile stresses develop in beams due to axial tension, bending, shear, torsion, or a com-
bination of these forces. The location of cracks in the concrete beam depends on the direction
of principal stresses. For the combined action of normal stresses and shear stresses, maximum
diagonal tension may occur at about a distance & from the face of the support.

The behavior of reinforced concrete beams with and without shear reinforcement tested
under increasing load was discussed in Section 3.3. In the tested beams, vertical flexural cracks
developed at the section of maximum bending moment when the tensile stresses in concrete
exceeded the modulus of rupture of concrete, or f, = 7.51,/f,. Inclined cracks in the web
developed at a later stage at a location very close to the support.

An inclined crack occurring in a beam that was previously uncracked is generally referred
to as a web-shear crack. If the inclined crack starts at the top of an existing flexural crack and
propagates into the beam, the crack is referred to as flexural-shear crack (Fig. 8.5). Web-shear
cracks occur in beams with thin webs in regions with high shear and low moment. They are
relatively uncommon cracks and may occur near the inflection points of continuous beams or
adjacent to the supports of simple beams.

Flexural-shear cracks are the most common type found in reinforced concrete beams. A
flexural crack extends vertically into the beam,; then the inclined crack forms, starting from the
top of the beam when shear stresses develop in that region. In regions of high shear stresses,
beams must be reinforced by stirrups or by bent bars to produce ductile beams that do not rupture
at a failure. To avoid a shear failure before a bending failure, a greater factor of safety must be
provided against a shear failure. The ACI Code specifies a capacity reduction factor, ¢, of 0.75
for shear.

Shear resistance in reinforced concrete members is developed by a combination of the
following mechanisms {2] (Fig. 8.5):

+ Shear resistance of the uncracked concrete, V; [3]

« Interface shear transfer, V,, due to aggregate interlock tangentially along the rough surfaces
of the crack [3]

o Arch action [4]

« Dowel action, Vy, due to the resistance of the longitudinal bars to the transverse shearing
force [5]

In addition to these forces, shear reinforcement increases the shear resistance Vs, by which
depends on the diameter and spacings of stirrups used in the concrete member. If shear rein-
forcement is not provided in a rectangular beam, the proportions of the shear resisted by the
various mechanisms are 20% to 40% by V, 35% to 50% by V,, and 15% to 25% by V; {6].
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Figure 8.5 Shear failure: (a) general form, (b) web-shear crack, (c) flexural-shear crack,
(d) analysis of forces involved in shear. V; is interface shear, V; is shear resistance, and
Vy is dowel force.

8.4 MOMENT EFFECT ON SHEAR STRENGTH

In simply supported beams under uniformly distributed load, the midspan section is subjected to
a large bending moment and zero or small shear, whereas sections near the ends are subjected
to large shear and small bending moments (Fig. 8.1). The shear and moment values are both
high near the intermediate supports of a continuous beam. At a location of large shear force and
small bending moment, there will be little flexural cracking, and an average stress v is equal to
V/bd. The diagonal tensile stresses are inclined at about 45° (Fig. 8.4¢). Diagonal cracks can be
expected when the diagonal tensile stress in the vicinity of the neutral axis reaches or exceeds
the tensile strength of concrete. In general, the factored shear strength varies between 3.5\/75
and 5./f. After completing a large number of beam tests on shear and diagonal tension (11,
it was found that in regions with large shear and small moment, diagonal tension cracks were
formed at an average shear force of

V. = 3.5\/flbud (8.3)

where b,, is the width of the web in a T-section or the width of a rectangular section and d is
the effective depth of the beam.
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In locations where shear forces and bending moments are high, flexural cracks are formed
first. At a later stage, some cracks bend in a diagonal direction when the diagonal tension stress
at the upper end of such cracks exceeds the tensile strength of concrete. Given the presence
of large moments on a beam, for which adequate reinforcement is provided, the nominal shear
force at which diagonal tension cracks develop is given by

Ve = L9A/ flbyd (8.4)

This value is a little more than half the value in Eq. 8.3 when bending moment is very
small. This means that large bending moments reduce the value of shear stress for which cracking
occurs. The following equation has been suggested to predict the nominal shear stress at which
a diagonal crack is expected [1]:

vV

V=g = (1.9x\/?; + 2500p1§) < 3.50/f! (8.5)

1. ACI Code, Section 11.2.2.1, adopted this equation for the nominal shear force to be resisted
by concrete for members subjected to shear and flexure only by:

Vid
V. = [1.9A/Tg + 250000 } byd < 3.5%/flb,d (8.6)

where p,, = A; /by, d and by, are the web width in a T-section or the width of a rectangular
section, and V, and M, are the factored shearing force and bending moment occurring

simultaneously on the considered section.
The value of V,d/M, must not exceed 1.0 in Eq. 8.6. If M, is large in Eq. 8.6, the
second term becomes small and v, approaches 1.9)\\/Tc’. If M, is small, the second term

becomes large and the upper limit of 3.5,/ f/ controls. As an aliernative to Eq. 8.6, the
ACI Code, Section 11.2.1.1, permits evaluating the shear strength of concrete as follows:

Ve =20/ flbud (8.7)
V. =017/ flbyd (S

2. For members subjected to significant axial compression force N,

Vid
V. = (1.91\/?; + 25000, A; )bwd (8.8)

Mo = M. — N, (4k8—d)

where
Ag

Pw = bod
h = overall depth

V,d /M, may be greater than 1.0, but V., must not exceed

/ N,
V, = 3.50/flbud |1 :
350y fibud J1+ o5 A, (8.9)

2

where A, is the gross area in.
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Shear failure near a middle support.

Alternatively, V., may be computed by

N,
Vi = byd (2+0.001A—“)A ! (8.10)
4

3. In the case of members subjected to significant axial tensile force N,

Nu
Ve = byd (2 + 0.004A—‘) Sl T (8.11)
4

where N, is to be taken as negative for tension and N, /A, is in psi.
If V. is negative, V. should be taken equal to zero.

8.5 BEAMS WITH SHEAR REINFORCEMENT

Different types of shear reinforcement may be used:

1. Stirrups, which can be placed either perpendicular to the longitudinal reinforcement or
inclined, usually making a 45° angle and welded to the main longitudinal reinforcement.
Vertical stirrups, using no. 3 or no. 4 U-shaped bars, are the most commonly used shear
reinforcement in beams (Fig. 8.6a).

2. Bent bars, which are part of the longitudinal reinforcement, bent up (where they are no
longer needed) at an angle of 30° to 60°, usually at 45°.

Combinations of stirrups and bent bars.
Welded wire fabric with wires perpendicular to the axis of the member.
5. Spirals, circular ties, or hoops in circular sections, as columns.

e

The shear strength of a reinforced concrete beam is increased by the use of shear reinforce-
ment. Prior to the formation of diagonal tension cracks, shear reinforcement contributes very little
to the shear resistance. After diagonal cracks have developed, shear reinforcement augments the
shear resistance of a beam, and a redistribution of internal forces occurs at the cracked section.
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When the amount of shear reinforcement provided is small, failure due to yielding of web steel
may be expected, but if the amount of shear reinforcement is too high, a shear-compression

failure may be expected, which should be avoided.

Concrete, stirrups, and bent bars act together to resist transverse shear. The concrete, by
virtue of its high compressive strength, acts as the diagonal compression member of a lattice
girder system, where the stirrups act as vertical tension members. The diagonal compression
force is such that its vertical component is equal to the tension force in the stirrup. Bent-up
reinforcement acts also as tension members in a truss, as shown in Fig. 8.6.

In general, the contribution of shear reinforcement to the shear strength of a reinforced

concrete beam can be described as follows [2]:

1. It resists part of the shear, V.

2. It increases the magnitude of the interface shear, V, (Fig. 8.5), by resisting the growth of

the inclined crack.
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Figure 8.6 Truss action of web reinforcement with {a) stirrups, (b) bent bars, and
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3. It increases the dowel force, V; (Fig. 8.5), in the longitudinal bars.
4. The confining action of the stirrups on the compression concrete may increase its strength.

5. The confining action of stirrups on the concrete increases the rotation capacity of plastic
hinges that develop in indeterminate structures at ultimate load and increases the length
over which yielding takes place [7].

The total nominal shear strength of beams with shear reinforcement V,, is due partly to the
shear strength attributed to the concrete V.. and partly to the shear strength contributed by the
shear reinforcement V;:

Vo=V +V, (8.12)

The shear force V, produced by factored loads must be less than or equal to the total nominal
shear strength V,, or

Vi 2oV, = (Ve + Vi) (8.13)

where V, = 1.2Vp + 1.6V, and ¢ = 0.75.

An expression for V; may be developed from the truss analogy (Fig. 8.7). For a 45°
crack and a series of inclined stirrups or bent bars, the vertical shear force V; resisted by shear
reinforcement is equal to the sum of the vertical components of the tensile forces developed in
the inclined bars. Therefore,

Vi = nA, fysina (8.14)

where A, is the area of shear reinforcement with a spacing s, and f,, is the yield sirength of
shear reinforcement, ns is defined as the distance aaa»:

d = qyas = aa; tan45° (from triangle aayas)
d = a4 = aja tan o (from triangle ajasaq)
ns = aa; + a1az

= d(cot45° + cotar) = d(1 + cota)
dU+t)
n=—
: cota

Substituting this value in Eq. 8.14 gives

A d A, fiud
V, = ‘gﬁ dnaﬂ~kaﬁa)=-Jéﬂ—Qma=kama) (8.15)
For the case of vertical stirrups, & = 90° and
A d A d
Ve = vgyt or s = va;yn (8.16)

In the case of T-sections, b is replaced by the width of web b, in all shear equations. When
a = 45°, Eq. 8.15 becomes

1.4 A, fud
n=14(ﬁﬁﬁ)ms=~—iﬁL (8.17)
S 7
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Figure 8.7 Factors in inclined shear reinforcement.

For a single bent bar or group of parallel bars in one position, the shearing force resisted by

steel is
) Vs
Vi = Ay fpsine or A, = Fsing (8.18)
For o = 457,
v,
A, =14 (—) (8.19)
It

For circular sections, mainly in columns, V; shall be computed from Eq. 8.16 using 4 = 0.8 x
diameter and A, = two times the area of the bar in a circular tie, hoop, or spiral.

8.6 ACICODE SHEAR DESIGN REQUIREMENTS

8.6.1 Critical Section for Nominal Shear Strength Calculation

The ACI Code, Section 11.1.3, permits taking the critical section for nominal shear strength
calculation at a distance d from the face of the support. This recommendation is based on the
fact that the first inclined crack is likely to form within the shear span of the beam at some
distance d away from the support. The distance d is also based on experimental work and
appeared in the testing of the beams discussed in Chapter 3. This critical section is permitted
on the condition that the support reaction introduces compression into the end region, loads are
applied at or near the top of the member, and no concentrated load occurs between the face of
the support and the location of the critical section.

The Code also specifies that shear reinforcement must be provided between the face of the
support and the distance d, using the same reinforcement adopted for the critical section.

8.6.2 Minimum Area of Shear Reinforcement

The presence of shear reinforcement in a concrete beam restrains the growth of inclined cracking.
Moreover, ductility is increased, and a warning of failure is provided. If shear reinforcement is
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Shear failure in dapped-end beam.

not provided, brittle failure will occur without warning. Accordingly, a minimum area of shear
reinforcement is specified by the Code. The ACI Code, Section 11.4.6 requires all stirrups to
have a minimum shear reinforcement area, A,, equal to

Ay =0.75/F7 (bj‘jf) > Sof[’y':’s (8.20)
y

where b, is the width of the web and s is the spacing of the stirrups. The minimum amount of
shear reinforcement is required whenever V, exceeds ¢V,/2, except in

+ Slabs and footings
» Concrete floor joist construction

» Beams where the total depth does not exceed 10in., 2.5 times the flange thickness for
T-shaped flanged sections, or one-half the web width, whichever is greatest.

If 0.75,/f = 50 then f! = 4444 psi. This means that when f/ < 4500 psi, the minimum
Ay = 50bys/f y: controls and when f = 4500 psi, then the minimum A, = 0.75\/72(bw.9 [fy0)
controls. This increase in the minimum area of shear reinforcement for f! > 4500 psi is to
prevent sudden shear failure when inclined cracking occurs.

It is a common practice to increase the depth of a slab, footing, or shallow beam to increase
its shear capacity. Stirrups may not be effective in shallow members, because their compression
zones have relatively small depths and may not satisfy the anchorage requirements of stirrups.
For beams that are not shallow, reinforcement is not required when V,, is less than ¢ V,/2.

The minimum shear reinforcement area can be achieved by using no. 3 stirrups placed at
maximum spacing, Smax. If f, = 60ksi and U-shaped (two legs) no. 3 stirrups are used, then
Eq. 8.20 becomes

o A Ay
075/ f Dby ~ 50by

(8.21)
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For f, <4500 psi, Smax(in.) = 0.22(60,000)/50b,, = 264/b,,.
For f/ = 4500 psi, Smax(in.) = 262/by,.

For f, = 5000 psi,  Smax(in.) = 249/b,,. (8.22)
For f/ = 6000 psi,  Smax(in.} = 227/by.
If U-shaped no. 4 stirrups are used, then for f < 4500 psi,
5 giny = 260000 480
50b,, bw
For f| = 4500 psi, Smax(in.) = 476/b,,. (8.23)

For f = 5000 psi, Smax(in.) =453/by,.
For f/ = 6000 psi, Smax(in.) =413/by.

Note that Smax shall not exceed 24 in., nor d/2.
Table 8.1 gives Syux based on Egs. 8.22 and 8.23. Final spacings should be rounded to the
lower inch. For example, S = 20.3 in. becomes 201in.

8.6.3 Maximum Shear Carried by Web Reinforcement V;

To prevent a shear-compression failure, where the concrete may crush due to high shear and
compressive stresses in the critical region on top of a diagonal crack, the ACI Code, Section
11.4.7.9, requires that V; shall not exceed (SJ}Z)bwd. If V, exceeds this value, the section
should be increased. Based on this limitation,

If £/ = 3 ksi, then V, < 0.438b,,d (kips) or V,/b,d < 438 psi.
If f; = 4 ksi, then V; < 0.506b,,d (kips) or V;/b,,d < 506 psi.
If fI =5 ksi, then V; < 0.565b,d (kips) or V;/b,d < 565 psi.

8.6.4 Maximum Spacing of Stirrups

To ensure that a diagonal crack will always be intersected by at least one stirrup, the ACI
Code, Section 11.4.5, requires that the spacings between stirrups shail not exceed d/2, nor 24in.,
provided that V; < (4\/fg)bwd. This is based on the assumption that a diagonal crack develops
at 45° and extends a horizontal distance of about d. In regions of high shear, where V; exceeds
(4\/?;)bwd, the maximum spacing between stirrups must not exceed d/4. This limitation is
necessary to ensure that the diagonal crack will be intersected by at least three stirrups. When
V, exceeds the maximum value of 8\/Tc’bwd, this limitation of maximum stirrup spacing does
not apply, and the dimensions of the concrete cross-section should be increased.

Table 8.1 Values of Syax = (A.f,/50by) = 24in. when fy = 60ksi and f; < 4500 psi

by (in.) 10 11 12 13 14 15 16 18 20 22 24 by,
264
Smax (in) no. 3 stirups 24 24 22 203 189 176 165 147 132 12 11 .
w
80

Sn (in)no. 4 stirups 24 24 24 24 24 24 24 24 24 218 20

o
g
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A second limitation for the maximum spacing of stirrups may also be obtained from the
condition of minimum area of shear reinforcement. A minimum A, is obtained when the spacing
s is maximum (Eq. 8.21).

A third limitation for maximum spacing is 24in. V; < (4,/f)b,d and 12in. when V; is

greater than (4,/f)b,d but less than or equal to (8,/f7)b,d. The least value of all maximum
spacings must be adopted. The ACI Code maximum spacing requirement ensures closely spaced
stirrups that hold the longitudinal tension steel in place within the beam, thereby increasing their
dowel capacity, V; (Fig. 8.5).

8.6.5 Yield Strength of Shear Reinforcement

The ACI Code, Section 11.4.2, requires that the design yield strength of shear reinforcement
shall not exceed 60ksi (420 MPa). The reason behind this decision is to limit the crack width
caused by the diagonal tension and to ensure that the sides of the crack remain in close contact to
improve the interface shear transfer, V, (Fig. 8.5). For welded deformed wire fabric, the design
yield strength shall not exceed 80ksi (560 MPa).

8.6.6 Anchorage of Stirrups

The ACI Code, Section 12.13.1, requires that shear reinforcement be carried as close as possible
to the compression and tension extreme fibers, within the Code requirements for concrete cover,
because near ultimate load the flexural tension cracks penetrate deep into the beam. Also, for
stirrups to achieve their full yield strength, they must be well anchored. Near ultimate load,
the stress in a stirrup reaches its yield stress at the point where a diagonal crack intercepts that
stirrup. The ACI Code requirements for stirrup anchorage, Section 12.13, are as follows:

1. Each bend in the continuous portion of a simple U-stirrup or multiple U-stirrup shall enclose
a longitudinal bar (ACI Code, Section 12.13.3). See Fig. 8.8a.

2. The code allows the use of a standard hook of 90°, 135°, or 180° around longitudinal
bars for no. 5 bars or D31 wire stirrups. If no. 6, 7, or 8 stirrups with f,, > 40ksi are
used, the Code (Section 12.13.2) requires a standard hook plus an embedment length of
0.0144, £y / (A\/TC’) between midheight of the member and the outside of the hook. If the
bars are bent at 90°, extensions shall not be less than 12d,. For no. 5 bars or smaller
stirrups, the extension is 6dy (ACI Code, Section 7.1.3). See Fig. 8.8b.

3. If spliced double U-stirrups are used to form closed stirrups, the lap length shall not be
less than 1.3/; (ACI Code, Section 12.13.5). See Fig. 8.8¢.

4. Welded wire fabric is used for shear reinforcement in the precast industry. Anchorage
details are given in the ACI Code, Section 12.13.2.3, and in its commentary.

5. Closed stirrups are required for beams subjected to torsion or stress reversals (ACI Code,
Section 7.11).

6. Beams at the perimeter of the structure should contain closed stirraps to maintain the
structural integrity of the member (ACI Code, Section 7.13.2.2).

8.6.7 Stirrups Adjacent to the Support

The ACI Code, Section 11.1.3, specifies that shear reinforcement provided between the face of
the support and the critical section at a distance d from it may be designed for the same shear V,,
at the critical section. It is common practice to place the first stirrup at a distance 572 from the
face of the support, where s is the spacing calculated by Eq. 8.16 for V, at the critical section.
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Figure 8.9 Effective length and spacing of bent bars.

8.6.8 Effective Length of Bent Bars

Only the center three-fourths of the inclined portion of any longitudinal bar shall be considered
effective for shear reinforcement. This means that the maximum spacing of bent bars is 0.75(d
- d’). From Fig. 8.9, the effective length of the bent bar 1s 0.75(d — d/)/(sin45°) = 0.75(1.414)
(d —d) = 1.06(d — d'). The maximum spacing § is equal to the horizontal projection of the
effective length of the bent bar. Thus S,,.x = 1.06(d — d')cosd5°, or Smax = 0.707[1.06(d —
d)] =075 - d).

8.7 DESIGN OF VERTICAL STIRRUPS

Stirrups are needed when V,, > %gb V.. Minimum stirrups are used when V, is greater than %({) Ve
but less than ¢ V.. This is achieved by using no. 3 stirrups placed at maximum spacing. When
V. 1s greater than ¢V, stirrups must be provided. The spacing of stirrups may be less than the
maximum spacing and can be calculated using Eq. 8.16: S = A, f,,d/ V;.

The stirrups that are commonly used in concrete sections are made of two-leg no. 3 or no.
4 U-stirrups with f,, = 60ksi. If no. 3 stirrups are used, then Eq. 8.16 becomes

S Aufy 022600 132

= = 8.24
d Vs Vi Vs ®29

If no. 4 stirrups are used, then

d Vs Vs Vs
The ratio of stirrup spacings relative to the effective depth of the beam, d, depends on V. The
values of S/d for different values of V; when f, = 60ksi are given in Tables 8.2 and 8.3 for
no. 3 and no. 4 U-stirrups, respectively. The same values are plotted in Figs. 8.10 and 8.11. The
following observations can be made:

S _ Ay fy  0.4(60) _ 24 (8.25)

1. If no. 3 stirrups are used, § = d/2 when V; < 26.4K. When V; increases, §/d decreases
in a nonlincar curve to reach 0.132 at V; = 100K. If the minimum spacing is limited to
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Table 8.2 S/d Ratio for Different Values of Vs (fx = 60ksi, S/d = 13.2/Vs), No. 3 Stirups

Vs (K) 264 30 40 50 528 60 70 80 80 100 125
S/d 0.5 044 033 0264 025 022 019 0165 015 0132 0106

Table 8.3 S/d Ratio for Different Values of V;{f,x = 60ksi, S/d = 24/Vs), No. 4 Stirrups

Vi(K) 48 50 60 70 80 90 96 100 110 120 150 175
S/d 050 048 040 034 03 027 025 024 022 020 016 0.137

r 264K

\ # 3 stirrups

0.4 fy =60 ksi ]
\ $id = 1324V,
0.3 \\ 528K
Sid 025 \‘F\
0.2 B
'\
R-\--
e ——
0.1 0.106
0
30 50 70 90 110 125
V kips

Figure 8.10 V; versus S/d for no. 3 stirrups and 7, = 60 ksi.

3in., then d must be equal to or greater than 22.7 in. to maintain that 3-in. spacing. When
V, is equal to or greater than 52.8K, then § < d/4.

2. If no. 4 U-stirrups are used, § = d/2 when V; < 48K. When V; increases, S/d decreases
to reach 0.16 at V, = 150 K. If the minimum spacing is limited to 3in., then 4 > 18.75in.
to maintain the 3-in. spacing. When V; is equal to or greater than 96K, then § < d/4.

3. If grade 40 U-stirrups are used ( f,; = 40ksi), multiply the S/d values by % or, in general,
Sy:160.

8.8 DESIGN SUMMARY

The design procedure for shear using vertical stirrups according to the ACI Code can be sum-
marized as follows:

1. Calculate the factored shearing force, V,, from the applied forces acting on the structural
member. The critical design shear value is at a section located at a distance d from the
face of the support.
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# 4 stirrups
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Sid = 241V,
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Srd 0.25 s
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0.1
0
50 70 90 110 130 150 170 175
V, kips
Figure 8.11 V; versus S/d for no. 4 stirups and f; = 60ksi.
2. Calculate ¢V, = ¢21./ f!b,d, or

3.

V.d
pV.=¢ [1.91\/TC' + 25000, ]bwa’ < $3.51y fibud

u

Then calculate 3¢V,

a. If V, < 1¢V,, no shear reinforcement is needed.

b. If %q) Ve < V, < ¢V, minimum shear reinforcement is required. Use no. 3 U-stirrups
spaced at maximum spacings, as explained in step 7.

¢. If V, > ¢V, shear reinforcement must be provided according to steps 4 through 8.

If V, > ¢V, calculate the shear to be carried by shear reinforcement:

Vu - ¢Vc

V=0V, +¢V; or V; = )

. Caleulate V,, = (4,/f)byd and V,, = (8,/f))b,,d = 2V,,. Compare the calculated V; with

the maximum permissible value of V., = (8,/ f/)b,d. If V; is less than V., proceed in the
design; if not, increase the dimensions of the section.

. Calculate the stirrup spacings based on the calculated S, = A, f),d/V; or use Figs. 8.10

and 8.11 or Tables 8.2 and 8.3.

. Determine the maximum spacing allowed by the ACI Code. The maximum spacing is the

least of S» and $3:
a $H2=d/2<24 mf V<=V, = (4\/T;)bwd.
S2=d/4 <12 in.if V, < Vs <V,
b. S3 = Ay fye/50by > Ay f1e/(0.75,/ Flby)
Smax 18 the smaller of S5 and S§3. Values of S5 are shown in Table 8.1.

If §; calculated in step 6 is less than Sp.« (the smaller of S; and S3), then use S; to the
nearest smaller % in. If §; > Spnax, then use Spax as the adopted S.
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9. The ACI Code did not specify a minimum spacing. Under normal conditions, a practical

10.

minimum S may be assumed to be equal to 3 in. for d < 20in. and 4 in. for deeper beams.
If § is considered small, either increase the stirrup bar number or use multiple-leg stirrups
(Fig. 8.8).

For circular sections, the area used to compute V. == diameter times the effective depth d,
where d = 0.8 the diameter, ACI Code, Section 11.2.3.

Example 8.1

A simply supported beam has a rectangular section b = 12in., d = 21.5in., and £ = 24in. and is
reinforced with four no. 8 bars. Check if the section is adequate for each of the following factored
shear forces. If it is not adequate, design the necessary shear reinforcement in the form of U-stirrups.
Use f. =4 ksi and fy; = 60ksi. Assume normal-weight concrete.

a.V,=12KMb)V, =24K (¢) V, =54K @) V, =77K (¢) V, = 128K

Solution
In general, b, = b = 12in,, d = 21.5in,, and

BV, = $(2AJ/Fbd = 0.75(2)(1)(+/4000)(12)(21.5) = 24.5 K
lov. =1225K
Vo, = 4/ f)bd = (4v/4000)(12)(21.5)/1000 = 653 K
V., = (8/f)bd = 130.6 K

a. V,=12K <« %05 V. = 12.25 K, section is adequate, and shear reinforcement is not required.

b. V,=24K> '5¢Vc, but it is less than ¢V, = 24.5 K. Therefore, V; = 0 and minimum shear
reinforcement is required. Choose no. 3 U-stirrup (two legs) at maximum spacing. A, = 2(0.11)
= (.22 in?. Maximum spacing is the least of

S, = d/2 =21.5/2 = 10.75 in., say, 10.5 in. (controls).
S3 = Ay fyr/50by, = 0.22(60,000)/50(12) = 22 in. (or use Table 8.1)
S4 = 24 in. Use no. 3 U-stirrups spaced at 10.5 in.

¢. V, = 54 K > ¢V,. Shear reinforcement is needed. Calculation may be organized in steps:
Calculate V, = (V, — ¢V )¢ = (54 — 24.5)/0.75 = 393 K.
Check if Vi < V,, = (4/f)}bud = 653 K. Because V; < 65.3 K, then Smax = d/2, and the
d/4 condition does not apply.
Choose no. 3 U-stirrups and calculate the required spacings based on V.

_ Aufyd _ 022(60)(21.5)
7 39.3

Calculate maximum spacings: §2 = 10.5in., §3 = 22in., and $4 = 24in. and maximum § =
10.51n. {calculated in (b)).
Because S = 7in. < Smax = 10.5in., then use no. 3 U-stirrups spaced at 7in.

d. V, =77 K > ¢V,, so stirrups must be provided.
Calculate V, = (V, — ¢V )¢ = (77 — 24.5)/0.75 = T0 K.
Check if V, <V, = 4\/?(_’ wd = 653 K. Because V; > 65.3 K, then Spux = d/4 = 12in.
must be used.
Check if V, < V., = 8,/f7b,d = 130.6 K. Because V;, < V; < V,,, then stirrups can be used
without increasing the section.

=7.26 in. say, 7 in.
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Choose no. 3 U-stirrups and calculate §; based on V;:

_Ayfud  0.22(60)(21.5)
7 70
Calculate maximum spacings: S» = d/4 = 21.5/4 = 5.3 in,, say, 5.0in.; §3 = 22in.; and S4 =
12in. Hence Sy,x = 5-in. controls.
Because § = 4in. < Sy = Sin,, then use no. 3 stirrups spaced at 4in.
e V, =128 K > ¢V,, so shear reinforcement is required.
Calculate V; = (V,, — ¢V Yo = (128 — 24.5)/0.75 = 138 K.

Because V; > V., = 130.2 K, the section is not adequate. Increase one or both dimensions of
the beam section.

S

=4.1 in., say, 4 in.

Notes : Table 8.2 and Fig. 8.10 can be used to calculate the spacing S for (¢) and (d).

1. For (¢), Vs = 39.3 K, from Fig. 8.10 (or Table 8.2 for no. 3 U-stirrups), §/d = 0.34 and §; =
7.31n., which is less than d/2 = 10.5in. Note that Sy, based on V; is d/2 and not d/4. Also,
from Table 8.1, §3 = A, f,1/50b,, = 22in.

2. Ford), V; = 70K, §/d =0.19 and §; = 4.1in. V; = 70 is greater than 52.8 K, and Sy =
d/4 is required.

Example 8.2

A 17-fi-span simply supported beam has a clear span of 16ft and carries uniformly distributed dead
and live loads of 4.5 K/ft and 3.75 K/ft, respectively. The dimensions of the beam section and steel
reinforcement are shown in Fig. 8.12. Check the section for shear and design the necessary shear
reinforcement. Given f/ = 3 ksi normal-weight concrete and fy = 60 ksi.

Solution
Given b, (web) = 14in., d = 22.5in.
1. Calculate factored shear from external loading:
factored uniform load = 1.2(4.5) + 1.6(3.75) = 11.4K/ft

11.4(16)

Vu(at face of support) = =91.2K

Design V, (at d distance from the face of support) = 91.2 — 22.5(11.4)/12 = 69.83 K.
2. Calculate ¢ V,:

0.75(2)(1)(~3000)(14)(22.5)
1000

Ve = A/ fbud = =2588 K

lov. = 1294 K

Calculate V,, = (4,/fDbyd = (4+/3000)(14)(22.5)/1000 = 69 K. Calculate V,, = (8,/7))b,d
=138 K.

3. Design V, = 69.83 K > ¢V, = 25.88 K; therefore, shear reinforcement must be provided. The
distance x  at which no shear reinforcement is needed (at %d) Ve) is

s 9121294
B 91.2
(from the triangles of shear diagram, Fig. 8.12).

) (8) = 6.86 ft =82 in.
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Figure 8.12 Example 8.2.

4. Calculate V; = (V, — ¢V.)lp = (69.83 — 25.88)/0.75 = 58.6 K. Because V; is less than
Ve, = (4/f)bud, then Smax = d/2 must be considered (or refer to Fig. 8.10 or Table 8.2: V;
< 52.8 K).

5. Design of stirrups: Choose no. 3 U-stirrups, A, = 2(0.11) = 0.22 in.2 Calculate S| based on
V; = 586K, S| = A, fyd/Vs; =132 d/Vs = 5.07in,, say, 5in. (or get s/d = 0.225 from
Table 8.2 or Fig. 8.10).

6. Calculate maximum spacings: > = d/2 = 22.5/2 = 11.25in,, say, 11.0in.; S3 = A, fy/50by,
= 0.22(60,000)/50(14) = 18.9in. (or use Table 8.1); S4 = 24in.; Spax = 11in. controls.
7. Because S; = 5in. < Smax = 11in., use no. 3 U-stirrups spaced at 5in.
8. Calculate V; for maximum spacings of 11in.:
v, = A.,?,d J 0.22(6?;(22.5) — 27K

¢V =2025K
OV, + ¢V, =25.88+20.25=46.13 K

The distance x; at which § = 11 can be used is

91.2 —46.13
91.2
Because x is relatively small, use S = 5in. for a distance greater than or equal to 47 and

then use § = 11 for the rest of the beam. Note : If x; is long, then an intermediate spacing
between Sin. and 11in. may be added.

) (96) = 47 in.
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Figure 8.13 Example 8.2: distribution of stirrups.

9. Distribute stirrups as follows: Place the first stirrup at S/2 from the face of the support.
First stirrup at §/2 =5/2 =2 in.
Nine stirrups at § = 5 = 45 in.
Total =45+ 2 in. =47 in.
Four stirmups at § = 11 =44 in.
Total = 91 in. > 82 in. (minimum length required)

The total number of stirrups for the beam is 2(1 + 9 4+ 4) = 28. Distribution of stirrups is
shown in Fig. 8.13, whereas calculated shear forces are shown in Fig. 8.12.

10. Place two no. 4 bars at the top of beam section to act as stimup hangers.

8.9 SHEAR FORCE DUE TO LIVE LOADS

In Example 8.2, it was assumed that the dead and live loads are uniformly distributed along the
full span, producing zero shear at midspan. Actually, the dead load does exist along the full span,
but the live load may be applied to the full span or part of the span, as needed to develop the
maximum shear at midspan or at any specific section. Figure 8.14a shows a simply supported
beam with a uniform load acting on the full span. The shear force varies linearly along the beam,
with maximum shear acting at support A.

In the case of live load, W, = 1.6W;, the maximum shear force acts at support A when
W, is applied on the full span, Fig. 8.14a. The maximum shear at midspan develops if the live
load is placed on half the beam, BC (Fig. 8.14b), producing V, at midspan equal to W,L/3.
Consequently, the design shear force is produced by adding the maximum shear force due to
live load (placed at different lengths of the span) to the dead load shear force (Fig. 8.14c¢) to give
the shear distribution shown in Fig. 8.144. It is a common practice to consider the maximum
shear at support A to be W,L/2 = (1.2Wp + 1.6W;)L/2, whereas V,, at midspan is W,L/8 =
(1.6W,)L/8 with a straight-line variation along AC and C B, as shown in Fig. 8.14d. The design
for shear in this case will follow the same procedure explained in Example 8.2. If the approach
is applied to the beam in Example 8.2, then V, (at A) = 91.2K and V,, (at midspan) = (1.6 x
3)(16/8) = 10K.
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Figure 8.14 Effect of live load application on part of the span.
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Example 8.3

A 10-ft-span cantilever beam has a rectangular section and carries uniform and concentrated factored
loads (self-weight is included), as shown in Fig. 8.15. Using f! = 4 ksi normal-weight concrete and
fy = 60 ksi, design the shear reinforcement required for the entire length of the beam according to
the ACI Code.

Solution

1. Calculate the shear force along the beam due to external loads.
V, (at support) = 5.5(1) +204+8=83 K

20.5
Vua (at d distance) =83 — 5.5 (—12—) =736K

V, (at 4 ft left) =83 —4(5.5) =61 K
V. (at 4 ft right) =61 — 20 =41 K
V, (at freeend) =8 K

The shear diagram is shown in Fig. 8.15.
2. Calculate ¢V,:

Ve = 21/ fIbd = 2(0.75)(1)+/4000(12)(20.5) = 23.3¢ K

1
5#Ve = 167K

« 4 > 6 »
l - % 20.5 —>|
YL 736K ———> Spax =10"
T l: j \ 61 K
5#10
41K

18 \
v x =717 | .
= 9.285' \
248 PV /2 < {-T K

T le 48" »le 38.5”—>I<—25.5"——>|*—>l
I I 8.0',
5

s ] 2 i

Figure 8.15 Exampie 8.3.



8.9 Shear Force Due to Live Loads 275

Because Vyq > ¢V, shear reinforcement is required. Calculate
V., =4/ fibd = 4/4000(12)(20.5) = 62.2 K
Ve, = 8/ flbd =2V, = 1244 K

The distance x at which no shear reinforcement is needed (at %qch = 11.67 K), measured from

support A:
41 — 11.67 .
x—4+(T'8—)6—9.33 ft =112 in.

(8.0in. from free end). Similarly, x; for ¢V, is 7.21 ft from A (33.5in. from the free end).

3. Part AC: Design shear V, = Vg = 73.6 K. Calculate V; =(V,, — ¢Vl = (73.6 — 23.34)/0.75
= 67 K. Because V., < Vi < Vg, Smax < d/4 must be considered (or check Fig. 8.10).

4. Design stirrups: Choose no. 3 U-stirrups, A, = 0.22 in.? Calculate S| (based on Vi):
Avfpd 1324 13.2(20.5)

v, T v, 6
Use 4.0in. (or get s/d = 0.22 from Fig. 8.10).

5. Caiculate maximum spacings: S, = d/4 = 20.5/4 = 5.12in., so use 5.01n.

Sl =40 in.

A

Sy = vy _ 22 in. (from Table 8.1 for b = 12 in.)
50b,,

S. =12 in.

Then Spax = 5.0in.
6. Because § = 4in. < Spax = 5.11in., use no. 3 stirrups spaced at 4in.
7. At C, design shear V, = 61 K > ¢V,. Then V; = (61 — 23.34)/0.75 = 502 K, §1 =
A, fnd/ Vs = 54in,
d 205
Vi=502K <V, =622K 5= > === 10.25 in. (or 10 in.)
S, = 54in. < $y; then §; = 5.4 or 5.0in. controls.

8. Because spacings of 5.5in. and 4.0in. are close, use no. 3 U-stirrups spaced at 41in. for part
AC.

9. Part BC:
a.

V, =41 K> ¢V,
V, = (V, — ¢pV.)/¢ = (41 —2334)/075=2355K < V, =622 K
b. §y = Ay fpd/ Vs = (13.2)(20.5)/23.55 = 11.5in.

c. S, = di2 = 20.5/2 = 10.25in. (or less than §3 = 22in. or §4 = 24in.). Let Spax = 10in.
Choose no. 3 stirrups spaced at 10in. for part BC.

10. Distribution of stirrups measured from support A: Place the first stirrup at

§=%=2in‘

12 x 4 in. = 48 in.

50 in.

6 x 10in. + 1 x 8 in. =68 in.
Total 118 in.

Distance left to the free end is 7in., which is less than 8.0in., where no stirrups are needed.
Distribution of stirrups is shown in Fig. 8.16. Total number of stirrups is 20.
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Figure 8.16 Example 8.3: distribution of stirrups.

8.10 SHEAR STRESSES IN MEMBERS OF VARIABLE DEPTH

The shear stress, v, is a function of the effective depth, d; therefore, shear stresses vary along a
reinforced concrete beam with variable depth [10]. In such a beam (Fig. 8.17), consider a small
element dx. The compression force C at any section is equal to the moment divided by its arm,
or C = M/y. The first derivative of C is

yvdM — Mdy
y2

If C, is greater than C5, then C; — C2 = dC = vbdx

ydM — Mdy dM M
y2 Ty )

1 dM) M (dy
v=—|—)-—[—
yb \ dx by? \ dx

Because y = jd, dM /dx is equal to the shearing force V and d(jd)/dx is the slope,
Vv M d Vv
=—— —(jd d =—=

v bjd  bd)? [dx (J )] and v

dC =

vhdx =

(tana) (8.26)

M
bjd ~ b(jd)?

i C2
Y2

- - - - T
i - 2

-
i 5 top surface

Figure 8.17 Shear stress in a beam with variable depth.
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where V and M are the external shear and moment, respectively, and « is the slope angle of one

face of the beam relative to the other face. The plus sign is used when the beam depth decreases

as the moment increases, whereas the minus sign is used when the depth increases as the moment

increases. This formula is used for small slopes, where the angle « is less than or equal to 30°.
A simple form of Eq. 8.26 can be formed by eliminating the j value:

Vv M
= —+ — (tan .
v bdibd2 a) 8.27)
For the strength design method, the following equation may be used:
Vi M,
= + 8.
vy obd © obd? {tan @) (8.23)
For the shearing force,
M,
oV, =V, 7“ (tan o) (8.29)

Figure 8.18 shows a cantilever beam with a concentrated load P at the free end. The
moment and the depth d increase toward the support. In this case a negative sign is used in Eqgs.
8.27, 8.28, and 8.29. Similarly, a negative sign is used for section ¢ in the simply supported
beam shown, and a positive sign is used for section Z, where moment increases as the depth
decreases.

A‘ NNNNNNNINNNNY

2

ft-——- ||

Figure 8.18 Beams with variabie depth: () moment diagrams and (b} typical forms.
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In many cases, the variation in the depth of beams occurs on parts of the beams near their
supports (Fig. 8.18).

Tests [11] on beams with variable depth indicate that beams with greater depth at the support
fail mainly by shear compression. Beams with smaller depth at the support fail generally by an
instability type of failure, caused by the propagation of the major crack in the beam upward and
then horizontally to the beam’s top section. Tests also indicate that for beams with variable depth
(Fig. 8.18) with an inclination o of about 10° and subjected to shear and flexure, the concrete
shear strength, V.., may be computed by

Vev = V(1 + tana) (8.30)
where

Vv = shear strength of beam with variable depth
V. = ACI Code Eq. 11.5

- (1.91\/75 + 2500,0,,,%1) buds < 3.58/ Flbyd,

o = angle defining the orientation of reinforcement, considered positive for beams of
small depth at the support and negative for beams with greater depth at the support
(Fig. 8.18)

ds; = effective depth of the beam at the support
The simplified ACI Code, Eq. 11.3,can also be used to compute V,_:

Ve = QA fDbydy (8.31)

Example 8.4

Design the cantilever beam shown in Fig. 8.19 under the factored loads applied if the total depth at
the free end is 12in., and it increases toward the support. Use a steel percentage p = 1.5%, f. = 4 ksi
normal-weight concrete, f), = 60 ksi, and b = 10in.

Solution

L. M, (support) = (2.5/2X8)*(12) + (14)}8)(12) = 2304 K-in.
2. For p = 1.5%, R, = 703 psi (from Table 4.1).

d= M = ‘f 2304 = 18.1 in,
R.b 0.703 x 10

Ay = 0.015 x 10 x 18.1 = 2.72in.2 (use three no. 9 bars); let actual d = 19.5in., A = 22in.

3. Design for shear: Maximum shear at the support is 14 + 20 = 34 K. Because the beam section
is variable, moment effect shall be considered; because the beam depth increases as the moment
increases, a minus sign is used in Eq.8.28.

Va M,
v, = obd —_ W(tana}
To find tan a, let 4 at the free end be 9.5in., and d at the support be 19.5in.:
tane = M =0.1042
8x 12
34,000 2304 x 1000 x 0.1042

v, (at the support) = 075 x 10 x 19.5) - [0.75 x 10 x (19.5)7]

= 148 psi
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Figure 8,19 Example 8.4 with bending moment diagram (middie) and shear force
diagram (bottom).

4, Shear stress at the free end is V,/¢pbd(M, = 0).
14,000

"= 075 x 10x 9.5

5. At a distance 4 = 18in. from the face of the support, the effective depth is 17.6in. (from

= 196 psi

geometry),
18
Ve=34-25x o =3025K
2. 78)?
M, (at 18 in. from support) = 14 x 78 + 1—25 X (_E)_
== 1726 K-in,
v — 30,25 1726 x 1000 x 0.1042
“T075%x10 % 18 0.75 x 10 x (18)2
= 150 psi
6. At midspan (48in. from the support),
d =14.5 in.
V,=144+10=24 K
2.5 (48)? .
= — x —— =912 K.in.
M,=14 x48 + 12x 5 9 in
24,000 912 x 1000 x 0.1042 .
= 160 psi

Ve = 075 x 10 x 145 0.75 x 10 x (14.5)?
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Similarly, at 6 ft from the support (2 ft from the free end),
d=12in. V,=19K M, =396 K.in.
v, = 173 psi
At 11t from the free end,
d=1075in. V,=165K M, =183 K.in.
v, = 182 psi

These values are shown in Fig. 8.20.
7. Shear stress resisted by concrete is

20/ f! = (2)(1)~/4000 = 126.5 psi
Minimum shear stress to be resisted by shear reinforcement
vy = 196 — 126.6 = 69.5 psi

(V4 and consequently v, have already been increased by the ratio 1/¢ in Eq. 8.28).
8. Choose no. 3 stirrups with two legs.

A, =2x0.11 =0.22 in?

Ayfye 022 x 60,000

= =19 in.
vsby, 69.5 x 10

S (required) =

Senax (for g) = 9.5 in. to 4.5 in. at the free end

Ay fye _ 0.22 x 60,000

= =264 in.
505, 50 x 10

Smax (for minimumA,) =

9. Check for maximum spacing (d/4): vys < 4,/ f7.

4./F = (4)V/4000 = 253 > 69.5 in.

10. Distribution of stirrups (distances from the free end):

1 stirrup at 2 in. = 42 in.

10 stirrups at 4.5 in. = 45 in.
3 stirrups at 7 in. = 21 in.

3 stirrups at 8 in. = 24 in.
Total = 92 in.

There is 4in. left to the face of the support.
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Figure 8.20 Example 8.4: web reinforcement for a beam of variable depth.
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8.11 DEEP FLEXURAL MEMBERS

Flexural members should be designed as deep beams if the ratio of the clear span, /, (measured
from face to face of the supports; Fig. 8.21), to the overall depth, 4, is less than 4 (ACI Code,
Section 11.8). The members should be loaded on one face and supported on the opposite face so
that compression struts can develop between the loads and supports (Fig. 8.22). If the loads are
applied through the bottom or sides of the deep beam, shear design equations for ordinary beams
given earlier should be used. Examples of deep beams are short-span beams supporting heavy
loads, vertical walls under gravity loads, shear walls, and floor slabs subjected to horizontal loads.
The definition of deep flexural members is also presented in the ACI Code, Section 10.7.1.
It indicates that flexural members where the ratio of the clear span, I,, to the overall depth, &
(Fig. 8.21), is less than 4 and regions loaded with concentrated loads within twice the member
depth from the face of the support are considered deep flexural members. Such beams should
be designed taking into account nonlinear distribuion of stress and lateral buckling (Fig. 8.22a).
Figure 8.22a shows the elastic stress distribution at the midspan section of a deep beam,
and Fig. 8.22b shows the principal trajectories in top-loaded deep beams. Solid lines indicate ten-
sile stresses, whereas dashed lines indicate compressive stress distribution. Under heavy loads,
inclined vertical cracks develop in the concrete in a direction perpendicular to the principal
tensile stresses and almost parailel to the dashed trajectories (Fig. 8.22¢). Hence, both horizon-
tal and vertical reinforcement is needed to resist principal stresses. Moreover, tensile flexural
reinforcement is needed within about the bottom one-fifth of the beam along the tensile stress
trajectories (Fig. 8.22b). In general, the analysis of deep beams is complex and can be performed
using truss models or more accurately using a finite-element approach or similar methods. A
simplified provision for the shear design of deep beams can be presented in steps as follows:

1. Critical section: If the critical section for shear design in deep beams supporting top vertical
loads is located at a distance X from the face of the support, then the distance X can be
determined as follows (Fig. 8.23):

a. For deep beams supporting uniformly distributed loads, X = 0.15/,, where I, = clear
span.

b. For concentrated loads, Xy =0.5a, (left support) or X5 = 0.5a; (right support) (Fig. 8.23),
where a; and a; equal the shear span near each support. The shear span is the distance
between the concentrated load and the face of the support.

In all cases, the distances X, X;, and X> must not exceed the effective depth, 4.

w K/ft

bbb bbbl

Main steel

[r—— Y, ]

[ ]

Figure 8.21 Single-span deep beam (/,/d < 5).
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A c
Stress h
distribution
y
y
.e —Y > T
LR J
|<——| ¢ =0.75h
by y = (0.6-0.8)h
Section A-A
(a) (b)

Struts

| =

Ak Ll 4l —il

(c) (d)

Figure 8.22 Stress distribution and cracking: (a) elastic stress distribution, (b) stress
trajectories (tension, solid lines, and compression, dashed lines), (c) cracks pattern, and
(d) truss model for a concentrated load applied at the wall upper surface.



284

Chapter 8 Shear and Diagonal Tension

w K/ft 2,

LLl by | f
|
|
|

Critical
section

e o— - e - —

; «
Xy
L N
X
X = 0.151, X, = 05a, X, = 054,

Figure 8.23 Ciritical secticns for shear design.

2. Maximum shear strength ¢V,,: The maximum shear strength, ¢V, for deep flexural mem-
bers shall not exceed the following values (¢ = 0.75):

In
For =<2 ¢Vu= #8\/f!byd (8.324)
L 2 L,
For2s - <5 ¢Vi=¢7(10+7 Vibwd (8.32b)
or let
¢V, = 10/ flbyd (8.33)

for both cases, ACI Code, Section 11.7.3. If V, exceeds ¢V, then the section dimensions
must be increased.
3. a. Concrete shear strength, V,: The nominal shear strength, V.., of concrete can be estimated
as follows:

Ve = 20/ flbyd (8.34)

This V. is similar to the concrete shear strength for regular beams, as in the previous
sections of this chapter.

b. Alternatively, another expression may be used that takes into account the effect of the
factored moment and shear at the critical section:

5M, 2500 V,d
V, = (3.5 _ oM ) (1.9A 77+ ﬂu) bud (8.35)

V.d M,
but V. should not exceed 6,/ f/b,d.
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The value of (3.5 — 2.5 M,/V,d) may not be greater than 2.5 and must not be less
than 1.0. The values of M, and V, are taken at the critical design section. This higher
shear strength of Eq. 8.35 is used with the idea that minor unsightly cracking may occur
in the deep beam and can be tolerated. Cracks may start to develop at about one-third the
factored load.

4. Shear reinforcement: When the factored shear force, V,, exceeds ¢V,, shear reinforcement
must be provided, considering that V, = ¢(V. + V), or Vs = (V,, — ¢ V). The steps
are as follows:

a. Determine V,: The force resisted by shear reinforcement V; is determined from the
following expression:

(A (1+b/dY  Aw (11-1/d
Vs‘[s,,( 12 )+s;,( 12 )]fyd (8.36)

where A, = total area of vertical shear reinforcement spaced at S, and perpendicular
to the main flexural tensile reinforcement on both faces of the beam and A, = total
area of horizontal shear reinforcement spaced at S parallel to the main flexural tensile
reinforcement on both faces of the beam.

b. Spacing of shear reinforcement is

Maximum vertical spacings §, < — < 12 in.

Maximum horizontal spacings S; < = <12 in.

iR &

¢. Minimum shear reinforcement: The area of vertical shear reinforcement is A, =
0.0025b,,S,. The area of horizontal shear reinforcement is Ay, = 0.0015 &, Sp.

d. The shear reinforcement required at the critical section should be extended throughout
the length and depth of the deep beam.

e. For continzous deep beams, the same shear reinforcement may be used in all spans if
the spans are almost equal with similar loading.

5. Flexural reinforcement of deep beams: The flexural behavior of deep beams is complex
and requires nonlinear analysis of stresses and strains along the depth of the beam. For a
preliminary design, the following simplified approach may be used:

oM, = ¢Asfyy

where y = moment arm = (d — a/2). Because the value of (d — a/2) is not easy to
calculate, the moment arm y may be taken approximately equal to 0.64 for [,/h = 1.0 and
equal to 0.8% for I,/h = 2.0. Linear interpolation may be used to estimate y when /,/h
varies between 1.0 and 2.0. Therefore,

M,
Ay = ——
¢yfy

The value of A; may not be less than the minimum fiexural reinforcement required for
regular beams given next, assuming d = 0.9A:

b4 (200)
byd = { — | byd 3.38
fy) =\7 ®39

The second term controls when f/ < 4500 psi. Note that, and f, are in psi.

(8.37)

3
Minimum A; = (
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The flexural tension reinforcement shoul d be placed within h/4 to #/5 of the beam and
should be adequately spaced along the bottom tension zone. Tension bars should be well anchored
to the supports.

For more accurate analysis and design and for continuous deep beams, a rigorous non-

linear approach should be used to determine the proper amount and distribution of the tension
reinforcement.

Example 8.5

A simply supported deep beam has a span = 14 ft, a clear span of /, = 12 ft, a total height of # = 8ft,
and width of b = 16in. The deep beam supports a uniform service dead load of 41 K/ft (including
self-weight) and a live load of 22 K/ft on top of the beam. Design the beam for moment and shear
using f = 4 ksi normal-weight concrete, and f, = 60ksi. Refer to Fig. 8.24.

Solution

1. Design for moment:
W, = 1.2Wp + 1.6W, = 1.2(41) + 1.6(22) = 84.4 K/ft
_ W,L2 84.4(14)

M, = 2067.8 K-ft
" 8 8
L, 12
2 ===15
h~ 8

Determine the moment arm, y. For /,/2 = 1.0, y = 0.6d, and for I,/h = 2.0, y = 0.8d; hence
for I,/h = 1.5, y = 0.7d (by interpolation) = 0.7(8 x 12) = 67.2in.
M, 2067.8 x 12

—_ — _ 2
= of " 09eT e - ot

s

Horizonal bars

#4 @ 7 in.
—

171

Vertical bars
#4 @ 7in.

F 3

h =8 fi

5#8bars @ 4in.
each face

~

I,=12ft >
AL 1L

Figure 8.24 Example 8.5.
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Assume d = 0.92 = 0.9(8 x 12) = 86.4in. Because f] < 4500 psi,

.. _ &0 _ 200(16)(86.4)
A (minimum) = ( 7, )bwd = --—--—60’ 000

Therefore, A, = 6.84in.2 controls. Choose 10 no. 8 bars (7.85 in.?), five on each face, distributed
within #/5 = 8(12)/5 = 19.2in. of the tension zone of the beam. Spacing of bars = 19.2/5 =
3.84in., or 4in. Bars should be well anchored into the supports.

2. Design for shear:
a. Calculate V, and M, at the distance x = 0.15/, = d from the face of the support.

0.15[, = 0.15(12 x 12) =21.6 in. = 1.8 ft <4 = 86.4 in.
Design V, = 84.4(12/2) — 84.4(1.8) = 354.5 K

=46 in.2

2
M, = 84.4(6)(1.8) ~ i'#@- =774.8 KAt
M. _ 7148012 _ o0

V.d 354.5(86.4)

b. Calculate V,:
MK

V,d

So, use 2.5 In this case, determine M,/V,d to be used to calculate V.: 2.5 =35 — 2.5
M, /(V.d), and M, /(V,d) = 04.

35-25

=35-250304) =274>25

V,d 1
=—=25
M, 0.4
A 7.85
Pw g = 0.00496

= b,d 16 x 86.4

25000, Vd
V, =25 (1.9W7; + +) bud

= 2.5[(1.9)(1)~/4000 + (2500)(0.00496)(2.5)1(16){(86.4)
= 5224 K

Ve < 6/ f7bud = 6/4000(16)(86.4) = 524.6 K

Hence, V., = 522.4 controls and ¢V, = 392K.

¢. Calculate V, = (V, — ¢V.V¢. Because ¢V, = 392K > V, = 354.5K, then V; = 0, and
only minimum shear reinforcement is required.

d. Calculate shear reinforcement: Assume no. 4 bars placed on both faces in the horizontal
and vertical directions; then A, = Ay, = 2(0.2) = 0.4in.2 Maximum allowable spacing of
vertical bars is S, = d/5 = 18in. §, = 86.4/5 = 17.3in. > 12in. use S, = 12in. Maximum
allowable spacing of horizontal bars is S, = d/5 = 18in. §; = 86.4/5 =173 1n > 12in.; use
S, = 12in. Minimum A, (vertical) = 0.0025b,,S, = 0.0025(16)(72) = 0.48in2 > 0.4in.2
Minimum A, (horizontal) = 0.0015b,, 5, = 0.0015(16)(12) = 0.288in.> < 0.4in.? Reduce
spacing to S, = 0.4/(0.0025 x 16) = 10in. Therefore, use no. 4 vertical bars spaced at
10in., and use no. 4 horizontal bars spaced at 12in.

3. If V. = 21,/ flbud is used, then V. = (2)(1)+/4,000(16)(86.4) = 174.9 K and ¢V, = 0.75V,
= 131K, which is less than V, = 354.5K. Hence, shear reinforcement is required.

_ Vu—¢V. 3541-131

V.= = =2975K
y ¢ 0.75
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Assuming no. 4 bars placed on both faces in the vertical and horizontal directions, then A4, =
Ay = 2(0.2) = 0.4in.?2 Assuming that the spacings of bars in both directions are equal, S, =
Sy = S, and I,/d = 12 x 12/864 = 1.67, then

A, l+l,,/d) A (ll—l,,/d)
Vi=| — e O
g [s,, ( 12 + Sh 12 fyd

0.4 (1+ 1.67) 0.4 (11 - ].67)] (60)(86.4)

27.5= [“s_ 12 S 12

S = 7in., which is less than the maximums S, = 17.3in. and S, = 18in. Use S = 7in. for
both vertical and horizontal spacing.

Minimum A, (vertical) = 0.0025(16)(7) = 0.28 in.? < 0.4 in.

(8.36)

Minimum Ay, (horizontal) = 0.0015(16)(7) = 0.168 in.” < 0.4 in.2

Then use no. 4 bars spaced at 7in. on both faces in the horizontal and vertical directions. A
welded wire fabric mesh may be adopted to replace the preceding bar arrangements. It can be
seen that this solution is more conservative than that given in step 2. Reinforcement details are
shown in Fig. 8.24 on page 281.

Example 8.6: Strut and Tie Deep Beam

A simply supported deep beam has a clear span = 12ft, a total height = 6ft, and a width = 18in.
The beam supports an 18-in. square column at midspan carrying a dead load = 300K, and a live
load = 240K. Design the beam using the strut and tie model, using f, =4 ksi and f, = 60Kksi.
(Refer to Fig. 8.25).

Solution
1. Calculate the factored loads (Fig. 8.25):
Weight of the beam = 15 x 6 x 1.5 x 0.150 = 20K

£
b—— 18"
Pp=300K
I l P, =240K
D 3
|
|
|
|
|
{
i 6
|
|
|
|
|
[ R
A B
—» 1.5 - 8 ¢I< & > 1.5 pe—

Figure 8.25 Example 8.6
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4.

6.

Since the weight of the beam is small relative to the concentrated loads at midspan, add it to
the concentrated load at midspan.

P, =1.2D + 1.6L = 1.2(300 + 20) 4+ 1.6(240) = 768 K
Ry=Rp=768/2=384 K

. Check if the beam is deep according to to the ACI Code, Section 11.8: Clear span, {, = 12ft,

h = 6ft, and I,/h = 2 < 4, a deep beam.

. Calculate the maximum shear strength of the beam cross-section: Let V,, at A = R4 = 384K,

and assume d = 094 = 0.9 x 72 = 64in.
V, = 10/fib,d = 10 x V4000(18 x 64) = 728.6 K
PV, =0.75(728.6) =546 K>V,  (ok)

Select a truss model.

A triangular truss model is chosen. Assume that the nodes act at the centerline of the supports
and at 6.0 in from the lower or upper edge of the beam (Fig. 8.26). The strut and tie model
consists of a tie AB and two struts AD and BD. Also, the reactions at A and B and the load
P, at D represent vertical struts.

Length of the diagonal strut AD = /(60)? + (80)2 = 100.8 in.
Let the angle between the strut and the tie = 6, tan § = 60/81 = 0.7407, and 6 = 36.5 degrees
=26 degrees, which is o.k.

Calculate the forces in the truss members: The compression force in strut AD = Fap = Fap
= 384 (100.8/60) = 645 K. The tension force in the tie AB = Fsp = 384 (100.8/81) = 478K.

Calculate the effective strength, f,. Assume that confining reinforcement is provided to resist
the splitting forces. Struts AD and BD represent the bottle-shape compression members, and
therefore, 8, = 0.75.

foe = 0.858; f{ = 0.85 x 0.75 x 4 = 2.55 ksi
The vertical struts at A, B, and D have uniform sections, and therefore 8, = 1.0.
foo =085 % 1.0 x 4 = 3.4 ksi

The nodal zone D has a C-C-C force and therefore, 8; = 1.0. The effective strength at nodal
zone D is:
foe =085 x 1.0 x4=34ksi

Since the struts AD and BD connect to the other nodes, f.. = 2.55 ksi controls to all nodal
ZOnes.

. Design of nodal zones:

a. Design of nodal zone at A : Assume that the faces of the nodal zone have the same stress
of 2.55ksi and the faces are perpendicular to their respective forces.

QF, > F, or ¢feds = F,

where ¢ = 0.75 for struts, ties, and nodes. The length of the horizontal face ab (Fig. 8.27a)
is equal to F, /(¢ foeb) = 384/(0.75 x 2.55 x 18) = 11.2in. From geometry, the length ac =
11.2 (478/384) = 13.94in., say 14in. Similarly, the length bc = 11.2 (645/384) = 18.8in.
The center of the nodal zone is located at 14/2 = 7 in. from the bottom of the beam, which
is close to 6.0in., assumed earlier.

b. Design of nodal zone at D (Fig. 8.27b): The length of the horizontal face de = 768/(0.75
x 2.55 x 18) = 22.3in. The length of df = ef = 22.3(645/768) = 18.7in. The length of
fg = 15.0in., and the center of the nodal zone is located at 15/3 = 5.0 in from the top,
which is close to the assumed 6.0in.
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Figure 8.26 Example 8.6: idealized beam.

8. Design of vertical and horizontal reinforcement:
a, Vertical bars: The angle between the vertical bars and strut = 53.5°, from Fig. 8.27a. Use
No. 5 bars spaced at 12in., two branches, A; = 2 (0.31) = 0.62 in». Sin 53.5° = 0.804.
(Asi/bss)siny; = (0.62/18 x 12)(0.804) = 0.0023

b. Horizontal bars: The angle between the horizontal bars and strut = 36.5°, (Fig. 8.27a). Use
No. § bars spaced at 12in., two branches, A; = 0.62 in.2. Sin 36.5° = 0.595.

(Agi/bss) siny; = {0.62/18 x 12)(0.595) = 0.0017
¢. Total (A;;/b;s) sin y; = 0.0023 + 0.0017 = 0.004 > 0.003, which is o.k.
9. Design of the horizontal tie AB :
a. Calculate A;:
F, = ¢Asfy As;=478/(0.75 x 60) = 10.6 in?
Use 12 no. 9 bars, A; = 12in.2 in three rows as shown in Fig. 8.27c.

b. Calculate anchorage length: Anchorage length is measured from the point beyond the
extended nodal zone, Fig. 8.28. Tan 36.5 = 7/x. Then x = 9.5in. Available anchorage
length = 9.5 + 56 + 9 — 1.5in. (cover) = 22.6in. Development length of no. 9 bars
required = 47.5in. (Table 7.1), which is greater than 22.6in. Use a standard 90° hook
enclosed within the column reinforcement.

lan = 0.02, fydy/ A/ f! (7.15)
Ye=A=10 d,=11281n

Lan = 0.02(1)(60,000)(1.128)/((1)(v4000)) = 21.4 in < 22.6 in.
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Figure 8.27 Example 8.6: nodal zones, {a) at node A, (b) at node D, and (¢} reinforce-
ment details.
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Figure 8.28 Example 8.6: development of tie reinforcement.
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Table 8.4 Shear Reinforcement Formulas

Chapter 8 Shear and Diagonal Tension

U.S. Customary Units

Sl Units

V. = design shear

V, = design shear

(Maximum design V, is at a distance d from the face of the support.)

V.= (200/f1) bud = (0.17A/f!) bud
d V.d
V. = [1 Or/fl+ (2500pw 1‘; )] byd V.= [0.16)&,/ fl+ (17.2pw A; )] byd
u @
A Vid A, Vd
= <1.0 e 1.
Po=pd M, Po=33 g, =10
Ve < (3.50/f]) bud V. < (0.290,/F!) byd
Vu = ¢Vc + ¢V: Vu = ¢Vc + ¢Vs

Vertical stirrups

d’vs =V, — ¢Vc ¢Vs = Vu - ¢vc
Vs V.
- 50b,, S 0.35b,,S b, S
Minimum A, = w <0. 75\/17'( G ) Minimum 4, = 7 <. 0()62\/—( F )
yt » (] y
Maximum S = Av fn > Av fy Maximum § = Av fy > Avly
506y~ 0.75/ fibu 0.35b, — 0.062/F7b,,

For vertical web reinforcement

Maximum § = g < 600 mm
if V; <0.33,/f1(b,d)

Maximum § = d/4 = 300 mm
if V, > 0.33./fl(byud)

Maximum S = ; < 24in.
if V; <4.0,/f!(b,d)

Maximum $§ = d/4 = 12in.
if Vy > 4.0,/ f!(b,d)

Ve < 8/Fi(bud)

Otherwise increase the dimensions of the section.

V; < 0.67,/fl(b,d)

Series of bent bars or inclined stirrups

Vs S ViS
Ay = T Ay, =
fyp d(sine + cos o) Sy d(sinar + cos o)
1.4
Fora=45°,S=—i'-’-M Fora=45°,S_M
Vs VS
For a single bent bar or group of bars, parallel and bent in one position
V_g VS
= - Ay = >
Sypsima . Sy sine L4V
Forcx=45°,Ay=l' : Fora = 45°, A, = ——
fyt f)’l

Ve < (3/f]) bud

Vs < (0.25/f) bud
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8.12 EXAMPLES USING Sl UNITS

The general design requlrements for shear reinforcement accordmg to the ACI Code are sum-
marized in Table 8.4, which gives the necessary design equations in both U.S. customary and
SI units. The following example shows the design of shear reinforcement using SI units.

Example 8.7

A 6-m clear span simply supported beam carries a uniform dead load of 47.5kN/m and a live toad of
25kN/m (Fig. 8.29). The dimensions of the beam section are b = 350 mm, d = 550 mm. The beam
is reinforced with four bars of 25-mm diameter in one row. It is required to design the necessary
shear reinforcement. Given: f, = 28 MPa and f, = 280 MPa.

Solution

1. Factored load is
12D+ 16L =12x475+1.6 x25=97 kN/m

2. Factored shear force at the face of the support is
6
V, =97 x §=291 kN

3. Maximum design shear at a distance d from the face of the support is

V, (at distanced) = 291 — 0.55 x 97 = 237.65 kN

CL
"I 2B 2 20 O O I
- 3m >
291 kN
237.65 kN xﬁ‘_‘“" Smax
—X(= 0.98 m—> cl;L

130 kN —/1/6
65 kN %/// 7’_7‘7‘ //

Figure 8.29 Example 8.7.
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4. The nominal shear strength provided by concrete is

Ve = (0.174/F))bd = (0.17+/28) x 350 x 550 = 173.2 kN
Vu = ¢Vc + ¢Vs‘
¢V, =0.75 x 173.2 = 130 kN

1
—2-¢Vc =65 kN
¢V, =237.65 — 130 = 107.65 kN
107.65
*= 075 = 143.5 kN
5. Distance from the face of the support at which %(ch =65 kN is
291 — 6
x' = %(3) =233 m (from triangles)

6. Design of stirrups:

a. Choose stirrups 10mm in diameter with two branches (A; = 78.5 mm?).
Ay =2 x 78.5 = 157mm?

Ay fnd 157 x 280 x 550

Spacing S = = = 168.5 600
pacuig o = =y, 143.5 x 10° fam = S mm
Thus, use 160 mm. Check maximum spacing of stirrups:
Maximum §; = — = 5570 = 275 mm

Ayfu 157 x 280

Sy = = =359
3= 9356 ~ 0.35 x 350 mm
S = 8§, = 160 mm controls.
b. Check for maximum spacing of d/4:

d

If Vs < (0.33/F)bd,  Spax = 2
d

If Vi > (0.33,/f)bd, Smax = 7

5d(0.33,/f!) = 0.33+/28 x 350 x 550 = 336.1kN
Actual V;, = 143.5kN <« 336.1 kKN. Therefore, Snax is limited to ¢/2 = 275 mm.

7. The shear reinforcement, stirrups 10 mm in diameter and spaced at 160 mm, will be needed
only for a distance 4 = (.55 m from the face of the support. Beyond that, the shear stress V
decreases to 0 at a distance x = 1.66 m when ¢V, = 130kN. It is not practical to provide
stirrups at many different spacings. One simplification is to find out the distance from the face
of support where maximum spacing can be used, and then only two different spacings may be
adopted.
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=275 mm

|8

Maximum spacing =

Ay fyd 157 x 0.280 x 550
S 275
oV, =879 x0.75 =65.94 kN
The distance from the face of the support where Syax = 275mm can be used (from the
triangles):

V, (for smax = 275 mm) = =879 kN

291 — (130 + 65.94)
B 291
Then, for 0.98 m from the face of support, use stirrups of 10-mm diameter at 160 mm, and for

X1 3)=098 m

the rest of the beam, minimum stirrups (with maximum spacings) can be used.
8. Distribution of stirrups:

: s
{t— = — =
0nest1rrupa2 5 80 mm

six stirrups at 160 mm = 960 mm

Total = 1040 mm =1.04 m> 0.98 m
six stirrups at 270 mm = 1620 mm

Total = 2660 mm = 2.66 m <3 m

The last stirrup is (3 — 2.66) = 0.34m = 340mm from the centerline of the beam, which

is adequate. A similar stirrup distribution applies to the other half of the beam, giving a total
numnber of stirrups of 28.
The other examples in this chapter can be worked out in a similar way using SI equations.

SUMMARY

Sections 8.1-8.2

The shear stress in a homogeneous beam is v = V Q/7b. The distribution of the shear stress
above the neutral axis in a singly reinforced concrete beam is parabolic. Below the neutral axis,
the maximum shear stress is maintained down to the level of the steel bars.

Section 8.3

The development of shear resistance in reinforced concrete members occurs by

« Shear resistance of the uncracked concrete
o Interface shear transfer
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» Arch action
« Dowel action

Section 8.4

The shear stress at which a diagonal crack is expected is
4
1.9x/ f1 4+ 2500
%= bd ( -+ 20005

The nominal shear strength is

) <35/f

Ve = vebud = 20/ flbwd

Sections 8.5-8.6

1. The common types of shear reinforcement are stirrups (perpendicular or inclined to the
main bars), bent bars, or combinations of stirrups and bent bars.

1
Vi=0V, =9V, +¢V, and V,= g(Vu —¢V,)
2. The ACI Code design requirements are summarized in Table 8.4.

Sections 8.7-8.8

Design of vertical stirrups and shear summary is given in these sections.

Sections 8.9-8.10

1. Variation of shear force along the span due to live load may be considered.
2. For members with variable depth,

M, (tanar)

oV, =V, £ p (8.29)
Section 8.11
For deep beams, the shear capacity, V., may be determined from the following expressions:
Ve = 20/ flbwd (8.35)
ot
2. SM 25000, V. d
v, = (3. ) (1 Fl P )bwd (8.36)
u

The critical section for shear de51gn is at X = 0.15/, for uniform loads and X = 0.5a¢ for
concentrated loads.
Also, refer to Section 5.7 in text.
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PROBLEMS

8.1 Design the necessary shear reinforcement (if needed) in the form of U-stirrups (two legs) for the
T-section shown in Fig. 8.30. Use f! =4 ksi (28MPa) and f, = 60ksi (420 MPa).

a. V, = 22K (98kN)
b. V, = 56K (246 kN)
e. V, = 69K (306 kN)
8.2 Repeat Problem 8.1 for the section shown in Fig. 8.31.

8.3 Design the necessary shear reinforcement (if needed) in the form of U-stirrups (two legs) for the
rectangular section shown in Fig. 8.32 using f! = 3 ksi (21 MPa) and fy, = 60ksi (420 MPa).

: - |

r A ] 3#
I

17.5%

2.5"

T — 147 —>]

Figure 8.30 Problem 8.1,
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Figure 8.32 Problem 8.3.

a. V, = 55K (245kN)

b. V;, = 110K (490 kN)

¢. V, = 144K (640kN)

A 16-ft- (4.8-m-)span simply supported beam, Fig. 8.33; has a clear span of 15ft (4.5m) and is
supported by 12 x 12-in. (300 x 300-mm) columns. The beam carries a factored uniform load of
11.1 K/t (166 kN/m). The dimensions of the beam section and the flexural steel reinforcement are
shown in Fig. 8.33. Design the necessary shear reinforcements using f = 3ksi (21 MPa) and f; =
60 ksi (420 MPa). Show the distribution of stirrups along the beam.

An 18-ft- (5.4-m-)span simply supported beam carries a uniform dead load of 4 K/ft (60kN/m) and
a live load of 1.5K/ft (22kN/m). The beam has a width of ¥ = 12in. (300mm) and a depth of 4
= 24in. (600 mm) and is reinforced with six no. 9 bars (6 x 28 mm) in two rows. Check the beam
for shear and design the necessary shear reinforcement. Given: f! = 3 ksi (21 MPa) and fy; = 50ksi
(280 MPa).

Design the necessary shear reinforcement for a 14-ft (4.2-m) simply supported beam that carries a
factored uniform load of 10 K/ft (150kN/m) (including self-weight) and a factored concentrated load
at midspan of P, = 24K (108kN). The beam has a width of » = 14in. (350 mm) and a depth of &
= 16.5 (400mm) and is reinforced with four no. 8 bars (4 x 25mm). Given: f, = 4 ksi (28 MPa}
and fy = 60ksi (420 MPa).

A cantilever beam with 7.4-ft (2.20-m) span carries a uniform dead load of 2.5 K/ft (36 kN/m) (includ-
ing self-weight) and a concentrated live load of 18 K (80kN) at a distance of 3ft (0.9 m) from the
face of the support. Design the beam for moment and shear. Given: f] = 3 ksi (21 MPa), f,. = 60ksi
(420MPa3), and b = 12in. (200mm)}, and use p = 3/4pnax-
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Figure 8.33 Problem 8.4,

Design the critical sections of an 11-ft-(3.3-m-)span simply supported beam for bending moment and
shearing forces using p = 0.016. Given: f = 3 ksi (21 MPa), f,; = 60ksi (420 MPa), and b = 10in.
(250 mm). Dead load is 2.75 K/ft (40kN/m) and live load is 1.375 K/ft (20 kN/m).
A rectangular beam is to be designed to carry a factored shearing force of 75 kips (335 kN). Deter-
mine the minimum beam section if controlled by shear (V, = ZAJTc’bd) using the minimum shear
reinforcement as specified by the ACI Code and no. 3 stirrups. Given: f/ =4 ksi (28 MPa), f,; =
40ksi (280 MPa), and b = 16in. (400 mm).
Redesign Problem 8.5 using fy; = 60ksi.
Redesign the shear reinforcement of the beam in Problem 8.6 if the uniform factored load of 6 K/ft
(90kN/m) is due to dead load and the concentrated load P, = 24k (108 kN) is due to a moving live
load. Change the position of the live load to cause maximum shear at the support and at midspan.
Design a cantilever beam that has a span of 9ft (2.7 m) to carry a factored triangular load that vanes
from 0 load at the free end to maximum load of 8 K/ft (120kN/m) at the face of the support. The beam
shall have a variable depth, with minimum depth at the free end of 10in. (250 mm) and increasing
linearly toward the support. Use steel percentage p = 0.016 for flexural design. Given: f] =4 ksi
(28 MPa), f, = 60ksi (420 MPa) or flexural reinforcement, fy; = 40ksi (280 MPa) for stirrups, and
= 1lin. (275 mm).



CHAPTER 9
ONE-WAY SLABS

The Westin Hotel, Toronto, Canada.

9.1 TYPES OF SLABS

Structural concrete slabs are constructed to provide flat surfaces, usually horizontal, in building
floors, roofs, bridges, and other types of structures. The slab may be supported by walls, by
reinforced concrete beams usually cast monolithically with the slab, by structural steel beams,
by columns, or by the ground. The depth of a slab is usually very small compared to its span.
See Fig. 9.1.

Structural concrete slabs in buildings may be classified as follows:

1. One-way slabs: If a slab is supported on two opposite sides only, it will bend or deflect
in a direction perpendicular to the supported edges. The structural action is one way, and
the loads are carried by the slab in the deflected short direction. This type of slab is called
a one-way slab (Fig. 9.1a). If the slab is supported on four sides and the ratio of the long
side to the short side is equal to or greater than 2, most of the load (about 95% or more) is
carried in the short direction, and one-way action is considered for all practical purposes
(Fig. 9.1b). If the slab is made of reinforced concrete with no voids, then it is called a
one-way solid slab. Fig. 9.1c, d, and e shows cross-sections and bar distribution.

2. One-way joist floor system: This type of slab is also called a ribbed slab. It consists of a
floor slab, usually 2 to 4in. (50 to 100 mm) thick, supported by reinforced concrete ribs
(or joists). The ribs are usually tapered and are uniformly spaced at distances that do not
exceed 30in. (750 mm). The ribs are supported on girders that rest on columns. The spaces
between the ribs may be formed using removable steel or fiberglass form fillers (pans),
which may be used many times (Fig. 9.2). In some ribbed slabs, the spaces between ribs
may be filled with permanent fillers to provide a horizontal slab.
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3. Two-way floor systems: When the slab is supported on four sides and the ratio of the
long side to the short side is less than 2, the slab will deflect in double curvature in both
directions. The floor load is carried in two directions to the four beams surrounding the
slab (refer to Chapter 17). Other types of two-way floor systems are flat plate floors, flat
slabs, and waffle slabs, all explained in Chapter 17. This chapter deals only with one-way

floor systems.
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Figure 9.2 Cross-sections of one-way ribbed slab: (a) without fillers and (b) with fillers.

9.2 DESIGN OF ONE-WAY SOLID SLABS

If the concrete slab is cast in one uniform thickness without any type of voids, it can be referred
to as a solid slab. In a one-way slab, the ratio of the length of the slab to its width is greater
than 2. Nearly all the loading is transferred in the short direction, and the slab may be treated
as a beam. A unit strip of slab, usually 1 ft (or 1 m) at right angles to the supporting girders, is
considered a rectangular beam. The beam has a unit width with a depth equal to the thickness
of the slab and a span length equal to the distance between the supports. A one-way slab thus
consists of a series of rectangular beams placed side by side (Fig. 9.1).

If the slab is one span only and rests freely on its supports, the maximum positive moment
M for a uniformly distributed load of w psf is M = (wL?)/8, where L is the span length between
the supports. If the same slab is built monolithically with the supporting beams or is continuous
over several supports, the positive and negative moments are calculated either by structural
analysis or by moment coefficients as for continuous beams. The ACI Code, Section 8.3, permits
the use of moment and shear coefficients in the case of two or more approximately equal spans
(Fig. 9.3). This condition is met when the larger of two adjacent spans does not exceed the shorter
span by more than 20%. For uniformly distributed loads, the unit live load shall not exceed three
times the unit dead load. When these conditions are not satisfied, structural analysis is required.
In structural analysis, the negative bending moments at the centers of the supports are calculated.
The value that may be considered in the design is the negative moment at the face of the support.
To obtain this value, subtract from the maximum moment value at the center of the support a
quantity equal to Vb/3, where V is the shearing force calculated from the analysis and b is the
width of the support:

Vb
M ;¢ (at face of the support) = M, (at centerline of support) — % 9.1)
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Figure 9.3 Moment coefficients for continuous beams and slabs (ACI Code,
Section 8.3).

In addition to moment, diagonal tension and development length of bars should also be

checked for proper design.

The conditions under which the moment coefficients for continuous beams and slabs given

in Fig. 9.3 should be used can be summarized as follows:

1.

&

Spans are approximately equal: Longer span < 1.2 (shorter span).

2. Loads are uniformly distributed.
3.
4. For slabs with spans less than or equal to 10f{t, negative bending moment at face of all

The ratio {live load/dead load) is less than or equal to 3.

supports is (%) w, 2,

For an unrestrained discontinuous end at A, the coefficient is 0 at A and +ll—1 at B.
Shearing force at C is 1.15w,/,/2 and at the face of all other support is Jw,/,.

M, = (coefficient) (w,/2) and I, = clear span.

9.3 DESIGN LIMITATIONS ACCORDING TO THE ACI CODE

The following limitations are specified by the ACI Code.

1.

A typical imaginary strip 1 ft (or 1 m) wide is assumed.
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2. The minimum thickness of one-way slabs using grade 60 steel according to the ACI Code,
Table 9.5a, for solid slabs and for beams or ribbed one-way slabs should be equal to the
following:

» For simply supported spans: solid slabs, # = L/20 (ribbed slabs, & = L/16).

« For one-end continuous spans: solid slabs, » = L/24 (ribbed slabs, & = L/18.5).

« For both-end continuous spans: solid slabs, & = L/28 (ribbed slabs, = L/21).

+ For cantilever spans: solid slabs, h = L/10 (ribbed slabs, & = L/8).

» For f, other than 60 ksi, these values shall be multiplied by 0.4 + 0.01 f,, where f, is in
ksi. This minimum thickness should be used unless computation of deflection indicates
a lesser thickness can be used without adverse effects.

3. Deflection is to be checked when the slab supports are attached to construction likely to
be damaged by large deflections. Deflection limits are set by the ACI Code, Table 9.5b.

4, It is preferable to choose slab depth to the nearest % in, {or 10 mm).
5. Shear should be checked, although it does not usually control.

6. Concrete cover in slabs shall not be less than % in. (20mm) at surfaces not exposed to
weather or ground. In this case, d = h — (% in.) — (half-bar diameter). Refer to Fig. 9.1d.

7. In structural slabs of uniform thickness, the minimum amount of reinforcement in the
direction of the span shall not be less than that required for shrinkage and temperature
reinforcement {(ACI Code, Section 7.12).

8. The principal reinforcement shall be spaced not farther apart than three times the slab
thickness nor more than 18 in. (ACI Code, Section 7.6.5).

9. Straight-bar systems may be used in both tops and bottoms of continuous slabs. An alter-
native bar system of straight and bent (trussed) bars placed alternately may also be used.

10. In addition to main reinforcement, steel bars at right angles to the main must be pro-
vided. This additional steel is called secondary, distribution, shrinkage, or temperature
reinforcement .

9.4 TEMPERATURE AND SHRINKAGE REINFORCEMENT

Concrete shrinks as the cement paste hardens, and a certain amount of shrinkage is usually
anticipated. If a slab is left to move freely on its supports, it can contract to accommodate the
shrinkage. However, slabs and other members are joined rigidly to other parts of the structure,
causing a certain degree of restraint at the ends. This results in tension stresses known as
shrinkage stresses. A decrease in temperature and shrinkage stresses is likely to cause hairline
cracks. Reinforcement is placed in the slab to counteract contraction and distribute the cracks
uniformly. As the concrete shrinks, the steel bars are subjected to compression.

Reinforcement for shrinkage and temperature stresses normal to the principal reinforcement
should be provided in a structural slab in which the principal reinforcement extends in one
direction onty. The ACI Code, Section 7.12.2, specifies the following minimum steel ratios:
For slabs in which grade 40 or 50 deformed bars are used, p = 0.2%, and for slabs in which
grade 60 deformed bars or welded bars or welded wire fabric are used, p = 0.18%. In no
case shall such reinforcement be placed farther apart than five times the slab thickness or more
than 18in.

For temperature and shrinkage reinforcement, the whole concrete depth k exposed to shrink-
age shall be used to calculate the steel area. For example, if a slab has a total depth of 4 = 6in.
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and f, = 60 ksi, then the area of steel required per 1-ft width of slab is A; = 6(12)(0.0018) =
0.129in.?. The spacings of the bars, S, can be determined as follows:

124,
Ag

where A; = area of the bar chosen and A; = calculated area of steel.

For example, if no. 3 bars are used (A, = 0.111in. 2y then S = 12(0.11)/0.129 = 10.33in.,
say, 10in. If no. 4 bars are chosen (A, = 0.2in. 2y, then S = 12(0.2)/0.129 = 18.6in., say, 18in.
Maximum spacing is the smaller of five times slab thickness (30in.} or 18in. Then no. 4 bars
spaced at 18 in. are adequate (or no. 3 bars at 10in.). These bars act as secondary reinforcement
and are placed normal to the main reinforcement calculated by flexural analysis. Note that areas
of bars in slabs are given in Tabie A.14.

S =

9.2)

9.5 REINFORCEMENT DETAILS

In continuous one-way slabs, the steel area of the main reinforcement is calculated for all critical
sections, at midspans, and at supports. The choice of bar diameter and detailing depends mainly
on the steel areas, spacing requirements, and development length. Two bar systems may be
adopted.

In the straight-bar system (Fig. 9.4), straight bars are used for top and bottom reinforcement
in all spans. The time and cost to produce straight bars is less than that required to produce bent
bars; thus, the straight-bar system is widely used in construction.
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Figure 9.4 Reinforcement details in continuous one-way slabs: (a) straight bars and
{b} bent bars.
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In the bent-bar, or trussed, system, straight and bent bars are placed alternately in the floor
slab. The location of bent points should be checked for flexural, shear, and development length
requirements. For normal loading in buildings, the bar details at the end and interior spans of
one-way solid slabs may be adopted as shown in Fig. 9.4.

9.6 DISTRIBUTION OF LOADS FROM ONE-WAY SLABS TO SUPPORTING BEAMS

In one-way floor slab systems, the loads from slabs are transferred to the supporting beams along
the long ends of the slabs. The beams transfer their loads in turn to the supporting columns.
From Fig. 9.5 it can be seen that beam B carries loads from two adjacent slabs. Considering
a 1-ft length of beam, the load transferred to the beam is equal to the area of a strip 1ft wide
and S feet in length multiplied by the intensity of load on the slab.
This load produces a uniformly distributed load on the beam:

Ug=Us §

The uniform load on the end beam, B, is half the load on B;, because it supports a slab from
one side only.

The load on column C4 is equal to the reactions from two adjacent By beams,

Load on column Cy = UgL = UgL$

G, C, Cz.__l
Ci—
1 F7I39cxms k
L N
8 32/ B, 8;

/. <
Cy Ca Cs

car 7 A T —— —]
S

v
<—S—+7S-——><——S_——r

Figure 9.5 Distribution of loads on beams.
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The load on column Cj is one-half the load on column C4, because it supports loads from slabs
on one side only. Similarly, the loads on columans C> and C; are

Load on (; = Usgs = load on C3

L S
Load on €y = Us (5) (E)

From this analysis, it can be seen that each column carries loads from slabs surrounding the
column and up to the centerline of adjacent slabs: up to L/2 in the long direction and S/2 in
the short direction.

Distribution of loads from two-way slabs to their supporting beams and columns is dis-
cussed in Chapter 17.

Example 9.1

Calculate the design moment strength of a one-way solid slab that has a total depth of # = 7in. and
is reinforced with no. 6 bars spaced at § = 7in. Use f/ =3 ksi and f, = 60 ksi.

Solution

1. Determine the effective depth, 4:

3
d=h— 2 in. (cover) — half-bar diameter (See Fig. 9.1d).

3 6 .
d=17- Z—E_S.S‘IS in.
2. Determine the average A; provided per 1-ft width (12in.) of slab. The area of no. 6 bar is
Ap = 0.44in.2. 124 12(0.44
4= 220 RO 950 i

S 7
Areas of bars in slabs are given in Table A.14 in Appendix A.

3. Compare the steel ratio used with ppax and Pmin. For fc’ =3 ksi and f, = 60 ksi, pmax =
0.01356 and pmin = 0.00333. p (used) = 0.754/(12 x 5.875) = 0.0107, which is adequate

(¢ =0.9).
4. Calculate ¢ M, = ¢A, f,(d — al2).

a = A f,/(0.85 f/b) = 0.754(60)/(0.85 x 3 x 12) = 1.48 in.
oM, = 0.9(0.754)(60)(5.875 — 1.48/2) = 209 K-in. = 17.42 K-ft

Example 9.2

Determine the allowable uniform live load that can be applied on the slab of the previous example if
the slab span is 16 ft between simple supports and carries a uniform dead load (excluding self-weight)
of 100 psf.

Solution

1. The design moment strength of the slab is 17.42 K-ft per 1-ft width of slab.
W,L>  W,(16)?

8 8
The factored uniform load is W, = 0.544 K/ft> = 544 psf.

M,=¢M,=1742 =
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2. W, =12D+16L
D = 100 psf + self-weight = 100 + %(150) = 187.5 pst
544 = 1.2(187.5) + 1.6L L = 200 psf

Example 9.3
Design a 12-ft simply supported slab to carry a uniform dead load (excluding self-weight) of 120 psf
and a uniform live load of 100 psf. Use f! = 3 ksi, fy = 60 ksi, A = 1, and the ACI Code limitations.

Solution

1. Assume a slab thickness. For fy = 60 ksi, the minimum depth to control deflection is L/20 =
12(12)/20 = 7 in, Assume a total depth of # = 7in. and assume d = 6in. (to be checked later).

2, Calculate factored load: weight of slab = %(150) = 87.5 psf.
W, = 12D + 1.6L = 1.2(87.5 + 120) + 1.6(100) = 409 psf
For a 1-ft width of slab, M, = W,L?/8.
_ 0.409(12)?
“ 8
3. Calculate A,: For M, = 7.362 K-ft, b = 12in., and d = 6in., R, = M, /bd* = 7.362(12,000)/
(12)(6)* = 205 psi. From tables in Appendix A, p = 0.0040 < pmax = 0.01356, ¢ = 0.9.
As = pbd = 0.0040(12)(6) = 0.28 in.?
Choosing no. 4 bars (A, = 0.2in.2), and S = 124,/4, = 12(0.2)/0.28 = 8.6in. Check actual

d=h—3- 3% =6in. Itis acceptable. Let S = 8in. and A, = 0.3 in’.

4. Check the moment capacity of the final section.

Lo _Asfy __03(60)
T (0.85fb) 0.85x3x12

=7.362 K-ft

=0.59 in.

M, = PA, f, (a‘ - %) = 0.9(0.3)(60)(6 — 0.59/2) = 92.42 K-in. = 7.7 K-ft > M,
= 7.362 K-ft
5. Calculate the secondary (shrinkage) reinforcement normal to the main steel. For f, = 60 ksi,
Pmin = 0.0018
Agy = pbh = 0.0018(12)(7) = 0.1512 in.2

Choose no. 4 bars, A, = 0.2in2, § = 124,/A, = 12(0.2)/0.1512 = 15.9in. Use no. 4 bars
spaced at 151in.

6. Check shear requirements: V, at a distance d from the support is 0.409 (% - %) =225K
75(2)(1)(+/3000) (12
¢V,_-=¢2X\/}T(fbd=0 2)(1)( )( X6)=5.9K

1000
%d) V. = 2.95 K > V,, so the shear is adequate.

7. Final section: A = 7in., main bars = no. 4 spaced at 8in., and secondary bars = no. 4 spaced
at 15in.
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Example 9.4

The cross-section of a continuous one-way solid slab in a building is shown in Fig. 9.6. The slabs are
supported by beams that span 12 ft between simple supports. The dead load on the slabs is that due
to self-weight plus 77 psf; the live load is 130 psf. Design the continuous slab and draw a detailed
section. Given: f! =3 ksi and f, = 40 ksi.

Solution

1. The minimum thickness of the first siab is L/30, because one end is continuous and the second
end is discontinuous. The distance between centers of beams may be considered the span L,
here equal to 12 ft. For f, = 40 ksi,

L 12x12

ini total depth = — = =438 in.
Minimum total dep 30 30 in

L
Minimum total depth for interior span = T 4.1 in.

Assume a uniform thickness of 5 in., which is greater than 4.8 in.; therefore, it is not necessary
to check deflection.

2. Calculate loads and moments in a unit strip:

Dead load = weight of siab + 60 psf

5
= (E x 150) +77 = 139.5 psf

Factored load () = 1.2D + 1.6L = 1.2 x 139.5 4+ 1.6 x 130 = 375.5 psf

The clear span is 11.0ft. The required moment in the first span is over the support and equals
U L*10.

Uy

121
M, S (O.3?55)E =454 K.ft = 54.5 K-in.

3. Assume p = 1.4%; then R, = 450psi = 0.45 ksi. This value is less than pmax of 0.0203
(Table 4.1), and greater than ppin of 0.005 (¢ = 0.9).

/ M, / 54.5 ;
d= Rb - Vo5 x 12 =3.18 in.

A; = pbd = 0.014(12)(3.18) = 0.53 in.”

Choosing no. 5 bars,
Total depth =d + % bar diameter + cover = 3.18 + 15—6 + % =425 in.
Use slab thickness of 5in., as assumed earlier.

Actualdused:S—%—

|

3 —39in.

=

E
|

o
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Figure 9.6 Example 9.4.
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Figure 9.7 Example 9.4: Reinforcement details.

4. Moments and steel reinforcement required at other sections using d = 3.9 in. are as follows:

Moment M, Ry = M, /bd? p Ag Bars and

Location Coefficient (K.in.) (psi) {%) (in2) Spacings

A —51‘3 22.7 Small 050 023 No. 4 at 10in.
B +? 389 213 065 030 No.5at12in
C -1 54.5 300 090 044 No. 5 at 8in.
D -4 49.6 271 0.80 038 No.S5at8in.
E +% 34.1 187 055 026 No.4 at 8in.

The arrangement of bars is shown in Fig. 9.7.
5. Maximum shear occurs at the exterior face of the second support, section C.

1.15(0.3755)(11)
2

SVe = $20/ Fibd = 0-75(2)(1)(«/1 30030)(12)(3.9)

This result is acceptable. Note that the provision of minimum area of shear reinforcement when
V., exceeds %d) V. does not apply to slabs (ACI Code, Section 11.5.5).

Ve (at C)=1.15UL,/2 = = 2.375 K/ft of width

=38 K

Example 9.5

Determine the uniform factored load on an intermediate beam supporting the slabs of Example 9.4.
Also calculate the axial load on an interior column; refer to the general plan of Fig. 9.5.

Solution

1. The uniform factored load per foot length on an intermediate beam is equal to the factored
uniform load on slab multiplied by S, the short dimension of the slab. Therefore,

U (beam) = U (slab) x § =0.3755 x 12 = 4.5 K/t
The weight of the web of the beam shall be added to this value. Span of the beam is 24 ft.

L 24
Estimated total depth = 70 x 0.8 = (E) X 0.8) x 12=11.51n. say, 12in.
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Slab thickness is 5in. and height of the web is 12 — 5 = 7in.

Factored weight of beam web = (175 x 150) x 1.2 = 105 Ib/ft

Total uniform load on beam = 4.5 + 0.105 = 4.605 K/ft
2. Axial load on an interior column:
P, =4.605 x24ft=1105K

9.7 ONE-WAY JOIST FLOOR SYSTEM

A one-way joist floor system consists of hollow slabs with a total depth greater than that of
solid slabs. The system is most economical for buildings where superimposed loads are small
and spans are relatively large, such as schools, hospitals, and hotels. The concrete in the tension
zone is ineffective; therefore, this area is left open between ribs or filled with lightweight material
to reduce the self-weight of the slab.

The design procedure and requirements of ribbed slabs follow the same steps as those

for rectangular and T-sections explained in Chapter 3. The following points apply to design of
one-way ribbed slabs:

1.

Ribs are usually tapered and uniformiy spaced at about 16 to 30 in. (400 to 750 mm). Voids
are usually formed by using pans (molds) 20in. (500 mm) wide and 6 to 20in. (150 to
500 mm) deep, depending on the design requirement. The standard increment in depth is
2in. (50 mm).

The ribs shall not be less than 4in. (100 mm) wide and must have a depth of not more
than 3.5 times the width. Clear spacing between ribs shall not exceed 30 in. (750 mm) (ACI
Code, Section 8.13).

Shear strength, V., provided by concrete for the ribs may be taken 10% greater than that
for beams. This is mainly due to the interaction between the slab and the closely spaced
ribs (ACI Code, Section 8.13.8).

The thickness of the slab on top of the ribs is usually 2 to 4in. (50 to 100 mm) and contains
minimum reinforcement (shrinkage reinforcement). This thickness shall not be less than 11—2
of the clear span between ribs or 1.5in. (38 mm) (ACI Code, Section 8.13.5.2).

The ACI coefficients for calculating moments in continuous slabs can be used for contin-
uous ribbed slab design.

There are additional practice limitations, which can be summarized as follows:

« The minimum width of the rib is one-third of the total depth or 4in. (100 mm), whichever
is greater.

« Secondary reinforcement in the slab in the transverse directions of ribs should not be
less than the shrinkage reinforcement or one-fifth of the area of the main reinforcement
in the ribs.

» Secondary reinforcement parallel to the ribs shall be placed in the slab and spaced at
distances not more than half of the spacings between ribs.

« If the live load on the ribbed slab is less than 3 kN/m? (60 psf) and the span of ribs
exceeds 5 m (17 ft), a secondary transverse rib should be provided at midspan (its direction
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is perpendicular to the direction of main ribs) and reinforced with the same amount of
steel as the main ribs. Its top reinforcement shall not be less than half of the main
reinforcement in the tension zone. These transverse ribs act as floor stiffeners.

« If the live load exceeds 3 kN/m? (60 psf) and the span of ribs varies between 4 and
7m (13 and 23 ft), one traverse rib must be provided, as indicated before. If the span
exceeds 7m (23 ft), at least two transverse ribs at one-third span must be provided with
reinforcement, as explained before.

Example 9.6

Design an interior rib of a concrete joist floor system with the following description: Span of rib =
20 ft (simply supported), dead load (excluding own weight) = 16 psf, live load = 85 psf, f! = 4 ksi,
and f, = 60 ksi.

Solution

1. Design of the slab: Assume a top slab thickness of 2in. that is fixed to ribs that have a clear
spacing of 20in. No fillers are used. The self-weight of the slab is % x 150 = 25 psf.

Total D.L. = 16 + 16 = 41 psf
U=12D+16L =12x41+ 1.6 x 85 = 185 psf

2
Y = Ul—g (Slab is assumed fixed to ribs.)
0.185 /20\?
= — — = 0.043 K.-ft = 0.514 K-in.
2 (12) "

Considering that the moment in slab will be carried by plain concrete only, the allowable flexural
tensile strength is f; = 5,/f, with a capacity-reduction factor ¢ = 0.55, f, = 5+/4000 =
316 psi.

Mc bh®  12(2)°
Fl al tensile strength = — = I =— = =
exural tensile streng 7 of; B 5

.4 h 2 ,
8 1n. C=E=§=lm.

1
M = ¢f;— =055 x 0.316 x ? = 1.39 Kin.

This value is greater than M, = 0.514 K.in., and the slab is adequate. For shrinkage reinforce-
ment, A; = 0.0018 x 12 x 2 = 0.043in.2 Use no. 3 bars spaced at 12in. laid transverse to the
direction of the ribs. Welded wire fabric may be economically used for this low amount of steel
reinforcement. Use similar shrinkage reinforcement no. 3 bars spaced at 12in. laid parallel to
the direction of ribs, one bar on top of each rib and one bar in the slab between ribs.

2. Calculate moment in a typical rib:

L 20x12
Mini depth= — = —— =12 in.
inimum dep % 30 in
The total depth of rib and slab is 10 4+ 2 = 12in. Assume a rib width of 4in. at the lower
end that tapers to 6in, at the level of the stab (Fig. 9.8). The average width is 5in. Note that
the increase in the rib width using removable forms has a ratio of about 1 horizontal to 12
vertical. 10

Weight of rib = i x — x 150 = 52 Ib/ft
12 12
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Figure 9.8 Example 9.6.

Rectangular steel pans used in one-way ribbed slab construction.

The rib carries a load from (20 + 4)-in.-wide slab plus its own weight:

24
U= T x 185 + (1.2 x 52) = 432.4 1b/ft

UL* 04324,
M, = g = “x 12 =259.4 K-in.
3. Design of rib: The total depth is 12in. Assuming no. 5 bars and concrete cover of i in., the
effective depth d is 12 — 5 — ]—5 = 10.9 in. Check the moment capacity of the flange (assume

tension-controlled section, ¢ = 0.9):

#M, (flange) = ¢C (d = %) , where C = 0.85f bt
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2
M, =0.9(0.85 x 4 x 24 x 2) (10.9 - 5) = 1454 K-in.

The moment capacity of the flange is greater than the applied moment; thus, the rib acts as a
rectangular section with & = 241in., and the depth of the equivalent compressive block g is less
than 2in.

¢M" = ¢A5f)' (d_ %) =¢Asfy (d"— Asfy )

1.7 f1b
Ag x 60 _ )
2594 = 0.9As X 60 (10.9 m) AS = 0.45 in,
a=-—25 033 <2in
0.85 x fib

Use two no. 5 bars per rib (A, = 0.65in.2).
As min = 0.0033b,,d = 0.0033(5)(10.9) = 0.18 in.2 < 0.45 in.2

Check
0.45

T 24% 109
which is a tension-controlled section, ¢ = 0.9.
Calculate shear in the rib: The allowable shear strength of the rib web is

oVe = ¢(1.1) x 24,/ fiby,d
=0.75 x 1.1 x 2(1)v/4000 x 5 x 10.9 = 5687 Ib

=0.00172 < ppax = 0.01806

The factored shear at a distance d from the support is

10.9
Ve =4324 (10 - "1—2—") =39311b

This is less than the shear capacity of the rib. Minimum stirrups may be used, and in this case
an additional no. 4 bar will be placed within the slab above the rib to hold the stirrups in place.
It is advisable to add one transverse rib at midspan perpendicular to the direction of the ribs
having the same reinforcement as that of the main ribs to act as a stiffener.

Section 8.1

Slabs are of different types, one way (solid or joist floor systems) and two way (solid, ribbed,
waffle, flat slabs, and flat plates).

Seactions 9.2-9.3

1. The ACI Code moment and shear coefficients for continuous one-way slabs are given in
Fig. 9.3. :

2. The minimum thickness of one-way slabs using grade 60 steel is L/20, L/24, L/28, and
L/10 for simply supported, one-end continuous, both-end continuous, and cantilever slabs,
respectively.
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One-way ribbed slab roof. The wide beams have the same total depth as the ribbed slab.

Section 9.4

The minimum shrinkage steel ratios, p,in, in slabs are 0.002 in. for slabs in which grade 40 or
grade 50 bars are used and 0.0018 in. for slabs in which deformed bars of grade 60 are used.
Maximum spacings between bars < 5 times rib thickness < 18in.

Sections 9.5-9.6

1. Reinforcement details are shown in Fig. 9.4.
2. Distribution of loads from one-way slabs to the supporting beams is shown in Fig. 9.5.

Section 9.7

The design procedure of ribbed slabs is similar to that of rectangular and T-sections. The width
of ribs must be greater than or equal to 4in., whereas the depth must be less than or equal to
3.5 times the width. The minimum thickness of the top slab is 2in. or not less than one-twelfth
of the clear span between ribs.

REFERENCES

1. Concrete Reinforcing Steel Institute. CRSI Design Handbook . Chicago, 2002,
2. Portland Cement Association. Continuity in Concrete Building Frames. Chicago, 1959.

3. American Concrete Institute. ACI Code 318-08, Building Code Requirements for Structural Concrete.
Detroit, Michigan, 2008.

PROBLEMS

9.1 For each problem, calculate the factored moment capacity of each concrete slab section using
fy = 60 ksi.
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Number fo{ksi} h (in.) Bars and Spacings (in.) Answer oM, (K-ft)
(a) 3 5 No.4 at 6 6.35
(b) 3 6 No.5at 8 9.29
(c) 3 7 No.6at9 14.06
(d) 3 8 No. 8 at 12 21.01
@ 4 51 No. 5 at 10 6.93
) 4 6 No. 7 at 12 11.80
(g) 4 74 No. 6 at 6 22.68
(h) 4 8 No. 8 at 12 21.23
(i) 5 5 No. 5 at 10 6.19
) 5 6 No. 5 at 8 9.66

9.2 For each slab problem, determine the required steel reinforcement, A;, and the total depth, if required;

then choose adequate bars and their spacings. Use f, = 60 ksi for all problems, # = 12in., and a
steel ratio close to the steel ratio p = A/bd given in some problems.

One Answer
Number f.(ksi) M, (K.ft) h (in.) o (%) h (in.} Bars
(a) 3 5.4 6 — 6 No. 4 at 9in.
(b) 3 13.8 7% — 7% No. 6 at 10in.
(c) 3 244 — 0.85 9 No. 8 at 12in.
(d) 3 8.1 5 — 5 No. 5 at 7in.
(e) 4 226 — 1.18 71 No. 7 at 8in.
() 4 13.9 81 — 81 No. 6 at 12in.
(® 4 13.0 — 1.10 6 No. 6 at 8in.
(h) 4 112 - 0.51 71 No. 5 at 9in.
(i) 5 20.0 9 — 9 No. 7 at 12in.
G 5 10.6 — 0.90 6 No. 6 at 10in.
9.3 A 16-ft- (4.8-m-)span simply supported slab carries a uniform dead load of 200 psf (10 kN/m?)

924

9.5

9.7

(excluding its own weight). The slab has a uniform thickness of 7in. (175 mm) and is reinforced with
no. 6 (20-mm) bars spaced at 5in. {125 mm). Determine the allowable uniformly distributed load that
can be applied on the slab if f] =4 ksi (28 MPa) and f, = 60 ksi (420 MPa)

Design a 10-ft (3-m) cantilever slab to carry a uniform total dead load of 170 psf (8.2 kN/m?) and
a concentrated live load at the free end of 2 K/ft (30 kN/m), when f! =4 ksi (28 MPa) and f, =
60 ksi (420 MPa).

A 6-in. (150-mm) solid one-way slab carries a uniform dead load of 190 psf (9.2 kN/m?) (includ-
ing its own weight) and a live load of 80 psf (3.9 kN/m?). The slab spans 12ft (3.6m) between
10-in.-(250-mm-)wide simple supports. Determine the necessary slab reinforcement using f = 4 ksi
(28 MPa) and f, = 50 ksi (350 MPa).

Repeat Problem 9.4 using a variable section with a minimum total depth at the free end of 4in.
(100 mm).

Design a continuous one-way solid slab supported on beams spaced at 14 ft (4.2 m) on centers. The
width of the beams i1s 12in. (300 mm), leaving clear slab spans of 13 ft (3.9m). The slab carries a
uniform dead load of 126 psf (6.0 kN/m3) (including self-weight of slab) and a live load of 120 psf
(5.8 kN/my). Use f) =3 ksi (21 MPa), f, = 40 ksi (280MPa), and the ACI coefficients. Show bar
arrangements using straight bars for all top and bottom reinforcement.
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9.8 Repeat Problem 9.7 using equal clear spans of 10t (3m), f; =3 ksi (21 MPa), and f, = 60 ksi
(420 MPa).
9.9 Repeat Problem 9.7 using f! =4 ksi (28 MPa) and f, = 60 ksi (420 MPa).
9,10 Design an interior rib of a concrete joist floor system with the following description: Span of ribbed
slab is 18 ft (5.4m) between simple supports; uniform dead load (excluding self-weight} is 30 psf
(1.44 kKN/m?); live load is 100 psf (4.8 kN/m?); support width is 14 in. (350 mm); f/ = 3 ksi (21 MPa)
and f, = 60 ksi (420MPa). Use 30-in.- (750-mm-)wide removable pans.
9.11 Repeat Problem 9.10 using 20-in.- (500-mm-)wide removable pans.
9.12 Use the information given in Problem 9.10 to design a continuous ribbed slab with three equal spans
of 181t (5.4 m) each.



CHAPTER 1 O

AXIALLY LOADED
COLUMNS

Continuous slabs in a parking structure, New
Orleans, Louisiana.

10.1 INTRODUCTION

Columns are members used primarily to support axial compressive loads and have a ratio of
height to the least lateral dimension of 3 or greater. In reinforced concrete buildings, concrete
beams, floors, and columns are cast monolithically, causing some moments in the columns due
to end restraint. Moreover, perfect vertical alignment of columns in a multistory building is not
possible, causing loads to be eccentric relative to the center of columns. The eccentric loads will
cause moments in columns. Therefore, a column subjected to pure axial loads does not exist
in concrete buildings. However, it can be assumed that axially loaded columns are those with
relatively small eccentricity, e, of about 0.1A or less, where & is the total depth of the column
and e is the eccentric distance from the center of the column. Because concrete has a high
compressive strength and is an inexpensive material, it can be used in the design of compression
members economically. This chapter deals only with short columns; slender columns are covered
in detail in Chapter 12.

10.2 TYPES OF COLUMNS
Columns may be classified based on the following different categories (Fig. 10.1):

1. Based on loading, columns may be classified as follows:

a. Axially loaded columns, where loads are assumed acting at the center of the column
section.
318
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Tied Spiral

Composite Combination

Figure 101 Types of columns.

b. Eccentrically loaded columns, where loads are acting at a distance e from the center of
the column section. The distance ¢ could be along the x- or y-axis, causing moments
either about the x- or y-axis.

¢. Biaxially loaded columns, where the load is applied at any point on the column section,
causing moments about both the x- and y-axes simultaneously.

2. Based on length, columns may be classified as follows:

a. Short columns, where the column’s failure is due to the crushing of concrete or the
yielding of the steel bars under the full load capacity of the column.
b. Long columns, where buckling effect and slenderness ratio must be taken into consid-
eration in the design, thus reducing the load capacity of the column relative to that of
a short column.
3. Based on the shape of the cross-section, column sections may be square, rectangular, round,
L-shaped, octagonal, or any desired shape with an adequate side width or dimensions.
4. Based on column ties, columns may be classified as follows:

a. Tied columns containing steel ties to confine the main longitudinal bars in the columns.
Ties are normally spaced uniformly along the height of the column.
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b. Spiral columns containing spirals (spring-type reinforcement) to hold the main longitu-
dinal reinforcement and to help increase the column ductility before failure. In general,
ties and spirals prevent the slender, highly stressed longitudinal bars from buckling and
bursting the concrete cover.

5. Based on frame bracing, columns may be part of a frame that is braced against sidesway
or unbraced against sidesway. Bracing may be achieved by using shear walls or bracings
in the building frame. In braced frames, columns resist mainly gravity loads, and shear
walls resist lateral loads and wind loads. In unbraced frames, columns resist both gravity
and lateral loads, which reduce the load capacity of the columns.

6. Based on materials, columns may be reinforced, prestressed, composite (containing rolled
steel sections such as I-sections), or a combination of rolled steel sections and reinforcing
bars. Concrete columns reinforced with longitudinal reinforcing bars are the most common
type used in concrete buildings.

10.3 BEHAVIOR OF AXIALLY LOADED COLUMNS

When an axial load is applied to a reinforced concrete short column, the concrete can be con-
sidered to behave elastically up to a low stress of about (%) f¢. If the load on the column is
increased to reach its ultimate strength, the concrete will reach the maximum strength and the
steel will reach its yield strength, f,. The nominal load capacity of the column can be written

as follows:

P, =085f/A, + Aufy (10.1)
where A, and Ay = the net concrete and total steel compressive areas, respectively.

An = A — Ay

A, = gross concrete area

Two different types of failure occur in columns, depending on whether ties or spirals are
used. For a tied colummn, the concrete fails by crushing and shearing outward, the longitudinal
steel bars fail by buckling outward between ties, and the column failure occurs suddenly, much
like the failure of a concrete cylinder.

A spiral column undergoes a marked yielding, followed by considerable deformation before
complete failure. The concrete in the outer shell fails and spalls off. The concrete inside the spiral
is confined and provides little strength before the initiation of column failure. A hoop tension
develops in the spiral, and for a closely spaced spiral, the steel may yield. A sudden failure is
not expected. Figure 10.2 shows typical load deformation curves for tied and spiral columns. Up
to point @, both columns behave similarly. At point a, the longitudinal steel bars of the column
yield, and the spiral column shell spalls off. After the factored load is reached, a tied column
fails suddenly (curve ), whereas a spiral column deforms appreciably before failure (curve ¢).

10.4 ACI CODE LIMITATIONS

The ACI Code presents the following limitations for the design of compression members:

1. For axially as well as eccentrically loaded columns, the ACI Code sets the strength-reduction
factors at ¢ = .65 for tied columns and ¢ = 0.75 for spirally reinforced columns. The
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Figure 10.2 Behavior of tied and spiral columns.

difference of 0.05 between the two values shows the additional ductility of spirally
reinforced columns.

The strength-reduction factor for columns is much lower than those for flexure
(¢ = 0.9) and shear (¢ = 0.75). This is because in axially loaded columns, the strength
depends mainly on the concrete compression strength, whereas the strength of members
in bending is less affected by the variation of concrete strength, especially in the case of
an under-reinforced section. Furthermore, the concrete in columns is subjected to more
segregation than in the case of beams. Columns are cast vertically in long, narrow forms,
but the concrete in beams is cast in shatlow, horizontal forms. Also, the failure of a column
in a structure is more critical than that of a floor beam.

2. The minimum longitudinal steel percentage is 1%, and the maximum percentage is 8%
of the gross area of the section (ACI Code, Section 10.9.1). Minimum reinforcement is
necessary to provide resistance to bending, which may exist, and to reduce the effects of
creep and shrinkage of the concrete under sustained compressive stresses. Practically, it
is very difficult to fit more than 8% of steel reinforcement into a column and maintain
sufficient space for concrete to flow between bars.

3. At least four bars are required for tied circular and rectangular members and six bars are
needed for circular members enclosed by spirals (ACI Code, Section 10.9.2). For other
shapes, one bar should be provided at each corner, and proper lateral reinforcement must
be provided. For tied triangular columns, at least three bars are required. Bars shall not be
located at a distance greater than 6in. clear on either side from a laterally supported bar.
Figure 10.3 shows the arrangement of longitudinal bars in tied columns and the distribution
of ties. Ties shown in dotted lines are required when the clear distance on either side from
laterally supported bars exceeds 6 in. The minimum concrete cover in columns is 1.5in.

4. The minimum ratio of spiral reinforcement, p;, according to the ACI Code, Eq. 10.5, and
as explained in Section 10.9.3, is limited to

A £
=045[ =% — 1) < 10.2)
Ps (Ach fyt (

where

A, = gross area of section
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4 bars 6 bars

10 bars 12 bars 14 bars

A
% Mo

(-} Waoll column Cormner column

Figure 10.3 Arrangement of bars and ties in columns.

A.n =area of core of spirally reinforced column measured to the outside diameter
of spiral
Syt = yield strength of spiral reinforcement (60 ksi; ACI Code, Section 10.9.3)

5. The minimum diameter of spirals is % in., and their clear spacing should not be more than
3in. nor less than 1 in., according to the ACI Code, Section 7.10.4. Splices may be provided
by welding or lapping the deformed uncoated spiral bars by 48 diameters or a minimum
of 12in. Lap splices for plain uncoated bar or wire = 72d, < 12in. The same applies for
epoxy-coated deformed bar or wire. The Code also allows full mechanical splices.

6. Ties for columns must have a minimum diameter of % in. to enclose longitudinal bars of
no. 10 size or smaller and a minimum diameter of % in. for larger bar diameters (ACI
Code, Section 7.10.5).

7. Spacing of ties shall not exceed the smallest of 48 times the tie diameter, 16 times the
longitudinal bar diameter, or the least dimension of the column. Table 10.1 gives spacings

for no. 3 and no. 4 ties. The Code does not give restrictions on the size of columns to
allow wider utilization of reinforced concrete columns in smaller sizes.
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Table 10.1 Maximum Spacings of Ties

Column Spacings of Ties (in.) for Bar
Least Side or

Diameter {in.} No. 6 No. 7 No. 8 No.9 No. 10 No. 11

12 12 12 12 12 12 12

14 12 14 14 14 14 14

16 12 14 16 16 i6 16

18 12 14 16 18 18 18

20 12 14 16 18 18 20

22-40 12 14 16 18 18 22
Ties No. 3 No. 3 No. 3 No. 3 No. 3 No. 4

10.5 SPIRAL REINFORCEMENT

Spiral reinforcement in compression members prevents a sudden crushing of concrete and buck-
ling of longitudinal stee] bars. It has the advantage of producing a tough column that undergoes
gradual and ductile failure. The minimum spiral ratio required by the ACI Code is meant to
provide an additional compressive capacity to compensate for the spalling of the column shell.
The strength contribution of the shell is

P,(shell) = 0.85f/(A, — Ach) (10.3)

where A, is the gross concrete area and A, is the core area (Fig. 10.4).

In spirally reinforced columns, spiral steel is at least twice as effective as longitudinal bars;
therefore, the strength contribution of spiral equals 20, A fy;, Where ps is the ratio of volume
of spiral reinforcement to total volume of core.

Ag=mwD’ /4
Agp=m D3/4

-

\‘\
—~

T ———
=

T
1

Figure 10.4 Dimensions of a column spiral.
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Table 10.2 Spirals for Circular Columns (f, = 80Ksi)

fé = 5 ksi
f = 4 ksi No. 3 and no. 4 Spirals F = B Ksi
cT c=

No. 3 Spirals Spiral Spacing No. 4 Spirals

Column Diameter (in.) Spacing (in.) No. {in)) Spacing (in.)
12 20 4 275 2.25
14 20 4 3.00 2.25
16 2.0 4 3.00 2.50
18 2.0 4 3.00 2.50
20 20 4 3.00 2.50
22 20 4 3.00 2.50
24 20 3 1.75 2.50
26 to 40 225 3 1.75 2.75

If the strength of the column shell is equated to the spiral strength contribution, then
O'SSfC,(Ag — Acp) = 2P5Achfy1 (10.4)
A fl
ps = 0.425 (—g - 1) =<
’ Acp f vt

The ACI Code adopted a minimum ratio of p; according to the following equation:

A !
Minimum p; = 0.45 ( £ _ 1) Je (10.2)

Ach f yt

The design relationship of spirals may be obtained as follows (Fig. 10.4):
volume of spiral in one loop
Ps = ;

volume of core for a spacing §

_ as{Dep — dy) _ 4a(Dcp — ds) (10.5)

(30%)S DS
where

as; = area of spiral reinforcement
D, =diameter of the core measured to the outside diameter of spiral

D = diameter of the column
d; = diameter of the spiral
S = spacing of the spiral

Table 10.2 gives spiral spacings for no. 3 and no. 4 spirals with f, = 60ksi.

10.6 DESIGN EQUATIONS

The nominal load strength of an axially loaded column was given in Eq. 10.1. Because a perfect
axially loaded column does not exist, some eccentricity occurs on the column section, thus
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reducing its load capacity, P,. To take that into consideration, the ACI Code specifies that the
maximum nominal load, P,, should be multiplied by a factor equal to 0.8 for tied columns and
0.85 for spirally reinforced columns. Introducing the strength reduction factor, the axial load
strength of columns according to the ACI Code, Section 10.3.6, are as follows:

P. = ¢ Py = $(O.80)[0.85f/(Ag — Aw) + Ascf] (10.6)
for tied columns and
P. = ¢ P, = p(085)[0.85f/(Ag — Ax) + Aqfy] (10.7)

for spiral columns, where

A, = gross concrete area
Ag = total steel compressive area
¢ = 0.65 for tied columns and 0.70 for spirally reinforced columns

Equations 10.8 and 10.9 may be written as follows:
P, =¢P, = pK[0.85f A, + Au(fy — 0.851))] (10.8)

where ¢ = 0.65 and K = 0.8 for tied columns and ¢ = 0.75 and K == 0.85 for spiral columns.
If the gross steel ratio is p, = Au/Ag, OF Age = pg A, then Eq. 10.8 may be written as follows:

P, = ¢P, = K A[0.85F. + py(f, — 0.85£D)] (10.9)

Equation 10.8 can be used to calculate the axial load strength of the column, whereas
Eq. 10.9 is used when the external factored load is given and it is required to calculate the size
of the column section, A,, based on an assumed steel ratio, p,, between a minimum of 1% and
a maximum of 8%.

It is a common practice to use grade 60 reinforcing steel bars in columns with a concrete
compressive strength of 4ksi or greater to produce relatively small concrete column sections.

10.7 AXIAL TENSION

Concrete will not crack as long as stresses are below its tensile strength; in this case, both
concrete and steel resist the tensile stresses, but when the tension force exceeds the tensile
strength of concrete (about one-tenth of the compressive strength), cracks develop across the
section, and the entire tension force is resisted by steel. The nominal load that the member can
carry is that due to tension steel only:

T, = Astfy (10.10)
T, = ¢Aufy (10.11)

where ¢ = 0.9 for axial tension.

Tie rods in arches and similar structures are subjected to axial tension. Under working
loads, the concrete cracks and the steel bars carry the whole tension force. The concrete acts
as a fire and corrosion protector. Special provisions must be taken for water structures, as in
the case of water tanks. In such designs, the concrete is not allowed to crack under the tension
caused by the fluid pressure.
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10.8 LONG COLUMNS

The equations developed in this chapter for the strength of axially loaded members are for short
columns. In the case of long columns, the load capacity of the column is reduced by a reduction
factor.

A long column is one with a high slenderness ratio, i/r, where & is the effective height of
the column and r is the radius of gyration. The design of long columns is explained in detail in
Chapter 12.

Example 10.1
Determine the allowable design axial load on a 12-in. square, short tied column reinforced with four
no. 9 bars. Ties are no. 3 spaced at 12in. Use f/ =4 ksi and f, = 60 ksi.
Solution

1. Using Eq. 10.9,

P, =¢P, =¢pK[0.85f.A, + Au(fy — 0.85£)]
For a tied column, ¢ = 0.65, K = 0.8, and Ay = 4.0in.2
P, = ¢P, = 0.65(0.8){0.85(4)(12 x 12) +4(60 - 0.85 x 4)] =372 K
2, Check steel percentage: p, = iﬁ? = 0.02778 = 2.778%. This is less than 8% and greater

than 1%.

3. Check tie spacings: Minimum tie diameter is no. 3. Spacing is the smallest of the 48-tie diameter,
16-bar diameter, or least column side. §; = 48(%) =18 in., §; = 16(%) =18 in,, §3 = 12.0 in.
Ties are adequate (Table 10.1).

Example 10.2

Design a square tied column to support an axial dead load of 400K and a live load of 232X using
f! = 5ksi, f, = 60ksi and a steel ratio of about 5%. Design the necessary ties.

Solution

1. Calculate P, = 1.2Pp + 1.6P, = 1.2(400) + 1.6(232) = 851 K. Using Eq. 10.10, P, = 851 =
0.65(0.8)A,[0.85 x 5 + 0.05(60 — 0.85 x 5)), Ag = 2325 in.2, and column side = 15.251n.,
so use 16in. (Actual A, = 256 in.2)

2. Because a larger section is adopted, the steel percentage may be reduced by using A, = 256 in.2
in Eq. 10.8:

851 = 0.65(0.8)[0.85 x 5 x 256 + A, (60 — 0.85 x 5)]
Ag = 9.84 in?

Use eight no. 11 bars {(Ag = 12.50in.2). See Fig. 10.5.

3. Design of ties (by calculation or from Table 10.1): Choose no. 3 ties with spacings equal to the
least of Sy = 16(}) =22 in., $» = 48(3) = 18 in., or S3 = column side = 16in. Usc no. 3
ties spaced at 16in, Clear distance between bars is 4.23 in., which is less than 6in. Therefore,
no additional ties are required.

Example 10.3
Repeat Example 10.2 using a rectangular section that has a width of b = 14in.
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Figure 10.5 Example 10.2.

Solution
1. P, = 851K and calculated A, = 232.5 in.2 For b = 14in., h = 232.5/14 = 16.6in. Choose a
column 14 x 18in; actual A, = 252in.%.
2. P, = 851 = 0.65(0.8)[0.85 x 5 x 252 4+ Au(60 — 0.85 x 5)]

Ag = 10.14 in?

Use eight no. 10 bars. (A = 10.16in.2)

3. Design of ties: Choose no. 3 ties, §; = 2¢in., S = 18in., and §3 = 14in. (least side). Use
no. 3 ties spaced at 14 in. Clear distance between bars in the long direction is (18 — 5)/2 — bar
diameter of 1.27 = 5.23in. < 6in. No additional ties are needed. Clear distance in the short
direction is (14 — 5)/2 — 1.27 = 3.23in. < 6in.

Example 10.4

Design a circular spiral column to support an axial dead load of 475K and a live load of 250K using
fl =4 ksi, f, =60 ksi, and a steel ratio of about 3%. Also, design the necessary spirals.

Solution

1. Calculate P, = 1.2Pp + 1.6Pr = 1.2(475) + 1.6(250) = 970K. Using Eq. 10.10 and spiral
columns,

P, =970 = 0.75(0.85) A, [0.85 x 4 + 0.03(60 — 0.85 x 4)]
A, = 299in.2 and column diameter = 19.5in., so use 20in. Actual A, = 314.2in.2
2. Calculate Ag needed from Eq. 10.8:
P, =970 = 0.75(0.85)[0.85 x 4 x 314.2 + A4(60 — 0.85 x 4)]
Ag=8in’

Use eight no. 10 bars. (Agq = 10.16in.%)
3. Design of spirals: The diameter of core is 20 — 2(1.5) = 17in. The area of core is

I T
Ay = — (1T} A, = —(20)%
A 4( ) ¢ 4( )

A fl 20% 4
Mini =045{ L —1]| 2 =045{= —-1){—=} =00
inimum p; = 0.45 (Ach ) f 5(172 ) (60) 1152
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Assume no. 3 spiral, @; = 0.11in.2, and d; = 0.375in.
da,(Dey —dy) _ 4O11)(AT — 0.375)
sp3, 5(17)2

Spacing s is equal to 2.2 in; use no. 3 spiral at s = 2in. (as shown in Table 10.2).

ps = 0.01152 =

Example 10.5

Design a rectangular tied short column to carry a factored axial load of 1765kN. Use f = 30 MPa,
fy = 400MPa, column width (») = 300 mm, and a steel ratio of about 2%.

Solution SI Units

1. Using Eq. 10.9,
P, = 0.80A,[0.85f  + pg(fy — 0.85f))

Assuming a steel percentage of 2%,
1765 x 10° = 0.8 x 0.654,[0.85 x 30 + 0.02(400 — 0.85 x 30)]
Ay = 102,887 mm?

For b = 300 mm, the other side of the rectangular column is 343 mm. Therefore, use a section
of 300 by 350mm (A, = 105,000 mm?).
2. A; = 0.02 x 102,887 = 2057 mm?. Choose six bars, 22 mm in diameter (4, = 2280 mm?),
3. Check the axial load strength of the section using Eq. 10.6:
¢ P, = 0.89[0.85 f{(A; — Ag) + Agcfy)
= 0.8 % 0.65[0.85 x 30(103, 000 — 2280) + 2280 x 400] x 10>
= 1836 kN

This meets the required P, of 1765 kN.

4, Choose ties 10mm in diameter. Spacing is the least of (1) 16 x 22 = 352 mm, (2) 48 x 10 =
480 mm, or (3) 300 mm. Choose 10-mm ties spaced at 300 mm.

SUMMARY

Sections 10.1-10.4
Columns may be tied or spirally reinforced.
¢ = 0.65 for tied columns
¢ = 0.75 for spirally reinforced columns

pg must be < 8% and > 1%.

Section 10.5
Minimum ratio of spirals is

A f
. = 0.45 & _ 1) JLe (10.2)
p (Ach f,w .
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s = day (D — dy)
* DS

The minimum diameter of spirals is % in., and their clear spacings should be not more than 3 in.
or less than 1in.

(10.5)

Section 10.6
For tied columns,
P,=0¢0P, = 0.8¢o[O.E}SJv‘c"(A8 — Ag) + Axfy] (10.6)

or
P, = ¢P, = 0.89A,[0.85f + pg(fy — 0.85f)]

For spiral columns,
P, = ¢ P, = 0.85¢[0.85 f((4; — As) + A fy] (10.7)

or
P, = ¢pP, = 0.85¢A,[0.85F + pg(fy — 0.85£0)]

where p, = Ag/Ag.

Section 10.7

1. For axial tension,
T, =9¢Aqfy (@=09) (10.11)

2. Arrangements of vertical bars and ties in columns are shown in Fig. 10.3.
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PROBLEMS
10.1 For each problem, determine the allowable design load-bearing strength (0.8¢F,) for each of the

following short rectangular columns according to the ACI Code limitations. Assume f), = 60ksi and
properly tied columns (b = width of column, in., and # = total depth, in.).
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Number f.(ksi) b (in.) h (in.) Bars Answer (¢ kP,) K
(a) 4 16 16 8no. 9 688
(b} 4 20 20 16 no. 11 1442
©) 4 12 12 8 no. 8 439
(d) 4 12 24 12 no. 10 955
) 5 14 14 10 no. 9 722
(f) 5 16 16 4 po. 10 712
(&) 5 14 26 12 no. 10 1244
(h) 5 18 32 8 no. 11 1634
i) 6 16 16 & no. 10 968
) 6 12 20 6 no. 10 852

10.2 For each problem, determine the allowable design load-bearing strength of each of the following short,
spirally reinforced circular columns according to the ACI Code limitations. Assume f, = 60ksi and
the spirals are adequate (D = diameter of column, in.).

Number £ (ksi) D (in) Bars Answer (¢ kP,) K
(a) 4 14 8 no. 9 581
(b) 4 16 6 no. 10 663
(c) 5 i8 8 no. 10 980
(d) 5 20 12 no. 10 1300
(e) 6 15 8 no. 9 797

10.3 For each problem, design a short square, rectangular, or circular column, as indicated, for each set of
axial loads given, according to ACI limitations. Also, design the necessary ties or spirals and draw
sketches of the column sections showing all bar arrangements. Use f, = 60Kksi and a steel ratio close
to the p, given (Pp = dead load, P = live load, b = width of a rectangular column, and = p, =

AglAy).

Number f.(ksi) Pp (K) P (K) pg% Section One Solution
(a) 4 200 200 4 Square 14 x 14, 8 no. 9
(b) 4 750 400 35 Square 24 x 24, 16 no. 10
(c) 4 220 165 7 Square 12 x 12, 8 no. 10
(d) 5 330 230 3 Square 16 x 16, 8 no. 9
(e) 4 190 170 2 Rectangular, b = 12in. 12 x 18, 6 no. 8
(f) 4 280 315 4.5 Rectangular, b = 14in. 14 x 20, 10 no. 10
(g) 4 210 150 3 Rectangular, » = 12in. 12 x 16, 6 no. 9
(h) 5 690 460 2 Rectangular, & = 18in. 18 x 32,8 no. 10
(1) 4 350 130 4 Circular—spiral 16, 7 no. 9
) 4 475 220 3.25 Circular—spiral 20, 7 no. 10
k) 4 400 260 5 Circular—spiral 18, 9 no. 10
1)) 5 285 200 4.25 Circular—spiral 15, 6 no. 10

For SI units, use 1psi = 0.0069MPa, 1 K = 4.45kN, and lin. = 25.4mm.
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Residential building, Minneapolis, Minnesota.

INTRODUCTION

Vertical members that are part of a building frame are subjected to combined axial loads and
bending moments. These forces develop due to external loads, such as dead, live, and wind
loads. The forces are determined by manual calculations or computer applications that are based
on the principles of statics and structural analysis. For example, Fig. 11.1 shows a two-hinged
portal frame that carries a uniform factored load on BC. The bending moment is drawn on
the tension side of the frame for clarification. Columns AB and CD are subjected to an axial
compressive force and a bending moment. The ratio of the moment to the axial force is usually
defined as the eccentricity, e, where ¢ = M,/P, (Fig. 11.1). The eccentricity, e, represents
the distance from the plastic centroid of the section to the point of application of the load.
The plastic centroid is obtained by determining the location of the resultant force produced by
the steel and the concrete, assuming that both are stressed in compression to f, and 0.85 f,
respectively. For symmetrical sections, the plastic centroid coincides with the centroid of the

section. For nonsymmetrical sections, the plastic centroid is determined by taking moments about
an arbitrary axis, as explained in Example 11.1.

331
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Figure 11.1 Two-hinged portal frame with bending moment diagram drawn on the
tension side.

Example 11.1
Determine the plastic centroid of the section shown in Fig. 11.2. Given: f/ =4 ksi and f, = 60ksi.

Solution
1. It is assumed that the concrete is stressed in compression to 0.85 f:
F. = force in concrete = (0.85 f) A,
=085 x4 x14x20=952K

F. is located at the centroid of the concrete section {at 10in. from axis A-A).

A
25" —T l-‘— 15" ——>| rt— 25"
AS1 | Asl’]

I

|

)
| PC—

14" 4#9

I N

Fu Fc Fs?

Figure 11.2 Example 11.1: Plastic centroid {P.C.) of section.
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2. Forces in steel bars:
F5 = Aslfy =4 x60=290K
Fo=Apfy,=2x60=120K
3. Take moments about A-A:
‘= (952 x 10) + (240 x 2.5) + (120 x 17.5)
- 952 + 240 + 120

Therefore, the plastic centroid lies at 9.31 in. from axis A-A.
4, If A;] = Ay> (symmetrical section), then x = 10in. from axis A-A.

= 9.31 in.

11.2 DESIGN ASSUMPTIONS FOR COLUMNS

The design limitations for columns, according to the ACI Code, Section 10.2, are as follows:

Strains in concrete and steel are proportional to the distance from the neutral axis.
Equilibrium of forces and strain compatibility must be satisfied.

The maximum usable compressive strain in concrete is 0.003.

Strength of concrete in tension can be neglected.

The stress in the steel is f; = ¢E; < f).

The concrete stress block may be taken as a rectangular shape with concrete stress of (.85
f! that extends from the extreme compressive fibers a distance e = f;c, where ¢ is the
distance to the neutral axis and $; is 0.85 when f! < 4000 psi (30 MPa); B; decreases by
0.05 for each 1000 psi above 4000 psi (0.008 per 1 MPa above 30 MPa) but is not less than
0.65. (Refer to Fig. 3.6, Chapter 3.)

LA I =

11.3 LOAD-MOMENT INTERACTION DIAGRAM

When a normal force is applied on a short reinforced concrete column, the following cases may
arise, according to the location of the normal force with respect to the plastic centroid. Refer to
Fig. 11.3a and 11.3b:

Axial compression (Pg). This is a theoretical case assuming that a large axial load is acting
at the plastic centroid; ¢ = 0 and M, = 0. Failure of the column occurs by crushing of the
concrete and yielding of steel bars. This is represented by Pg on the curve of Fig. 11.3a.

1. Maximum nominal axial load P, nax: This is the case of a normal force acting on the
section with minimum eccentricity. According to the ACI Code, P, max = 0.80P for tied
columns and 0.85Pg for spirally reinforced columns, as explained in Chapter 10. In this
case, failure occurs by crushing of the concrete and the yielding of steel bars.

2. Compression failure: This is the case of a large axial load acting at a small eccentricity.
The range of this case varies from a maximum value of P, = P, max t0 2 minimum value
of P, = P, (balanced load). Failure occurs by crushing of the concrete on the compression
side with a strain of 0.003, whereas the stress in the steel bars (on the tension side) is less
than the yield strength, fy (fs < fy). In this case P, > P, and € < ¢;.
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3. Balanced condition (P,): A balanced condition is reached when the compression strain in
the concrete reaches 0.003 and the strain in the tensile reinforcement reaches &, = f,/E;
simultaneously; failure of concrete occurs at the same time as the steel yields. The moment
that accompanies this load is called the balanced moment, My, and the relevant balanced

eccentricity is e = M/ P},

Tension failure: This is the case of a small axial load with large eccentricity, that is, a large

moment. Before failure, tension occurs in a large portion of the section, causing the tension
steel bars to yield before actual crushing of the concrete. At failure, the strain in the tension
steel is greater than the yield strain, £y, whereas the strain in the concrete reaches 0.003.
The range of this case extends from the balanced to the case of pure flexure (Fig. 11.3).

When tension controls, P, < P, and ¢ > ¢;.

Pure flexure: The section in this case is subjected to a bending moment, M,, whereas the

axial load is P, = 0. Failure occurs as in a beam subjected to bending moment only. The
eccentricity is assumed to be at infinity. Note that radial lines from the origin represent
constant ratios of M,/P, = e = eccentricity of the load P, from the plastic centroid.

Cases 1 and 2 were discussed in Chapter 10, and Case 6 was discussed in detail in Chapter 3.

The other cases are discussed in this chapter.

A Compression

mj}rﬂl’/ Nesaniilil

Allowable P,

(max) €5 < ¢y (tonsion)

Load P,

¢ = 0003

0003
¢y < ¢, (COMpXession)

(@

Figure 11.3 (a) Load-moment strength interaction diagram showing ranges of cases
discussed in taxt, and (b} column sections showing the location of P, for different load

conditions.
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11.4 SAFETY PROVISIONS

The safety provisions for load factors were discussed earlier in Section 3.6. For columns, the
safety provisions may be summarized as follows:

1. Load factors for gravity and wind loads are
U=14D
U=12D+16L
U=12D+1.6L +03W
U=12D+10L +1.6W
U=09D+ 1.6W

The most critical factored load should be used.

2. The strength reduction factor, ¢, to be used for columns may vary according to the following
cases:

a. When P, = ¢P, > 0.1f/A,, ¢ is 0.65 for tied columns and 0.75 for spirally reinforced
columns. This case occurs generally when compression failure is expected. A, is the
gross area of the concrete section.

b. The sections in which the net tensile strain, g,, at the extreme tension steel, at nominal
strength, is between 0.005 and 0.002 (transition region) ¢ varies linearly between 0.90
and 0.65 (or 0.75), respectively (Fig. 11.4). Refer to Section 3.7. For spiral sections,

¢ =0.75+ (g — 0.002)(50) or ¢ =0.75+0.15 [ L é] (11.1)
c/d, 3

¢ @=0.75 + (&,- 0.002)(50} —\

0.90
Py
- -
-~
Spiral -
pira. P
0B === ==7 N $=0.65+(g,- 0002)250/3) |
0.65
Other
Compression Transttion | Tension
controlled "] controlled
£,=0.002 £, =0.005
LI £ =0
&= 0600 & =037
Interpolationon 5= Spiral (1)—075-17015[L i:l
Tpolation on 7" : pi =0. 15|24, ° 3

| 5
Other $=0.65+025 | 75 - 3
]

Figure 11.4 Variation in ¢ with NTS for grade 60 steel 7. Courtesy of ACL.
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For spiral sections
250
3

¢ = 0.65 + (& — 0.002) ( ) or ¢ =0.65+0.25 [ — é] (11.2)

c/d, 3

¢. When P, = 0, the case of pure flexure, then ¢ = 0.90 for tension-controlled sections
and varies between 0.90 and 0.65 (or 0.75) in the transition region.

11.5 BALANCED CONDITION — RECTANGULAR SECTIONS

A balanced condition occurs in a column section when a load is applied on the section and
produces, at nominal strength, a strain of 0.003 in the compressive fibers of concrete and a
strain £y = f,/E; in the tension steel bars simultaneously. This is a special case where the
neutral axis can be determined from the strain diagram with known extreme values. When the
applied eccentric load is greater than P, compression controls; if it is smaller than P}, tension
controls in the section.

The analysis of a balanced column section can be explained in steps (Fig. 11.5):

1. Let ¢ equal the distance from the extreme compressive fibers to the neutral axis. From the
strain diagram,

¢p(balanced) B 0.003
d;

= 7 (where E; = 29,000 ksi) (11.3)
0.003 + El

Columns supporting 52-story building, Minneapolis, Minnesota.
(Columns are 96 x 64 in. with round ends.)
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=P, + P, = Pp—»
i €. =0003 —™ 0.85f, ra—
d | o i. T— - _.f - C, = Alt,
T Plastic Cp |t |° = C. = 0.85f.a,b
i=d centroid ™\ ' ) . .
) (d— ap/2)
{ 4
-.—+ -.—-—-— —— e — — T= Asfy
e, = f/E,
f -n—b-—-—-m
d,
Figure 11.5 Balanced condition {rectangular sectiony.
and 874
cp = - (where f, is in ksi)
37T+ f
The depth of the equivalent compressive block is
87
ap = Picp = (87 T 7 ),310': (11.4)
y

where 8; = 0.85 for f! < 4000 psi and decreases by 0.05 for each 1000-psi increase in f;.

. From equilibrium, the sum of the horizontal forces equals 0: P, — C, — C; + T =0,
where

C.=085fab and T =A;f, (11.5)
Cs = AL(f/ — 0.85f))
(Use f] = f, if compression steel yields.)

f;=87(““d) < f

[5

The expression of C; takes the displaced concrete into account. Therefore, Eq. 11.5
becomes

P, = 0.85 flab + AL(f] — 085 fI) — A, f, (11.6)

. The eccentricity ¢, is measured from the plastic centroid and ¢’ is measured from the
centroid of the tension steel: ¢ = e + d” (in this case ¢ = eb + d’), where d” is the
distance from the plastic centroid to the centroid of the tension steel. The value of ¢, can
be determined by taking moments about the plastic centroid.

Pyep, = C; (d - % - d”) +Cid—d' —d"+Td" (11.7)
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or
Poe, = My = 0.85 flab (d - % —d") + AL, — 085 f)(d = d —d") + Acfyd”
(11.8)

The balanced eccentricity is

My
ep = 7, (11.9)
For nonrectangular sections, the same procedure applies, taking into consideration the
actual area of concrete in compression.
The strength reduction factor, ¢, for the balanced condition with f, = 60ksi, can
be assumed = 0.65 (or 0.75). This is because &, = &, = f,/Es = 0.00207 (or 0.002), for
which ¢ = 0.65 (Fig. 11.4).

Example 11.2
Determine the balanced compressive force Pp; then determine ¢; and M, for the section shown in
Fig. 11.6. Given: f/ =4 ksi and f, = 60ksi.
Solution
1. For a balanced condition, the strain in the concrete is 0.003 and the strain in the tension steel

18
Fy 60

= = = 0.00
&= E. = 29,000 Ll

2. Locate the neutral axis:
_ 87 d = 87
87T+ f  8T+60

a, = 0.85¢, = 0.85 x 11.54 = 9.81 in.

Cp (19.5) = 11.54 in.

3. Check if compression steel yields. From the strain diagram,
g ¢ —~d _1154-25

s _ = ! = 0.00235
0003~ ¢ 11.54 &
Py + Py ——=
| —» (.85,
Cp = 11547

—r— -o—o-k—o— T
4 Plastic B _L_
22“ * éent:oid B - - T 1
of =83 4#9 / 7= 240 K
— leooeot—— L\ ———— L
r 25 ¢, = £,/E,= 000207

l l—— 1 4 -——and

Figure 11.6 Example 11.2: balanced condition.
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which exceeds £, of 0.00207; thus, compression steel yields. Or check that

fl =87 (c_d”) < f

c
,_ 87(11.54=25) . .
fi= 15 = 68 ksi > 60 ksi

Then f] = f, = 60 ksi.
4. Calculate the forces acting on the section:
C.=0.85 flab=085%x4x9.81 x 14 =467 K
T =A,f, =4 x60=240 K
Cs = AL(fy — 0.85 1) = 4(60 — 3.4) = 2264 K
5. Calculate Pp and e;:
Py=Cc+Cs —T =467+ 2264 —240 =4534 K
From Eq. 11.7,

My = Ppep = C. (d - g - d”) +Cd—d —dy+Td"

The plastic centroid is at the centroid of the section, and d” = 8.51n.

9.81
My = 453.4¢;, = 467 (19.5 T 8.5) +226.4(19.5-25—-8.5)+240x 85

= 6810.8 K-in. = 567.6 K-ft
_ M, _ 68108

=2 2 450in
= T 1534 i

6. For a balanced condition, ¢ = 0.65, ¢ P, = 294.7K, and ¢ M, = 368.9 K fi.

11.6 COLUMN SECTIONS UNDER ECCENTRIC LOADING

For the two cases when compression or tension failure occurs, two basic equations of equilibrium
can be used in the analysis of columns under eccentric loadings: (1) the sum of the horizontal
or vertical forces = 0, and (2) the sum of moments about any axis = 0. Referring to Fig. 11.7,
the following equations may be established.
1. P,—Cc—Cs+T =0 (11.10)
where

C. =085 flab
s = AL(f, —0.85 f)) (If compression steel yields, then f] = f,.)
T = A fs (If tension steel yields, then f; = f,.)

2. Taking moments about A,

1 A N —
P,,e—Cc(d 2) Cyd—d)=0 (1.11)
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Reinforced concrete tied columns under construction. The two columns are separated
by an expansion joint.

P, —»

P+
—» 0.85f,

\ ) 0003 g

I _3‘"__.‘._4»+ e T =Af

d

1
A le‘ j e‘ af2 C. = 0.85f.0b
n | TRt et mand YT
gl LZ |
” Sy A > 7= Af,

Figure 11.7 General case, rectangular section.

The quantity ¢’ = e + d”, and ¢ = (e + d — h/2) for symmetrical reinforcement (d” is
the distance from the plastic centroid to the centroid of the tension steel.)

P=> [c(a-3) +cu-a)) (11.12)
Taking moments about C.,
P, [e'_((1_%)]_7~(d_%)_cv (%—d'):O (11.13)
(-2 e (3-0)

5
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If A, = A} and f; = f! = f;, then
_ Asfy(d-d’) _ Asfy(d-d,)

P, = =
n (e’—l—%—d) (8—§+%)

h a
Pn(e-§+§)

fyd—=d’)

(11.15)

A=A, = (11.16)

11.7 STRENGTH OF COLUMNS FOR TENSION FAILURE

When a column is subjected to an eccentric force with large eccentricity e, tension failure is
expected. The column section fails due to the yielding of steel and crushing of concrete when
the strain in the steel exceeds ¢,(g, = f,/E;). In this case the nominal strength, P,, will be less
than P, or the eccentricity, e = M,/P,, is greater than the balanced eccentricity, e;. Because
it is difficult in some cases to predict if tension or compression controls, it can be assumed (as
a guide) a tension failure will occur when ¢ > d. This assumption should be checked later.

The general equations of equilibrium, Eqs. 11.10 and 11.11, may be used to calculate the
nominal strength of the column. This is illustrated in steps as follows:

1. For tension failure, the tension steel yields and its stress is f; = f,. Assume that stress
in compression steel is f; = f,.
2. Evaluate P, from equilibrium conditions (Eq. 11.10):

ancc“{'Cs_T

where C. = 0.85 flab, C; = AL(fy — 085 f), and T = A f,.
3. Calculate P, by taking moments about A; (Eq. 11.11):

Pn-e’=CC(d—;)+Cs(d—d’}

where e’ = e + d" and ¢’ = e + d — h/2 when A; = A}
4. Equate P, from steps 2 and 3:

CC+CS—T=&[Cc(d—%)+cs(d—d')]

This is a second-degree equation in a. Substitute the values of C,, Cs, and T and solve
for a.

5. The second-degree equation, after the substitution of C., Cs, and T, is reduced to the
following equation:
Aa*+Ba+C=0

where

A = 0.425 f'b
B = 0.85 f/b(e' — d) = 2A(’ — d)
C = Al(f —085f)e —d+d)— A fye
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Solve for a to get

B+ vBZ—4AC
a= 24

Note that the value of (f; — 0.85 f) must be a positive value. If this value is negative,
then let (f; —0.85 f)) =0.
Substitute @ in the equation of step 2 to obtain P,. The moment M, can be calculated:

Mn=Pﬂ’e

Check if compression steel yields as assumed. If ¢] > ¢, then compression steel yields;
otherwise, f./ = E;s}. Repeat steps 2 through 5. Note that & = [(c — d'/c]0.003, ¢, =
fy/Es and ¢ = afBy.

Check that tension controls. Tension controls when ¢ > ¢, or P, < Pj. Example 11.3
illustrates this procedure.

The net tensile strain, &,, in this section, is normally greater than the limit strain of 0.002
for a compression-controlled section (Fig. 11.4). Consequently, the value of the strength
reduction factor, ¢, will vary between 0.65 (or 0.75) and 0.90. Equation 11.1 or 11.2 can
be used to calculate ¢.

Example 11.3
Determine the nominal compressive strength, P,, for the section given in Example 11.2 if ¢ = 201in.
{See Fig. 11.8.)

Solution

1. Because e = 20in. is greater than d = 19.5in., assume that tension failure condition controls
(to be checked later). The strain in the tension steel, £, will be greater than &, and its stress
is fy. Assume that compression steel yields f; = f,, which should be checked later.

2. From the equation of equilibrium (Eq. 11.10),
Pn = C(_‘ -+ C_g it T

P, +—r P,
2-f" o —o| 0.85f, fu—
| 0.003
J e —_ ——— C, = 2264K
j— —10- 098 ” a= 7.1 = -
4 #9 117 8.35 * CC = 47.60
8.5" ! l _*-
19.6" A aor . | B
2 P # PG ¢ = 00021 > ¢,
8.5"
4#9
—‘+e-0o0+——— - — — "
y e, = 0004 >, T=Af, = 240K
T t—— 14" - —pd
2‘5"

Figure 11.8 Example 11.3: tension failure.
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where
C. =0.85 f,ab = 0.85 x 4 x 14a = 47.6a
= AL(fy — 085 f)) = 4(60 — 0.85 x 4) = 2264 K
T=Asf_y=4x60=240K
P, = 47.6a 4+ 226.4 — 240 = (47.6a — 13.6) i)

3, Taking moments about A; (Eq. 11. 12)

- [c( 2)+Cid-d]
Note that for the plastic centroid at the center of the section, " = 8.5in.
e€=e +d” =20+ 8.5 =285 in.

Pu= o [476a(195—§)+2264x 17]

P, = 32.56a — 0.835a% + 135.0

4. Equating Eqgs. I and II,
P, = (47.6a — 13.6) = 32.56a — 0.8354° + 135.0 (1)

or
a*+18¢—1780=0 a=711n.

5, From Eq. I
P, =476x71—136=3244K

20
M, = Pe=3244x o= 540.67 K-ft

6. Check if compression steel has yielded:

a 7.1 60
2 _835in. = 0.00207
=085 085 M5 = 35,000
35-25
e = %(0.003) = 0.0021 > ¢,

Compression steel yields. Check strain in tension steel:

( 19.5 -8.35
& = | ———r
’ 8.35
If compression steel does not yield, use f, as calculated from f] = £ E; and revise the calcu-
lations.
7. Calculate ¢: Since & = 0.004, the section is in the transition region.

) % 0.003 = 0.004 > ¢,

250

¢P, =0.817(324.4) = 2649 K
¢M, = 0.817(540.67) = 441.7 K.ft
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8. Because e = 20in. > e = 15in. (Example 11.2), there is a tension failure condition.
9. The same results can be obtained using the values of A, B, and C given earlier.
Ad*+Ba+C=0
A =0425 f/b =0425(4)(14) = 23.8
B =2A(e' —d) =2(23.8)(28.5 — 19.5) = 4284
C = 4(60 — 0.85 x 4)(28.5 — 19.5 + 2.5) — 4(60)(28.5)
= —4236.4
Solve for a 1o get ¢ = 7.1lin. and P, = 3244K.

11.8 STRENGTH OF COLUMNS FOR COMPRESSION FAILURE

If the compressive applied force, P,, exceeds the balanced force, Pp, or the eccentricity,
¢ = M,/P,, is less than e,, compression failure is expected. In this case compression con-
trols, and the strain in the concrete will reach 0.003, whereas the strain in the steel is less than
ey (Fig. 11.9). A large part of the column will be in compression. The neutral axis moves toward
the tension steel, increasing the compression area, and therefore the distance to the neutral axis
c is greater than the balanced ¢, (Fig. 11.9).

Because it is difficult to predict compression or tension failure whenever a section is
given, compression failure can be assumed when e < 2d/3, which should be checked later.
The nominal load strength, P,, can be calculated using the principles of statics. The analysis
of column sections for compression failure can be achieved using Eqs. 11.10 and 11.11 given
earlier and one of the following solutions.

-4—-0&)3——1

/
‘*e,_.-

€y e

Figure 11.9 Strain diagram when compression controls. When &5 < ¢y, ¢ > ¢p and
g = Ey-
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11.8.1 Trial Solution

This solution can be summarized as follows:

1. Calculate the distance to the neutral axis for a balanced section, cp:

87d;
e 11.17
‘"’ (87+fy) AL1D

where f is in ksi.
2. Evaluate P, using equilibrium conditions:

P,=C.+C;—-T (11.18)
3. Evaluate P, by taking moments about the tension steel, A;:
a 7
&w%ﬂl@—§)+Qw—d) (11.19)

where ¢ = e + d — h/2 when A; = A} or ¢’ = ¢ + d” in general, C, = 0.85 flab, C; =
AL(f; —085f),and T = A, f,.

4. Assume a value for ¢ such that ¢ > ¢; (calculated in step 1). Calculate a = Bic. Assume
f; = fy‘

5. Calculate f, based on the assumed c:

fs=£s£’s=8’;’( )ksigfy

6. Substitute the preceding values in Eq. 11.10 to calculate P, and in Eq. 11.11 to calculate
P, If P, is close to P,;, then choose the smaller or average of P, and P,. If Py
is not close to P2, assume a new ¢ or a and repeat the calculations starting from step 4
until P, 1s close to P,>. (1% is quite reasonable.)

7. Check that compression steel yields by calculating &, = 0.003[(c — d’)/c] and comparing
it with &, = f,/E,. When ¢ > ¢,, compression steel yields; otherwise, f{ = ¢ E; or,

dr—C

directly, '
—d
ﬁ:W(C )sgmi
8. Check that ¢ < e, or P, > P, for compression failure. Example 11.4 illustrates the
procedure.

9. The net tensile strain, &,, in the section is normally less than 0.002 for compression-
controlled sections (Fig. 11.4). Consequently, the strength reduction factor (¢) = 0.65 (or
0.70 for spiral columns).

Example 114
Determine the nominal compressive strength, P, for the section given in Example 11.2 if e = 10in.
(See Fig. 11.10.)

Solution

1. Because ¢ = 10in. < (2/3)d = 13in., assume compression failure. This assumption will be
checked later. Calculate the distance to the neutral axis for a balanced section, ¢;:

87 87

=— d =——(19.5) = 11.54 in.
T+ Ty ) o

Ch
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25"

| 0.85f [a—
l Py C. = Alf,
rog—— = 2264k
?——--HGQ- f -
[ 111" 8 5' 4 I' 9 S—
195 § 4 | pPc. C.= 4760
z 1T I
88"
4#9
— - 0o -
' T=Af, = 4f,
i
25"
Figure 11.10 Example 11.4: compression controls.
2. From the equations of equilibrium,
Po=Cc+Ci—T {11.10)

where
C. =0.85 flab = 0.85 x 4 x 14a = 47.6a
Cs = AL(fy — 0.85 f1) = 4(60 — 0.85 x 4) = 2264 K
Assume compression steel yields. (This assumption will be checked later.)
T=Afs=4f (<] @
P, =47.6a +2264 —4f;

3. Taking moments about A;,

P, = el [Cc (a- g) +Co(d - d’)] AL11)

The plastic centroid is at the center of the section and d” = 8.51in.

& =e+d" =10+85=185in

1
185

P, = 50.17a — 1.29a> + 208

P, [47.6a (19.5 - ‘5‘) +226.4(19.5 — 2.5)] an

4. Assume ¢ = 13.45in., which exceeds ¢, (11.54in.).
a=0.85x1345=1143in.
Substitute 2 = 11.43 in Eq. II:
P,y = 50.17 x 11.43 — 1.29(11.43)> + 208 = 6129 K

5. Calculate f; from the strain diagram when ¢ = 13.45in.

f= 19.5 — 13.45
P 13.45
6. Substitute = 11.43in. and f; = 39.13ksi in Eq. I to calculate P,:

Ppy = 47.6(11.43) + 2264 — 4(39.13) = 6139 K

)8’7 =3913 ksi & =¢& = f;/E; = 0.00135
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which is very close to the calculated P,; of 612.9K (less than 1% difference).

M, =P, -¢e=06129 (:—g) = 510.8 K-ft
7. Check if compression steel yields. From the strain diagram,
13.45 - 2.
8; = —"i—3'4—52§‘(0003) = 0.00244 > £y = 0.00207

Compression steel yields, as assumed.

8. P, = 612.9K is greater than P, = 453.4K, and ¢ = 10in. < ¢, = 15in., both calculated in
the previous example, indicating that compression controls, as assumed. Note that it may take
a few trials to get P, close to Py

9. Calculate ¢:
d, =d=1951n. ¢ =1345in.

&, (at the tension steel level) = 0.003(d; — ¢)/c.
g = 0.003(19.5 — 13.45)/13.45 = 0.00135
Since &; < 0.002, then ¢ = 0.65.
¢ P, =0.65(612.9) = 3984 K
oM, = 0.65(510.8) = 332 K-ft.

11.8.2 Numerical Analysis Solution

The analysis of columns when compression controls can also be performed by reducing the
calculations into one cubic equation in the form

Aad® +Ba*+Ca+ D=0

and then solving for a by a numerical method, or @ can be obtained directly by using one
of many inexpensive scientific calculators with built-in programs that are available. From the
equations of equilibrium,

PH=CC+CS_T

= (0.85 flab) + AL(f, — 085 f)) — As f; (11.10)
Taking moments about the tension steel, Ay,
1 a ,
= [e (=)o)
1 ! a ’ (4 14
== [0.85 flab(d - 5) + Ay(fy — 0.85 f)(d — )] aL11)

From the strain diagram,

a
d—c (-5)
& = (‘T) (0.003) = ~—"12(0.003)

B
The stress in the tension steel is

87
fe =& E; =29,000¢5 = ” (Bi1d — a)
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Substituting this value of f; in Eq. 11.10 and equating Eqs. 11.10 and 11.11 and simplifying
gives

(0.85 fib

2

—87A;eprd =0

This is a cubic equation in terms of a:

) @ +[0.85f.b(e’ — d)la® + [AL(f, — 0.85 f)(¢ —d + d) + 87A,'la

A +Ba*+Ca+ D=0

where

4 088 fb

2
B = 0.85 f/b(¢’ — d)
C = AL(f, — 0.85 £)(' —d +d') + 87 Ase’
D = -87 A;e'prd

Once the values of A, B, C, and D are calculated, a can be determined by tnal or directly
by a scientific calculator. Also, the solution of the cubic equation can be obtained by using the
well known Newton-Raphson method. This method is very powerful for finding a root of f(x) =
0. It involves a simple technique, and the solution converges rapidly by using the following steps:

1. Let f(a) = Aa® + Ba* + Ca + D, and calculate A, B, C, and D.
2. Calculate the first derivative of f(a):
f(@) =3Aa*+2Ba+C

3. Assume any initial value of a, say, ap, and compute the next value:

4 = o — f{ao)
f(ao)
4. Use the obtained value a; in the same way to get
vy —ay— L@
(1)

5. Repeat the same steps to get the answer up to the desired accuracy. In the case of the
analysis of columns when compression controls, the value a is greater than the balanced
alayp). Therefore, start with ag = a, and repeat twice to get reasonable results.

Example 11.5
Repeat Example 11.4 using numerical solution.

Solution
1. Calculate A, B, C, and D and determine f{(a).
A=085x4x %:23.8
B =085 x4 x14(18.5-19.5) = —47.6
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C =460 —0.85 x 4)(18.5 —19.5 4+ 2.5) + 87 x 4 x 18.5
=6777.6
D= —87 x4 x 18.5 x (0.85 x 19.5) = —106,710

f(a) = 23.8a° — 47 .6a* + 6777.6a — 106,710
2. Calculate the first derivative:
f'(a) =71.4a* — 95.2a + 6777.6

3. Let ap = ap = 9.81 in. For a balanced section, c¢; = 11.54in. and a, = 9.81in.
pACEIVI g ~22,334

— 981~ =981 - = 11.566 in.
@ =981- o8 12,715 .
4, Calculate a;:
F(11.566) 2136 :
= 11.566 — > _ |1 566 — = 1143 in.
2 F(11.566) 15,228 n

This value of a is similar to that obtained earlier in Example 11.3. Substitute the value of ¢ in
Eq. 11.10 or 11.11 to get P, = 6129K.

11.8.3 Approximate Solution

An approximate equation was suggested by Whitney to estimate the nominal compressive
strength of short columns when compression controls, as follows [15]:
bhf! n ALfy
3he €
o — 405
This equation can be used only when the reinforcement is symmetrically placed in single layers
parallel to the axis of bending.

A second approximate equation was suggested by Hsu [16]:

P, — P M, 1.5
TP ) =10 (11.18)
Po_Pb Mb

P, = (11.17)

where

P, = nominal axial strength of the column section
Py, M; = nominal load and moment of the balanced section
M, = nominal bending moment = P,.¢
P, = nominal axial load at e = 0
= 0.85 fi(Ag — A) + Aufy
A, = gross area of the section = bh
Ay = total area of nonprestressed longitudinal reinforcement

Example 11.6

Determine the nominal compressive strength, P,, for the section given in Example 11.4 by Egs.
11.17 and 11.18 using the same eccentricity, ¢ = 10in., and compare results.

Solution

1. Solution by Whitney equation (Eq. 11.29):

a. Properties of the section shown in Fig. 11.10 are b = 14in., A = 22in., d = 19.5in., d’' =
2.5in., A, =4.0in2, and (d ~ d') = 17in.
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b. Apply the Whitney equation:
_ 14 x 22 x 4 _ 4 x 60 _
T Bx2x10/(19.52+ 118 T (B)+05

¢P, =0.65P, =418 K

¢. P, calculated by the Whitney equation is not a conservative value in this example, and the
value of P, = 643K is greater than the more accurate value of 612.9 K calculated by statics
in Example 11.4.

2. Solution by Hsu equation (Eq. 11.18):
a. For a balanced condition, P, = 453.4K and M, = 6810.8 K-in. (Example 11.2).

b. Py =0.85 fl{A; ~ Ax) + Auf
= 0.85(4)(14 x 22 — 8) + 8(60) = 1500K

P, —453.4 ( 10P, )‘-5_

1500 — 453.4 t 6810.8
Multiply by 1000 and solve for £,.

0.9555P, +0.05626P)° = 14332 K
By trial, P, = 611K, which is very close to 612.9K, as calculated by statics.

Po 643 K

11.9 INTERACTION DIAGRAM EXAMPLE

In Example 11.2, the balanced loads P, M;, and e, were calculated for the section shown in
Fig. 11.6 (e = 15in.). Also, in Examples 11.3 and 11.4, the load capacity of the same section
was calculated for the case when ¢ = 20in. (tension failure) and when ¢ = 101in. (compression
failure). These values are shown in Table 11.1.

To plot the load—moment interaction diagram, different values of ¢ P, and ¢pM, were
calculated for various e values that varied between ¢ = 0 and ¢ = maximum for the case of

Table 11.1  Summary of the Load Strength of the Column Section in the Previous Examples

e {in.) a (in)) ¢ Pn (K) &Py (K) oM, (K-fi) Notes
0 — 0.65 1500 975 0.0 ¢ Ppo
2.25 19.39 0.65 1200 780 146.3 0.8 ¢ P
4 16.82 0.65 1018 661.7 220.6 Compression
6 14.19 0.65 8433 548.1 274.0 Compression
10* 11.43 0.65 612.9 398.4 332.0 Compression
12 10.63 0.65 538.0 349.7 349.7 Compression
15* 9.81 0.65 453.4 294.7 368.9 Balanced
20* 7.10 0.81 324.4 2634 439.0 Transition
30 5.06 0.90 189.4 1705 426.2 Tension
50 4.01 0.90 100.6 90.5 377.2 Teasion
80 3.59 0.90 58.8 529 3520 Tension
P.M. 3.08 0.90 0.0 0.0 3520 Tension
P.M. 3.08 0.65 0.0 0.0 2542 PM. X)

*= values calculated in Examples 11.2,11.3, and 11.4.
P.M. = pure moment.
X = Not applicable, for comparison only.
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4 P,
1500 K

0.8P, = 1200

1018.0

2430

6129

538.0
P, = 4534

3244
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Figure 11.41 Interaction diagram of the column section shown in Fig. 11.10.

pure moment when P, = 0. These values are shown in Table 11.1. The interaction diagram is
shown in Fig. 11.11. The load ¢ P,o = 975K represents the theoretical axial load when ¢ =
0, whereas 0.8 ¢ P,o = 780K represents the maximum axial load allowed by the ACI Code
based on minimum eccentricity. Note that for compression failure, ¢ < e, and P, > P, and for
tension failure, e > e and P, < P,. The last two cases in the table represent the pure moment
(P.M.) or beam-action case for ¢ = 0.9 and ¢ = 0.65 (M, = 391 K-ft). To be consistent with
the design of beams due to bending moments, the ACI Code allows the use of ¢ = 0.9 with
pure moment, so ¢ M, == 352 K-ft instead of 254.2K-ft. Also note that ¢ varies between 0.65
and 0.9 according to Eq. 11.2 for tied columns. Note that M, = 391.1 K ft.

11.10 RECTANGULAR COLUMNS WITH SIDE BARS

In some column sections, the steel reinforcement bars are distributed around the four sides of
the column section. The side bars are those placed on the sides along the depth of the section in
addition to the tension and compression steel, A; and A7, and can be denoted by Ay, (Fig. 11.12).
In this case the same procedure explained earlier can be applied, taking into consideration the
strain variation along the depth of the section and the relative force in each side bar either in
the compression or tension zone of the section. These are added to those of Cc, Cs, and T to
determine P, Equation 11.10 becomes

P, =cc+z C,—3T (11.10a)
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[ Y

Six side bars d
(three on each side) Two side #P
bars /

(a} {b)

Figure 11.12 Side bars in rectangular sections: (a) six side bars and (b) two side bars
{may be neglected).

Example 11.7 explains this analysis. Note that if the side bars are located near the neutral axis
(Fig. 11.12b), the strains—and, consequently, the forces—in these bars are very smail and can
be neglected. Those bars close to A, and A{ have appreciable force and increase the load capacity
of the section.

Example 11.7

Determine the balanced load, P, moment, M, and ¢; for the section shown in Fig. 11.13. Use
fl=4ksiand f, = 60ksi.

Sotution

The balanced section is similar to Example 11.2. Given: # = h = 22in., d = 19.5in.,, d’ = 2.5 in.,
A; = A, =635 inZ. (five no. 10 bars), and six no. 10 side bars (three on each side).

1. Calculate the distance to the neutral axis:

87 87
_ d, = 19.5 = 11.54 in.
b (37+f,,) ' (87+60) n

ap = 0.85(11.54) = 9.81 in.

2. Calculate the forces in concrete and steel bars; refer to Fig. 11.13a. In the compression zone,
C. = 0.85flab = 0.85(4)(9.81)(22) = 733.8 K.

—d 11.54 —2.5
fl=87 (C d ) =87 (W) = 68.15 ksi > 60 ksi
c .

Then f] =60 ksi.
Cs1 = Ay(fy — 0.85 ) = 6.35(60 — 0.85 x 4) = 3594 K

11.54 — 2.5 - 425
Jor =87 ( 11.54

Cor = 2(1.27)(36.11 -~ 0.85 x 4) = 83.1 K
Similarly, f;3 = 4.07ksi and Cg3 = 2(1.27)(4.07 — 0.85 x 4) = 1.7K.

) = 36.11 ksi
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Figure 11.13 Example 11.7: {a) balanced section. Example 11.8: (b) for compression
failure, @ = 6in.

In the tension zone,
g4 = 964.50 x 107¢ £,y =28 ksi
T =2(1.27)28) =71 K
T» = A, fy = 6.35(60) = 381 K
3. Calculate P, =C, + XC, — ZT.
Py =733.8+(359.4+83.14+1.7) — (71 4+ 381)
=726 K
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4, Taking moments about the plastic centroid,

My, = 733.8(6.095) + 359.4(8.5) + 83.1(4.25) + 71(4.25) + 381(8.5)
= 11,421 K-in. = 952 K-ft

ey = —nﬁ = 15.735 in.
Py

5. Determine ¢: For a balanced section, &; = &, = 0.002, ¢ = 0.65,

¢P, =065 P, =472 K, andpM;, = 0.65 M, = 618.8 K-ft.

Example 11.8
Repeat the previous example when ¢ = 6.0in.

Solution

1. Because ¢ = 6in. < ¢, = 15.7351n., this is a compression failure condition. Assume ¢ =
16.16in. (by trial) and a = 0.85(16.16) = 13.74in. (Fig. 11.135).

2. Calculate the forces in concrete and steel bars:
C. = 0.85(4)(13.74)(22) = 102775 K
In a similar approach to the balanced case, f;) = 60ksi and C;; = 359.41.
fi2=5066ksi C;p=1200K
f53=2778ksi Cy3=6192K
fia =49 ksi Cy=381K
fss = 18 ksi T =6.35(18) =1142 K
3. Calculate P, = C. + £C; — £T = 1458.7K.
M, =P, . e=72035Kft (e=061in.)
4. Check P, by taking moments about A;,
Po= o [Ce(=5) +Cu@—dr+Ca@—a )
+Coa(d —d' = 25) + Coald — d' = 35)]

h
e’=e+dr§=6+19.5—22—2=14.5in.

s = distance between side bars
=425 in. {s = constant in this example.}

1 13.74
P, =— . S = —— 41(1
G [1027 75 (19 5 3 ) +359.41(17)

+ 120(17 — 4.25) + 61.92(17 — 8.5)

+ 3.81(17 — 12.75)] = 1459 K



356 Chapter 11 Members in Compression and Bending

5. Calculate ¢:
de=d =195in. ¢ =16.16in.

£, (at the tension steel level) = 0.003(d;, — ¢)/c
& = 0.003(19.5 — 16.16)/16.16 = 0.00062

Since &; < 0.002, then ¢ = 0.65.

¢ P, =0.65(1459) = 9483 K

oM, = 0.65(729.5) = 474 K -ft
Note: If side bars are neglected, then

P, =73384+3594—381=7122K
P, (ate=61n) =1027.754+ 3594 - 1142 = 12713 K

If side bars are considered, the increase in P; is about 2% and that in P, is about 14.6%.

11.11 LOAD CAPACITY OF CIRCULAR COLUMNS

11.11.1 Balanced Condition

The values of the balanced load P, and the balanced moment M, for circular sections can be
determined using the equations of equilibrium, as was done in the case of rectangular sections.
The bars in a circular section are arranged in such a way that their distance from the axis of
plastic centroid varies, depending on the number of bars in the section. The main problem is to
find the depth of the compressive block a and the stresses in the reinforcing bars. The following
example explains the analysis of circular sections under balanced conditions. A similar procedure
can be adopted to analyze sections when tension or compression conirols.

Example 11.9

Determine the balanced load P, and the balanced moment M, for the 16-in. diameter circular spiral
column reinforced with eight no. 9 bars shown in Fig. 11.14. Given: f! =4 ksi and f, = 60ksi.
Solution

1. Because the reinforcement bars are symmetrical about the axis A-A passing through the center
of the circle, the plastic centroid lies on that axis.

2. Determine the location of the neutral axis:

d=131in. &= ? (Es = 29,000 ksi)
by
c 0003 0003 87
dy  0.003+e, 0003+ L 87+ fy
¢ = =) _(13.1) =775 in
"T®I+e0 T T

ap = 0.85 x 7.75 = 6.59 in.
3. Calculate the properties of a circular segment (Fig. 11.15):

Area of segment = r*(o — sin & ¢os a) (11.19)
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c=1717%

6‘31 1 I
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P.C.—» l | !
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Figure 11.14 Example 11.9: eight no. 9 bars

A1
0.85f,
ntrn L4
: I
I
I

S =8-25=55in.
81 = Scos225° =5.1in.
S, = ScosB7.5° =2.11n.
d =8+51=131in.
S; = 1.85in.
Sy = 4.85in.
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Figure 11.15 Example 11.9: Properties of circular segments.

Location of centroid ¥ {(from the circle center 0):

-3
so2__ (s (11.20)
3 (x — sin & cos @)
Z=r—-x (11.21)
rcosa=(r—a) or cosa:(]—g) (11.22)
r

COS o = (l - ?) =0.176

and o = 79.85°, sin o = 0.984, and o = 1.394 rad.
Area for segment = (8)%(1.394 — 0.984 x 0.176)

=78.12 in.2
_ (2 8(0.984)% .
=(= = 4.16 in.
* (3) (1.394 — 0.984 x 0.176) "
Z=r—-%=8—416=384in.

4. Calculate the compressive force C,:
C. = 0.85 f, x area of segment
=085 x4 x78.12=2656K

It acts at 4.16in. from the center of the column.

5. Calculate the strains, stresses, and forces in the tension and the compression steel. Determine
the strains from the strain diagram. For T},

£=e,=000207 f =f =60 Kksi
Ti=2x60=120K
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For 73,
2.35 2.35
= " ¢, = —= x 0.00207 = 0.00091
E3= 35355 T 535 %
fs3 = 0.00091 x 29,000 = 26.4 ksi
T, =264 x2=528K
For Cs(,
485
Sc1 = 775 x 0.003 = 0.00188
fs1 = 0.00188 x 29,000 = 54.5 ksi < 60 ksi
Cq =2(545—-34)=1022K
For Cy7,
1.85
2 = =2 x 0.003 = 0.000716
£ 773 x 0.003

fs2 = 0.000716 x 29,000 = 20.8 ksi
Cs2 =2(208 -34) =348K

The stresses in the compression steel have been reduced to take into account the concrete
displaced by the steel bars.

6. The balanced force is P, = C, + ZC; — T (¢ = 0.75).
Py =265.6 4+ (102.2 + 34.8) — (120 + 52.8) =230 K
For a balanced section,
g =0002 and ¢ =065
¢P, = 1495 K

7. Take moments about the plastic centroid (axis A-A through the center of the section) for all
forces:

My = Prep =[Co X416+ Cgy x51+Csa x21+T) x5.14+ T x2.1]
= 2422.1 K-in. = 201.9 K-t
oM, = 1312 Kft

A
“="53 T 0W

11.11.2 Strength of Circular Columns for Compression Failure

A circular column section under eccentric load can be analyzed in similar steps as the balanced
section. This is achieved by assuming a value for ¢ > ¢, or @ > a, and calculating the forces
in concrete and steel at different locations to determine P, P, = C. + XC; — ET. Also,
M, can be calculated by taking moments about the plastic centroid (center of the section) and
determining P,» = M,/e. If they are not close enough, within about 1%, assume a new ¢ or
a and repeat the calculations. (See also Section 11.8.) Compression controls when ¢ < ¢, or
P‘PI > Pb.
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For example, if it is required to determine the load capacity of the column section of
Example 11.9 when ¢ = 6in., P, can be determined in steps similar to those of Example 11.9:

1. Because ¢ = 6in. is less than ¢, = 10.5in., compression failure condition occurs.
2. Assume ¢ = 9.0in. (by trial) > ¢, = 7.751n. and a = 7.65 in.
3. Calculate X = 3.585 in., Z = 4.415in., and the area of concrete segment = 94.93 in.

4-5. Calculate forces: and C. = 322.7K, C;; = 110.7K, C, = 53.1K, T} = 21.6K, and
T, = 789K.

6. Calculate Py = C, + £C, — 5T = 386K.

7. Taking moments about the center of the column {(plastic centroid): M, = 191 K-ft, P,» =
M,/6 = 382K, which is close to P, (the difference is about 1%). Therefore, P, = 382K.
Note that if the column is spirally reinforced, ¢ = 0.70.

An approximate equation for estimating P, in a circular section when compression controls
was suggested by Whitney [15]:

Afl My

P, =
[ 9.6he 4148 (3e+1
(0.8% 4 0.67D;)? ’ D,

(11.23)

where

Ay = gross area of the section

h = diameter of section
D = diameter measured through the centroid of the bar arrangement
Ay = total vertical sieel area

e = eccentricity measured from the plastic centroid

Example 11.10

Calculate the nominal compressive strength P, for the section of Example 11.9 using the Whitney
equation if the eccentricity is ¢ = 6in.

Solution
1. e = 6in. is less than ¢, = 10.5in., calculated earlier; thus, compression controls.
2. Using the Whitney equation,
T 4
A, = —h? = = (16)* =20.1 in?
e =3 4 (16)

h=16in. D;=16—-5=1101in. Ay=8x1=8in?
(201.1 x 4) 8 x 60

+
(9.6 x 16 x 6) 3x6
[(0.8x16+0.67x11)2+1’]8] ( 11 )H

=4155K

3 M, =P,e=415.5 x % = 207.8 K-ft. The value of P, here is greater than P, = 382K cal-
culated earlier by statics. '

Pnz
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11.11.3 Strength of Circular Columns for Tension Failure

Tension failure occurs in circular columns when the load is applied at an eccentricity e > ep,
or P, < P,. In this case, the column section can be analyzed in steps similar to those of the
balanced section and Example 11.8. This is achieved by assuming ¢ < ¢, or a < g and then
following the steps explained in Section 11.11.1. Note that because the steel bars are uniformly
distributed along the perimeter of the circular section, the tension steel A; provided could be
relatively low, and the load capacity becomes relatively small. Therefore, it is advisable to avoid
the use of circular columns for tension failure cases.

11.12 ANALYSIS AND DESIGN OF COLUMNS USING CHARTS

The analysis of column sections explained earlier is based on the principles of statics. For
preliminary analysis or design of columns, special charts or tables may be used either to determine
¢ P, and ¢M, for a given section or determine the steel requirement for a given load P, and
moment M,. These charts and tables are published by the American Concrete Institute (ACI) [7],
the Congcrete Reinforcing Steel Institute (CRSI), and the Portland Cement Association (PCA).
Final design of columns must be based on statics by using manual calculations or computer
programs. The use of the ACI charts is illustrated in the following examples. The charts are
given in Figs. 11.16 and 11.17 [7]. These data are limited to the column sections shown on the
top right corner of the charts.

Example 11.11

Determine the necessary reinforcement for a short tied column shown in Fig. 11.18a to support a
factored load of 483 K and a factored moment of 322 K-ft. The column section has a width of 14in.
and a total depth, &, of 20in. Use f/ = 4 ksi, f, = 60 ksi.

Solution

1. The eccentricity ¢ = M,/P, = 322 x 12/483 = 8in. Let d = 20 — 2.5 = 17.5in,, yh =
20 — 5 = 15in., and y = 15/20 = 0.75.

2. Since ¢ = 8in. < d, assume compression-controlled section with ¢ = 0.65.

= 483/0.65 =743 K and M, =322/0.65 = 495.4 K-ft.
743

Kn= —
@ x 14 x 20)

= (.663
Ro =Ky () =0.663 3 ) _ 0265
h 20
3. From the charts of Fig. 11.16, for y = 0.7, p = 0.034. Also, for y = 0.8, p = 0.039. By

interpolation, for y = 0.75, p = 0.0365.
A, = 0.0365 (14 x 20) = 10.22 in.?

Use eight no. 10 bars (A; = 10.161n.2), four on each short side. Use no. 3 ties spaced at 14in.
(Fig. 11.18a).
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Figure 11.16 Load-moment strength interaction diagram for rectangular columns

where f, = 4 ksi,f, = 60 ksi, and {a) y = 0.60, (b) y = 0.70, (¢) y = 0.80,and (d) y =
0.90. Courtesy of American Concrete Institute [7].
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0.90. Courtesy of American Concrete Institute [7].
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Figure 11.18 Column sections of (a) Example 11.11 and (b) Example 11.12.

Example 11.12

Use the charts to determine the column strength, ¢ P,, of the short column shown in Fig. 11.185
acting at an eccentricity e = 12in. Use f/ =5 ksi and f, = 60 ksi.

Solution

1. Properties of the section: H = 24in., yh = 24 — 5 = 19in. (distance between tension and
compression steel). y = 19/24 = 0.79, and p = 8(1.27)/(14 x 24) = 0.03.

2. Since e < d, assume compression-controlled section. Let &, = 0.002, f;/f, = 1.0 and ¢ =
0.65. From the charts of Fig. 11.17, get K, = 0.36 = P,/(5 x 14 x 24), Then P, = 605K.

3. Check assumption for compression-controlled section: For X, = 0.36, R, = K,, (e/h) = 0.36
(12/24) = 0.18. From charts, get p = 0.018 < 0.03. Therefore, P, > 605K (10 use p = 0.003).

4. Second trial: Let &, = 0.0015, f; = 0.0015 (29,000) = 43.5 ksi.
5l =435/60=0725 =003 K,=04
04 =P, /(6§ x14x24) P,=T740K

5. Check assumption: For K, = 0.44, R, = (.44 (12/24) = 0.22. From charts, p = 0.03 as given.
Therefore, P, = 740K.

¢P, =0.65(740) =480 K and oM, = 0.65(740) = 480 K ft
By analysis, ¢ P, = 485 K(which is close to 480 K ft).

11.13 DESIGN OF COLUMNS UNDER ECCENTRIC LOADING

In the previous sections, the analysis, behavior, and the load-interaction diagram of columns
subjected to an axial load and bending moment were discussed. The design of columns is
more complicated, because the external load and moment, P, and M,, are given and it is
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required to determine many unknowns, such as b, i, A;, and A{, within the ACI Code limitations.
It is a common practice to assume a column section first and then determine the amount of
reinforcement needed. If the designer needs to change the steel reinforcement calculated, then
the cross-section may be adjusted accordingly. The following examples illustrate the design of
columns.

11.13.1 Design of Columns for Compression Failure

For compression failure, it is preferable to use A; = Aj for rectangular sections. The eccentricity,
e, is equal to M,/P,. Based on the magnitude of ¢, two cases may develop.

1. When e is relatively very small (say, e < 4in.), a minimum eccentricity case may develop
that can be treated by using Eq. 10.8, as explained in the examples of Chapter 10. Alter-
natively, the designer may proceed as in Case 2. This loading case occurs in the design of
the lower-floor columns in a multistory building, where the moment, M,, develops from
one fioor system and the load, P,, develops from all floor loads above the column section.

2. The compression failure zone represents the range from the axial to the balanced load, as
shown in Figs. 11.3 and 11.11. In this case, a cross-section (bh) may be assumed and then
the steel reinforcement is calculated for the given P, and M,,. The steps can be summarized
as follows:

a. Assume a square or rectangular section (bk); then determine d,d’, and ¢ = M,/P,.

b. Assuming A; = A’, calculate A, from Eq. 11.17 using the dimensions of the assumed
section, and ¢ = 0.65 for tied columns. Let A; = A, and then choose adequate bars.
Determine the actual areas used for A; and A;. Altemnatively, use the ACI charts.

¢. Check that p, = (A; + A})/bh is less than or equal to 8% and greater or equal to 1%. If
pg is small, reduce the assumed section, but increase the section if less steel is required.

d. Check the adequacy of the final section by calculating ¢ P, from statics; as explained
in the previous examples, ¢ P, should be greater than or equal to P,.

e. Determine the necessary ties.
A simple approximate formula for determining the initial size of the column bh or the total
steel ratio p, is
P, = K.bh* or P, =¢P, = $K.bh* (11.24)

where K. has the values shown in Table 11.2 and plotted in Fig. 11.19 for f, = 60 ksi and
A, = A.. Units for K, are in 1b/in.

The values of K, shown in Table 11.2 are approximate and easy to use, because K.
increases by 0.02 for each increase of 1 ksi in f/. For the same section, as the eccentricity,

Table 11.2 Values of K {f, = 60 ksi)

K.
pg (%) f. = 4 ksi f, =5 ksi f, =6 ksi
1% 0.090 0.110 0.130
4% 0.137 0.157 0.177

8% 0.200 0.220 0.240
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Figure 11.19 Values of K; versus pg (%).

e = M,/P,, increases, P, decreases, and, consequently, K. decreases. Thus, K. values represent
a load P, on the interaction diagram between 0.8 P,, and P, as shown in Fig. 11.3 or 11.11.

Linear interpolation can be used. For example, K, = 0.1685 for p, = 6% and f! = 4 ksi.

The steps in designing a column section can be summarized as follows:

U e

Assume an initial size of the column section bh.
Calculate K, = P, /(¢pbh?).

Determine p, from Table 11.2 for the given f/.
Determine A; = A, = p,bh/2 and choose bars and ties.

Determine ¢ P, of the final section by statics (accurate solution), The value of ¢ P, should
be greater than or equal to P,. If not, adjust b% or p,.

Alternatively, if a specific steel ratio is desired, say p, = 6%, then proceed as follows:

1.
2.
3.

Assume o, as required and then calculate e = M, /P,.
Based on the given f; and p,, determine K, from Table 11.2.
Calculate bh? = P, /¢ K ; then choose & and . Repeat steps 4 and 5. It should be checked

that p, is less than or equal to 8% and greater than or equal to 1%. Also, check that ¢
calculated by statics is greater than ¢, = 874,/(87 + f,) for compression failure to control.

Example 11.13

Determine the tension and compression reinforcement for a 16 x 24-in. rectangular tied column to
support P, = 780K and M, = 390K-ft. Use f! =4 ksi and f, = 60 ksi.
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Solution

1. Calculate ¢ = M, /P, = 420(12)/840 = 6.0in. We have # = 24 in; let d = 21.5in. and d' =
2.5in. Because e is less than Zd = 14.38 in., assume compression failure.

2. Assume A; = A, and use Bq. 11.17 to determine the initial value of A{P, = P, /¢ = 780/
0.65 = 1200 K.

bhiy | Al

3he e
(—da—) + 1.18 (d —d’) 4+0.5

For P, = 1200K, ¢ = 6in.,d = 21.5in., d’ = 2.5in., and » = 24in., calculate A, = 6.44 in.”> =
A,. Choose five no. 10 bars (A, = 6.35in.%) for A, and A/ (Fig. 11.20).

3. pg = 26.35)/(16 x 24) = 0.033, which is less than 0.08 and >0.01.

4. Check the section by statics following the steps of Example 11.4 to get

a=1664in. ¢=19.58in. C.=9052K
C, = 6.35(60 — 0.85 x 4) = 3594 K

ﬁ=87(d_c

T = A f; = 6.35(8.55) =543 K
Po=C.+C; —T=12103K> 1200 K

Note that if P, < P,, increase A; and A}, for example, to six no. 10 bars, and check the
section again.
5. Check P, based on moments about A; (Eq. 11.12) to get P, = 1210K.

6. For a balanced section,

87 87 .
Cp = (m) dg = (14_7) 21.5 =127 in.

Because ¢ = 19.58in. > ¢, = 12.7in,, this is a compression failure case, as assumed.
7. Use no. 3 ties spaced at 16in. (Refer to Chapter 10.)

P, =

(11.17)

) = 8.55 ksi

_l_ 2.5"
g% & ® 8 _T_

5#10

5810 _L
2.5"
L i N T
I 16 *)

Figure 11.20 Example 11.13.
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Example 11.14

Repeat Example 11.13 using Eq. 11.24.

Solution

1. The column section is given: 16 x 24in.
2. Determine K, from Eq. 11.24:

K,

Py

780

= 0.13 Ibfin.?

T pbh? T 0.65 x 16 x 242

3. From Table 11.2 or Fig. 11.19, for K. = 0.13, f! = 4 ksi, by interpolation, get p; = 3.5%.

4. Calculate A; = A, = pbh/2 = 0.035(16)(24)/2 = 6.77 in.2 Choose five no. 10 bars (A, =
6.351n.2) for the first trial.

5. Determine ¢ P, using steps 4—7 in Example 11.13. ¢ P, = 1210.3 K > P, = 1200K, so the

section is adequate.

6. If the section is not adequate, or ¢ P, < P,, increase A; and A, and check again to get closer

values.

Example 11.15

Design a rectangular colurn section to support P, = 696K and M, = 465K-ft with a total steel
ratio o, of about 4%. Use f/ =4 ksi, f, = 60 ksi, and b = 18in.

Solution

1. Calculate ¢ = M, /P, = 465(12)/696 = 8in. Assume compression failure (¢ = 0.65) (to be
checked later) and A; = AL

2. For p; = 4% and f! = 4 ksi, K. = 0.137 (Table 11.2).
3. Calculate b42 from Eq. 11.24: P, = ¢ K bh2, or 696 = 0.65(0.137)(18)h%. Thus, h = 20.84 in.

Let A = 22in.

4. Calculate A; = A, = 0.04(18 x 22}/2 =792 in.2 Choose five no. 11 bars (4, = 7.8in2) in
one row for A; and A} (Fig. 11.21). Choose no. 4 ties spaced at 18in.

4

Y

[ LJ [ [ ] [
5#11
5#11

] » ] » a

2.7"

S

2"

D —,

Figure 11.2t Example 11.15.
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5. Check the final section by analysis, similar to Example 11.4, to geta = 13.15in., ¢ = 1547 in.,
C. = 0.85 flab=8048 K, f/ =60 ksi, C; = A((f) — 0.85f)=4415K, f; = 87[(d -
oMel = 2124 ksi, and T = A, f; = 168 K. Also, P, =Cc + (s — T = 1078.3 K and
¢P, = 0.65P, = 701K > 696 K. The section is adequate.

6. For a balanced section,

87 87
= = —1193=1142in = 15. = 19.3 in.
Ch (87+f,) d; (147) 9.3=1142in. < ¢ = 1547 (d =193 in.)

Therefore, this is a compression failure case, as assumed.

11.13.2 Design of Columns for Tension Failure

Tension faiture occurs when P, < P, or the eccentricity ¢ > e, as explained in Section 11.7.
In the design of columns, P, and M, are given, and it is required to determine the column size
and its reinforcement. It may be assumed (as a guide) that tension controls when the ratio of M,
(K-ft) to P, (kips) is greater than 1.75 for sections of 2 < 24in. and 2.0 for & > 24in. In this
case, a section may be assumed, and then A; and A are determined. The ACI charts may be
used to determine p, for a given section with A, = Aj. Note that ¢ varies between 0.65 (0.75)
and 0.9, as explained in Section 11.4.

When tension controls, the tension steel yields, whereas the compression steel may or may
not yield. Assuming initially f/ = f, and A, = A}, Eq. 11.16 (Section 11.6) may be used to
determine the initial values of A; and Al:

_hle-4+9)

A=A = 11.16
5 5 fy(d _- d’) ( )
Because a is not known yet, assume a = 0.4d and P, = ¢P,; then
P,(e —05h+02d
Ay =4, = 1 +024) (11.25)

ST ofyd—d)

The final column section should be checked by statics to prove that ¢ P, > P,. Example 11.16
explains this approach.

When the load P, is very small relative to M,, the section dimensions may be determined
due to M, only, assuming P, = 0. The final section should be checked by statics. This case occurs
in single- or two-story building frames used mainly for exhibition halls or similar structures. In
this case, A’ may be assumed to be less than A;. A detailed design of a one-story, two-hinged
frame exhibition hall is given in Chapter 16.

Example 11.16
Determine the necessary reinforcement for a 16 x 22-in. rectangular tied column to support a factored
load P, = 257 K and a factored moment M,, = 643 K-ft. Use f] =4 ksi and f, = 60 ksi.

Solation

1. Calculate ¢ = M, /P, = 643(12)/257 = 30 in; let d = 22 — 2.5 = 19.5in. Because M, /P, =
500/200 = 2.5 > 1.75, or because e > d, assume tension failure case, ¢ = 0.9 (to be checked
later).
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Figure 11.22 Example 11.16.

2. Assume A; = A and f] = f, and use Eq. 11.25 to determine A, and A}. Let P, = 257.0K,
e =30in, h = 22in., d = 19.5in,, and d’ = 2.5in.
257(30 — 0.5 x 224+ 0.2 x 19.5)
0.9(60)(17.0)

Choose five no. 10 bars (6.35in.2) in one row for each of A, and A, (Fig. 11.22).
3. Check pp = 2(6.35)(16 x 22) = 0.036, which is less than 0.08 and greater than 0.01.
4. Check the chosen section by statics similar to Example 11.3.

a. Determine the value of ¢ using the general equation Aa> + Ba + C = 0 with ¢’ = ¢
+ d — hi2 = 385in, A = 0425 fib=272,B =2A(¢ —d)=1033.6,C = A(f, —
0.85f)(e —d+d'y — A; fye’ = —6941.2. Solve to get a = 5.82 in. and ¢ = a/0.85 =

A=Al = = 6.41 in?

6.85.
b. Check f:
c—d 6.85—25
=87 = —— ) =55 i
fs ( . ) 87( 585 ) 55.26 ksi
Let f/ =57 ksi.

¢. Recalculate a:
C=A(f, —085f)( —d+d)— As fye' = =7351

Solve now for a to get a = 6.13 and ¢ = 7.21in.

d. Check f;:
c—235

c

fi =87 ( ) = 56.83 ksi

Calculate
C. = 0.85(4)(6.13)(16) = 3335 K, C; = A;(fs’ —0.85f]) =6.35(57 - 0.85 x 4)
= 3404 K, T = A, f, = 6.35(60) = 381 K.

e P,=C,+C;, —T=2929K.
5. Determine ¢: &, = [(d; — c)/c] 0.003 = 0.00511. Because &, = 0.00511 > 0.005, ¢ = 0.9,
6. ¢P, = 0.9(292.9) = 263.6K > 257K, the section is adequate.
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11.14 BIAXIAL BENDING

The analysis and design of columns under eccentric loading was discussed earlier in this chapter,
considering a uniaxial case. This means that the load P, was acting along the y-axis (Fig. 11.23),
causing a combination of axial load P, and a moment about the x-axis equal to My, = P,e, or
acting along the x-axis (Fig. 11.24) with an eccentricity e, causing a combination of an axial
load P, and a moment My = Ppe,.

If the load P, is acting anywhere such that its distance from the x-axis is ey and its distance
from the y-axis is e,, then the column section will be subjected to a combination of forces: an
axial load P, a moment about the x-axis = M, = P,e, and a moment about the y-axis = My,
= P,e, (Fig. 11.25). The column section in this case is said to be subjected to biaxial bending.
The analysis and design of columns under this combination of forces is not simple when the
principles of statics are used. The neutral axis is at an angle with respect to both axes, and
lengthy calculations are needed to determine the location of the neutral axis, strains, concrete
compression area, and internal forces and their point of application. Therefore, it was necessary

As

>
<—F-—+—@-
®

Figure 14.23 Uniaxial bending with load P, along the y-axis with eccentricity ey.

I *
o

+P,

>
<= —t — -
P

Figurs 11.24 Uniaxia! bending with load £, along the x-axis, with eccentricity ex.
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Pn— M,
interaction B
curves

Figure 11.26 Biaxial interaction surface.

to develop practical solutions to estimate the strength of columns under axial load and biaxial
bending. The formulas developed relate the response of the column in biaxial bending to its
uniaxial strength about each major axis.

The biaxial bending strength of an axially loaded column can be represented by a three-
dimensional interaction curve, as shown in Fig. 11.26. The surface is formed by a series of uniax-
ial interaction curves drawn radially from the P,-axis. The curve M, represents the interaction
curve in uniaxial bending about the x-axis, and the curve M,y represents the curve in uniaxial
bending about the y-axis. The plane at constant axial load P, shown in Fig. 11.26 represents
the contour of the bending moment M, about any axis.
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Different shapes of columns may be used to resist axial loads and biaxial bending. Cir-
cular, square, or rectangular column cross-sections may be used with equal or unequal bending
capacities in the x- and y-directions.

11.15 CIRCULAR COLUMNS WITH UNIFORM REINFORCEMENT UNDER BIAXIAL BENDING

Circular columns with reinforcement distributed uniformly about the perimeter of the section
have almost the same moment capacity in all directions. If a circular column is subjected to
biaxial bending about the x- and y-axes, the equivalent uniaxial M, moment can be calculated
using the following equations:

My = |/ (Mu)? + (Mo = P (1126)
and
M,
e =,/(ex)? + (ey)? = P (11.27)
where

My = P,e, = factored moment about the x-axis
My = Pye, = factored moment about the y-axis
M, = P,e = equivalent uniaxial factored moment of the section due to M,y and My

In circular columns, a minimum of six bars should be used, and these should be uniformly
distributed in the section.

Example 11.17: Circular Column

Determine the load capacity P, of a 20-in.-diameter column reinforced with 10 no. 10 bars when ¢,
= 4in. and ¢y, = 6in. Use f/ =4 ksi and f, and 60 ksi.

Solution
1. Calculate the eccentricity that is equivalent to uniaxial loading by using Eq. 11.41.

e(for uniaxial loading) = ,/e2 + 2 = V/(4)? + (62 = 7211 in.
2. Determine the load capacity of the column based on e == 7.211 in. Proceed as in Example 11.9:
d=1712in. a=98lin. ¢ =11.54 in. (by trial)
C.=5212K Y C,=2698K Y T=1321K
P,,=CC+ZC,—ZT=650K

3. For a balanced condition,

87 87
" Va ={=2)17.12 =10.13 in.
b (87+f,,) ' (147) m

¢ = 11.54 in. > ¢y, which is a compression failure case.
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11.16 SQUARE AND RECTANGULAR COLUMNS UNDER BIAXIAL BENDING

11.16.1 Bresler Reciprocal Method

Square or rectangular columns with unequal bending moments about their major axes will require
a different amount of reinforcement in each direction. An approximate method of analysis of
such sections was developed by Boris Bresler and is called the Bresler reciprocal method [9,12].
According to this method, the load capacity of the column under biaxial bending can be deter-
mined by using the following expression:

11 1
1.1 _1 (11.28)

or

b (11.29)

where

P, = factored load under biaxial bending

Px = factored uniaxial load when the load acts at an eccentricity e, and e, = 0
P,y = factored uniaxial load when the load acts at an eccentricity e, and ey, =0
P,, = factored axial load when ¢, = ¢, =0

P,,=& an=P_ux Pny=ﬁ pno=i
¢ ¢ ¢ ¢
The uniaxial load strengths Pox, Pyy, and Py, can be calculated according to the equations and
method given earlier in this chapter. After that, they are substituted into Eq. 11.29 to calculate P,.
The Bresler equation is valid for all cases when P, is equal to or greater than 0.10P,,.
When P, is less than 0.10P,,, the axial force may be neglected and the section can be designed
as a member subjected to pure biaxial bending according to the following equations:

Mux Muy
< 1.0 11.30
M. + M, = ( )
or
Mox Mny
+ < 1.0 11.31)
Mox My (
where
My = P,e, = design moment about the x-axis

M,y = P,e; = design moment about the y-axis
M, and M, = uniaxial moment strengths about the x-and y-axes

- Moy = — Moz_y
) ¢ T ¢

The Bresler equation is not recommended when the section is subjected to axial tension loads.
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11.16.2 Bresler Load Contour Method

In this method, the failure surface shown in Fig. 11.26 is cut at a constant value of Py, giving
the related values of M, and My,. The general nondimension expression for the load contour

method is
Mnx )O(l (Mny)CtZ
+ = 1.0 11.32
(Mox Moy (11.32)

Bresler indicated that the exponent « can have the same value in both terms of this expres-
sion (& = @»). Furthermore, he indicated that the value of ¢ varies between 1.15 and 1.55 and
can be assumed to be 1.5 for rectangular sections. For square sections, o varies between 1.5 and
2.0, and an average value of & = 1.75 may be used for practical designs. When the reinforcement
is uniformly distributed around the four faces in square columns, o may be assumed to be 1.5.

+ = 1.0 (11.33
(322 Moy )

The British Code assumed ¢ = 1.0, 1.33, 1.67, and 2.0 when the ratio P,/1.1P,, is equal
to 0.2, 0.4, 0.6, and > 0.8, respectively.

11.17 PARME LOAD CONTOUR METHOD

The load contour approach, proposed by the Portland Cement Association (PCA), is an extension
of the method developed by Bresler. In this approach, which is also called the Parme method
[11], a point B on the load contour (of a horizontal plane at a constant P, shown in Fig. 11.26)
is defined such that the biaxial moment capacities M, and M,y are in the same ratio as the
uniaxial moment capacities Mo, and My; that is,

M nx Mox Mnx Mny

= or =—=8

Mny M()y MOX MO)'
The ratio 8 is shown in Fig. 11.27 and represents that constant portion of the uniaxial moment
capacities that may be permitted to act simultaneously on the column section.

For practical design, the load contour shown in Fig. 11.27 may be approximated by two

straight lines, AB and BC. The slope of line AB is (1 — B)/8, and the slope of line BC
is /(1 — B). Therefore, when

Muy M
Moy Mox
then
Mny Mnx ( l - ‘8)
Moy | Mo \ P (1134)
and when
My _ Mo
Moy Mox
then
Mnx Mny (1 - ;3)
+ =1 11.35
Mox T Moy \ B (11.35)
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Figure 11.27 Nondimensional load contour at constant P, (straight-line approxi-
mation).

The actual value of 8 depends on the ratio P,/ P, as well as the material and properties of the
cross-section. For lightly loaded columns, g will vary from 0.55 to 0.7. An average value of 8
= (.65 can be used for design purposes.

When uniformly distributed reinforcement is adopted along all faces of rectangular ¢columns,
the ratio Moy/Mx is approximately b/h, where b and h are the width and total depth of the
rectangular section, respectively. Substituting this ratio in Eqs. 11.34 and 11.35,

b 1-—
My + Mpx (;3—) (Tﬂ) ~ Moy (11.36)
and
h 1—
My + My (g) (Tﬂ) & Mox (11.37)
For 8 = 0.65 and 2/b = 1.5,
Moy ~ Mpy + 0.36M (11.38)
and
Moy =~ My, + 0.80Myy (11.39)

From this presentation, it can be seen that direct explicit equations for the design of
columns under axial load and biaxial bending are not available. Therefore, the designer should
have enough experience to make an initial estimate of the section using the values of P,, My
and My, and the uniaxial equations and then check the adequacy of the column section using
the equations for biaxial bending or by computer.

Example 11.18

The section of a short tied column is 16 x 24in. and is reinforced with eight no. 10 bars distributed
as shown in Fig, 11.28. Determine the design load on the section ¢ P, if it acts at ¢, = 8in. and ¢,
= 12in. Use f/ =5 ksi, f, = 60 ksi, and the Bresler reciprocal equation.
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Figure 11.28 Example 11.18: biaxial load, Bresler method: P, = 421.5K.

Solution

1. Determine the uniaxial load capacity Ppx about the x-axis when e, = 12in. In this case, b
= 16in., h = 24in.,, d = 21.5in, & = 2.5in,, and A; = A} = 3.81 in.? The solution will
be performed using statics following the steps of Examples 11.2 and 11.4 for balanced and
compression-control conditions.

a. For the balanced condition,

87 87
- d=[2Y215=1272in.
C (87 ¥ fy) (147) m

ap = 0.80(12.72) = 10.18 in. (81 =038 whenfc' = 5 ksi)
c—d

C.=085flab=6923K fi =87 ( ) = 69.9 ksi

Then f; = 60 ksi.
C; = Al(fy —085f)=2124K T =A,f,=2286K
Py =Ce+C—T =676.1K
Py = 0.65P,; =439.5K (¢ = 0.65 for & = 0.002)

b. For ey, = 12in. < d = 21.5in., assume compression failure and follow the steps of Example
11.4 to get a = 10.65in. and ¢ = @/0.8 = 13.31in. > Cp = 12.72in. Thus, compression
controls. Check )

c—d

f;=87( )=70ksi>fy



Chapter 11 Members in Compression and Bending

Therefore, f] = 60 ksi. Check
d-c

fs =87 ( ) = 53.53 ksi < 60 ksi

Calculate forces: C. = 0.85fab=T7242K,C; = AL(f, —085f)=2124K, T = A, f;
= 20395K, Pox = C. + C; — T = T7326K. Py > Py, so this is a compression failure
case as assumed.

& = (d ~ c) 0.003 = 0.00185
£ <0002 ¢ =0.65
P = ¢pPux = 4762 K
¢. Take moments about A using Eq. 11.11,
d”" =95 in. ¢ =21.5in.
P = é [cc (¢- %) +Cy(d —a”)] —7325K

2. Determine the vniaxial load capacity P,, about the y-axis when ¢, = 8in. In this case, b =
24in., A = 16in., d = 13.5in,, &' = 2.5in,, and A; = A, =381 in.2 The solution will be
performed using statics, as explained in step 1.

a, Balanced condition:

87 87
. d={>}135=799in. = 0.8(7.99) = 6.39 in.
“ (87 + f,) (147) me @ (7.99) "

c=d
¢

C. =0.85f/ab=6518K fi= 87( ) = 59.8 ksi

Co=AL(f/ ~085f)=211.6 K T =A4A,f, =2286K

In a balanced load, Pyy = C. + C; — T = 634.8K, ¢ Pyy = 0.65 Py, = 4444K.

b. For ¢, = 8in., assume compression failure case and follow the steps of Example 11.4 to
get a = 6.65in. and ¢ = g/0.8 = 8.31in. > ¢, (compression failure). Check

c—d

[

f;.—.s7( ):60.8ksi

Therefore. f] = 60 ksi. Check

=87 (d: C) = 54.3 ksi

Calculate forces: C, = 0.85 flab = 6783 K, C; = A[(60 —0.85f)) =2124 K, T = A f;
= 2069K, Ppy = C. + C; — T = 683.3K, and ¢Pyy = P,y = 0.65 Py, = 444.5K.
Because P,y > Pyy, compression failure occurs, as assumed.

£ = (d - C) 0.003 = 0.00187
[

& < 0.002 ¢ =0.65
Puy =¢Pny =444.5 K
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¢. Take moments about A; using Eq. 11.11:
d’=55in. ¢ =135in

Poy = 217 [ce(¢-3)+Ct@- )] =684 K

3. Determine the theoretical axial load Fy;:
P, =085f/A; + Aa(fy —0.85f))
= 0.85(5)(16 x 24) + 10.16(60 — 0.85 x 5) = 21984 K ¢ Py = 0.65P, = 1429 K

4. Using the Bresler equation (Eq. 11.42), multiply by 100:

100 100 100 100

= - = 0.365
P, 476.2 + 444.5 1429

P,
P, = d P,=—= .
=274 K an 0.65 4215 K

Notes:

1.

Approximate equations or the ACI charts may be used to calculate P, and P,y. However,
since the Bresler equation is an approximate solution, it is preferable to use accurate
procedures, as was done in this example, to calculate Py, and P,,. Many approximations
in the solution will produce inaccurate results. Computer programs based on statics are
available and may be used with proper checking of the output.

In Example 11.18, the areas of the corner bars were used twice, once to calculate Py
and once to calculate P,y. The results obtained are consistent with similar solutions. A
conservative solution is to use half of the comer bars in each direction, giving A; = A} =
2(1.27) = 2.54 in.2, which will reduce the values of Py and Pyy.

Example 11.19

Determine the nominal design load, P,, for the column section of the previous example using the
Parme load contour method; see Fig. 11.29.

Solution

1. Assume 8 = 0.65. The uniaxial load capacities in the direction of x- and y-axes were calculated
in Example 11.18:

Px=4762K P, =4445K Py =7326K P, =6838K
2. The moment capacity of the section about the x-axis is
Moy = Pox - €y = 732.6 x 12
The moment capacity of the section about the y-axis is
M,, = Pyye, = 683.8 x 8 K-in.

3. Let the nominal load capacity be P,. The nominal design moment on the section about the
x-axis is
Mnx = Pney = Pn X 12 K'in.

and that about the y-axis is
My = Pyex =8P,
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Figure 11.29 Example 11.19: biaxial load, PCA method: #, = 456 K.

4, Check if Muy/Moy > Mnx/Moy:
8P, 2P,
683.8 x 8 7326 x 12
Then Myy/Moy > Myx/M . Therefore, use Eq. 11.48.
. 8P, N 12P, (1 - 9.65) _
683.8x8 7326x 12 0.65

or 1.463 x 107°P, > 1.365 x 107°P,

5

Multiply by 1000 to simplify calculations.
1.463P, +0.735P, = 1000 P, =455K
P,=¢P, =29575K (¢ =0.65)

Note that P, is greater than the value of 274 K obtained by the Bresler reciprocal method
(Eg. 11.42} in the previous example by about 8%.

11.18 EQUATION OF FAILURE SURFACE

A general equation for the analysis and design of reinforced concrete short and tied rectangular
columns was suggested by Hsu [16]. The equation is supposed to represent the failure surface
and interaction diagrams of columns subjected to combined biaxial bending and axial load, as
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shown in Fig. 11.26. The axial load can be compressive or a tensile force. The equation is

presented as follows:
(’D"_P")+(M“")L5+(M"’)]’5—-10 (11.40)
Po— Py My Mby . '

P, = nominal axial strength (positive if compression and negative if tension)
for a given eccentricity

P, = nominal axial load (positive if compression and negative if tension) at
zero eccentricity

P, = nominal axial compressive load at balanced strain condition
Mqx, My, = nominal bending moments about the x- and y-axes, respectively

My, Myy = nominal balanced bending moments about the x- and y-axes, respectively,
at balanced strain conditions

where

To use Eq. 11.4, all terms must have a positive sign. The value of P, was given earlier
(Eq. 10.1):

P, =0385f/(A, — Ag) + At - fy (11.41)

The nominal balanced load, Py, and the nominal balanced moment, M, = Pye;,, were given in
Eq. 11.6 and 11.7, respectively, for sections with tension and compression reinforcement only.
For other sections, these values can be obtained by using the principles of statics.

Note that the equation of failure surface can also be used for uniaxial bending representing
the interaction diagram. In this case, the third term will be omitted when e, = 0, and the second
term will be omitted when e, = 0.

When ¢, = 0 (moment about the x-axis only),

Pn - Pb Mnx 13
=10 11.42
(P,,—P;,)+(M.,x) ( )
(This is Eq. 11.18, given earlier.) When e, = 0 (moment about the y-axis only),
P, —P, Moy 1.5
= 1.0 11.43
(F==)+ (&) a1

Applying Eq. 11.4 to Examples 11.2 and 11.4, P, = 453.4 K, My, = 6810.8 K-in,, ¢y = 10in.,
and P, = 0.85(4)(14 x 22 — 8) 4+ 8(60) = 1500 K.

P, — 4534 0P\ _ |,
1500 —453.4 ~ \6810.8/

Multiply by 1000 and solve for P,:
(0.9555P, — 433.2) 4+ 0.05626 P!> = 1000
0.9555P, + 0.05626 P} = 1433.2
P, = 611K, which is close to that obtained by analysis.
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Example 11.20

Determine the nominal design load, P,, for the column section of Example 11.18 using the equation
of failure surface.

Solution
1. Compute

Pp = O.SSfZ(Ag — Ast) + Astf}'
= 0.85(5)(16 x 24 — 10.16) + (10.16 x 60)
=21984 K

2. Compute P, and M, using Eqs. 11.6 and 11.8 about the x- and y-axes, respectively.
a. About the x-axis,

_ 84, $7(2L5)
87+ f, 87460
ape = 0.8(12.72) = 10.18 in.

_a"
f;=87(c

d’=95in A;= A, =381 in?

Py = 0.85 faxhb + AL(fy — 0.85f)) — A, f,
= 0.85(5)(10.18)(16) 4+ 3.81(60 — 0.85 x 5) — 3.81(60)
=676.1 K

Abx =12.72 in.

) =699 ksi f =60 ksi

My = 0.85(5)(10.18)(16) (21.5 - lozﬁ - 9.5)

+3.81(60 — 0.85 x 5) x (21.5 — 2.5 — 9.5) + 3.81(60)(9.5)
= 8973 K.in. = 747.8 K-ft

b. About the y-axis: d; = 13.51n,, d;’ =5.5i1n, A; = A, =381 in.2

87(13.5)

= 21022 799 in.
87 + 60 n

be

c—d

apy = 0.8(7.99) = 6.39 in. f/ =87 ( ) =59.8 ksi

Pyy = 0.85(5)(6.39)(24) + 3.81(59.8 — 0.85 x 5) — 3.81(60)

=6348K

Mypy = 0.85(5)(6.39)(24) (13.5 - ?5.5)

+ 3.81(59.8 — 0.85 x 5)(13.5 — 2.5 — 5.5) + 3.81(60)(5.5)
=55573K-in. =463 K- fi



11.19

St Example

3. Compute the nominal balanced load for biaxial bending, Pyy:
Mny P n' e X e X 8

tana—M—m=m=()—y—ﬁ a =337
Pn—Py __AP, 67616348 AP
920° 90° — «° 90 90 — 33.7
AP, =258 K

Py, = Poy + AP, = 6348 +25.8 = 660.6 K
4. Compute P, from the equation of failure surface:
P, — 6606 (P,, x 12)"5 N (Pn x 8)"5 10
2198.4 — 660.6 8973 5557.3
Multiply by 1000 and solve for P:

(0.65P, — 429.85) + 0.0489 P> + 0.0546P) = 1000
0.65P, + 0.1035P)° = 1429.85

By trial. P, = 487K. Because P, < Py, it is a tension failure case for biaxial bending, and

thus P, = —2198.4K (to keep the first term positive).

. P~ +0.0546P,° =
1000(—2198.4—660.9)+00489 .+ M 1000

0.35P, +0.1035P)% = 769.1
P,=49K and P, =065P, =2788K

Note: The strength capacity, ¢ P,, of the same rectangular section was calculated using the
Bresler reciprocal equation (Example 11.18), Parme method (Example 11.19), and Hsu method
(Example 11.20) to get ¢ P, = 421.5K, 455K, and 429K, respectively. The Parme method
gave the highest value for this example.

11.19 SI EXAMPLE

Example 11.21

Determine the balanced compressive forces Py, €5, and My for the section shown in Fig. 11.30. Use

f.=130MPa and f, = 400MPA (b = 350mm, d = 490 mm).
Solution

1. For a balanced condition, the strain in the concrete is 0.003 and the strain in the tension steel

is &y, = fy/E; = 400/200,000 = 0.002, where £, = 200,000 MPa.
Ay = Al = 4(700) = 2800 mm®
2. Locate the neutral axis depth, ¢3:

600 d, (wheref, is in MPa)
= —_— 1€
Cp 600+ 7, , (wheref, isin a

600
{22} (400) = 288

(600 n 420) (490) mm
a, = 0.85¢, = 0.85 x 288 = 245 mm
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0.85f;
Cp = 288 mm Po ‘

60
mm Pb
215 mm l

- —+

] 00 | C, = 1048.6 kN
} Tb;—*—"*" " —
£ E 4#|30 C. = 21866 kN
£ v | PC !
2 3 T+ = I S S

¥ 4430 275 mm i— a,, = 245 mm
l %L_,,.H_..._.____ ——————— ———a= 7= 1120 kN

; ¢, = 0.0021
o = t o 350 ——=-
215 mm 4 mm

mm

Figure 11.30 Example 11.21.

3. Check if compression steel yields. From the strain diagram,

e, c—d  288-60
0003~ ¢ 288
8; = 0.00238 > ¢y

Therefore, compression steel yields.
4, Calculate the forces acting on the section:

C.=0.85fab= 083 x 30 x 245 x 350 = 2186.6 kN

1000
T = A, f, = 2800 x 0.400 x 1120 kN

2
C, = Al (f, — 0.85f]) = %(400 — 0.85 x 30) = 1048.6 kN

5. Calculate P, and M
Po=C.+C;, —T=21152 kN
From Eq. 11.10,

My = Poes = C. (d - % - d”) +Cd—d —d")y+Td"
The plastic centroid is at the centroid of the section and ¢ = 215 mm.

24
My = 2186.6 (490 - 75 - 215) + 1048.6(490 — 60 — 213)

+1120 x 215 —799.7 kN - m
M, 7997
TP, 21152

€p = 0.378 m = 378 mm
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SUMMARY

Sections 11.1-11.3

1. The plastic centroid can be obtained by determining the location of the resultant force
produced by the steel and the concrete, assuming both are stressed in compression to fy
and 0.85 f/, respectively.

2. On a load—moment interaction diagram the following cases of analysis are developed:

a. Axial compression, P,
b. Maximum nominal axial load, P, ynax == 0.8 P, (for tied columns) and P, pn.x = 0.85P,

(for spiral columns)

Compression failure occurs when P, > P, ore < ¢

Balanced condition, P, and M,

Tension failure occurs when P, < P, ore > ¢

Pure flexure

- B0

Section 11.4

1. For compression-controlled sections, ¢ = 0.65, while for tension-controlled section,
¢ = 0.9.
2. For the transition region,
250
3
¢ =0.75 4+ (s, — 0.002)(50) (for spiral columns)

¢ =0.65 + (g, — 0.002) ( ) (for tied columns)

Section 11.5

For a balanced section,

874,
T8+ f,
B = 0.85 forf! < 4 ksi
Py=C.+C;—T =085flab+ A,(f, —0.85f) — As fy

M, = Pye, = C, (d — g —d”) +Td +Cod —d —d"

Cp and ap = ,Blcb

M,
ey = —
b 7,
Section 11.6

The equations for the general analysis of rectangular sections under eccentric forces are sum-
marized.
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Sections 11.7-11.8

Examples for the cases when tension and compression controls are given.

Sections 11.9-11.10

Examples are given for the interaction diagram and for the case when side bars are used.
Section 11.11

This section gives the load capacity of circular columns. The cases of a balanced section when
compression controls are explained by examples.

Section 11.12
This section gives examples of the analysis and design of columns using charts.
Section 11.13
This section gives examples of the design of column sections.
Sections 11.14-11,18
Biaxial bending:
1. For circular columns with uniform reinforcement,

My = (Mu)? + (M €= (e + (ey)?

2. For square and rectangular sections,

LI
P, P Py Py

Mx Mny
_— <10
Mox T Moy =

3. In the Bresler load contour method,
M., 1.5 My 1.5
+ =1.0
Moy Moy
4, In the PCA load contour method,

i+ (1) (152) =,
s (1) (152) = b

5. Equations of failure surface method are given with applications.
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PROBLEMS

Note: For all problems, use f, = 60 ksi, d' = 2.5in., and A; = A; where applicable. Slight variation in
answers are expected.

11.1 (Rectangular sections: balanced condition) For the rectangular column sections given in Table 11.3,
determine the balanced compressive load, P, the balanced moment, M, and the balanced eccen-
tricity, ep, for each assigned problem. (Answers are given in Table 11.3.} (¢ = 0.65.)

11.2 (Rectangular sections: compression failure) For the rectangular column sections given in Table 11.3,
determine the load capacity, Py, for each assigned problem when the eccentricity is e = 6 in. (Answers
are given in Table 11.3.)

11.3 (Rectangular sections: tension failure) For the rectangular column sections given in Table 11.3,
determine the load capacity, P,, for each assigned problem when the eccentricity is ¢ = 24in.
(Answers are given in Table 11.3.)

11.4 (Rectangular sections with side bars) Determine the load capacity, ¢ P,, for the column section shown
in Fig. 11.31 considering all side bars when the eccentricity is ¢, = 8in. Use f/ =4 ksi and f, =
60 ksi. (Answer: 658 K.)

11.5 Repeat Problem 11.4 with Fig. 11.32. (Answer: 660 K.)

11.6 Repeat Problem 11.4 with Fig. 11.33. (Answer: 368 K.)

11.7 Repeat Problem 11.4 with Fig. 11.34. (Answer: 822 K.)



Chapter 11 Members in Compression and Bending

Table 11.3 Answers for Problems 11.1-11.3

Answers to Problems

11.1 11.2 11.3
Number  f;(ksi) b (in.) hiin}) As=A; Py ép Pp{e=6in) Pple=24in)
(a) 4 20 20 6no. 10 572 174 1193 395
{b) 4 14 14 4 no. 8 249 109 407 93
(c) 4 24 24 8no. 10 848 201 1860 696
(d) 4 18 26 6no. 10 698 206 1528 591
(e) 4 12 18 4no.9 305 15.2 592 176
) 4 14 18 4 no. 10 354 16.2 715 221
(g) 5 16 16 5 no. 10 406 153 807 228
(h) 5 18 18 5no. 9 540 12.5 930 230
(i) 5 14 20 4 no. 9 476 134 847 221
() 5 16 22 4 no. 10 606 14.8 1140 327
k) 6 16 24 5 no. 10 746 16.8 1532 476
H 6 14 20 4 no. 9 534 12.8 944 226
2.5" 3.67"
2.5" //
,L |<—>|+L>|<—>| fe—2.5%
A T ° ®
6.33" : 12410

+ ® +£_ e | bars
V

T e———— [ ———>
5

Figure 11.31 Problem 11.4,

11.8 (Design of rectangular column sections) For each assigned problem in Table 11.4, design a rectangular

column section to support the factored load and moment shown. Determine A, A, and /% if not given;
then choose adequate bars considering that A; = A[. The final total steel ratio, pg, should be close
to the given values where applicable. Check the load capacity, ¢ F,, of the final section using statics
and equilibrium equations. One solution for each problem is given in Table 11.4,

11.9 (ACI charts) Repeat Problems 11.2b, 11.2d, 11.2f, 11.8a, 11.8¢, and 11.8¢ using the ACI charts.
11.10 (Circular columns: balanced condition) Determine the balanced load capacity, ¢ P», the balanced

moment, ¢M;, and the balanced eccentricity, ¢, for the circular tied sections shown in Fig. 11.35.
Use f; =4 ksi and f, = 60 ksi.
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Table 11.4 Problem 11.8

One Solution
Number f.(ksl) P, {K) M, (K-ft) b (in.) h (in.) pg %o h (in.) As =A;
(a) 4 530 353 16 — 4.0 20 S5no. 10
(b) 4 410 205 14 18 — 18 5 no. 8
(¢) 4 480 640 18 —_ 3.5 24 6 no. 10
(d) 4 440 440 20 20 — 20 6 no. 9
(e) 4 1125 375 20 24 — 24 6 no. 10
§3) 4 710 473 18 —_ 30 24 5 no. 10
(g S 300 300 14 — 2.0 20 3n0 9
(h) 5 1000 665 20 26 — 26 6 no. 10
@) 6 590 197 14 — 2.0 18 2 no. 10
G 6 664 332 16 20 == 20 4 0.9

¥

Figure 11.36 Problem 11.11.

11.11 Repeat Problem 11.10 for Fig. 11.36.
11.12 Repeat Problem 11.10 for Fig. 11.37.
11.13 Repeat Problem 11.11 for Fig. 11.38.

11.14 (Circular columns) Determine the load capacity, ¢ P,, for the circular tied column sections shown
in Figs. 11.35 through 11.38 when the eccentricity is ¢, = 6in. Use f! =4 ksi and f, = 60 ksi.
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Dia. = 20"
10 # 10 bars

Figure 11.38 Problem 11.13.

11.15 (Biaxial bending) Determine the load capacity, P,, for the column sections shown in Figs. 11.31
through 11.34 if e, = 8in. and e, = 6 ini. using the Bresler reciprocal method. Use f/(4 ksi) and f,
= 60 ksi. For each problem the values of Pox, Pay, Py (Pox, M), and (Ppy, Myy) are as follows:

a. Figure 11.31: 952K, 835K, 2168K (571 K, 792K ft}, (536 K, 483 K-ft)
b. Figure 11.32: 930 K, 1108 K, 2505 K (577 K, 742 K-ft), (577 K, 742 K-ft)
¢. Figure 11.33: 558 K, 495 K, 1408 K (408 K, 414 K-ft), (368 K, 260 K-ft)
d. Figure 11.34: 1093 K, 1145 K, 2538 K (718 K, 865 K-ft), (701 K, 699 K-ft)
11.16 Repeat Problem 11.15 using the Parme method.
11.17 Repeat Problem 11.15 using the Hsu method.
11.18 For the column sections shown in Fig. 11.31, determine
a. The uniaxial load capacities about the x- and y-axes, Py, and Py using e, = 6in. and ¢, = 6in.

b. The uniaxial balanced load and moment capacities about the x- and y-axes, Puz, Pvy, Mux,
and Myy.
¢. The axial load, Py,.

d. The biaxial load capacity P, when e, = e, = 6in., using the Bresler reciprocal method, the Hsu
method, or both.

11.19 Repeat Problem 11.18 for Fig. 11.32.
11.20 Repeat Problem 11.18 for Fig. 11.33.
11.21 Repeat Problem 11.18 for Fig. 11.34.



CHAPTER 1 2
SLENDER COLUMNS

fee | QU e
Columns in a high-rise building, Toronto,
Canada.

12.1 INTRODUCTION

In the analysis and design of short columns discussed in the previous two chapters, it was
assumed that buckling, elastic shortening, and secondary moment due to lateral deflection had
minimal effect on the ultimate strength of the column; thus, these factors were not included in
the design procedure. However, when the column is long, these factors must be considered. The
extra length will cause a reduction in the column strength that varies with the column effective
height, width of the section, the slenderness ratio, and the column end conditions.
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Y y L
i r, = 0.288h r.=r,=025D
r, = 0.288b
Ao X4 L X x | H X
Yy
B y
6 ot [ ——————

Figure 12.1 Rectangular and circular sections of columns, with radius of gyration r.

A column with a high slenderness ratio will have a considerable reduction in strength,
whereas a low slenderness ratio means that the column is relatively short and the reduction in
strength may not be significant. The slenderness ratio is the ratio of the column height, I, to the
radius of gyration, r, where r = I/A, I being the moment of inertia of the section and A the
sectional area.

For a rectangular section of width b and depth & (Fig. 12.1), I, = bh*/12 and A = bh.
Therefore, r, = {/A = 0.288k (or, approximately, r, = 0.3k). Similarly, I, = hb*/12 and r, =
0.288b (or, approximately, 0.3b). For a circular column with diameter D, I, = I, = 7 D*/64
and A = 5 D%4; therefore, ry = ry, = 0.25D.

In general, columns may be considered as follows:

1. Long with a relatively high slenderness ratio, where lateral bracing or shear walls are
required.

2. Long with a medium slenderness ratio that causes a reduction in the column strength.
Lateral bracing may not be required, but strength reduction must be considered.

3. Short where the slenderness ratio s relatively small, causing a slight reduction in strength.
This reduction may be neglected, as discussed in previous chapters.

12.2 EFFECTIVE COLUMN LENGTH (Ki,)

The slenderness ratio {/r can be calculated accurately when the effective length of the column
(K1,) is used. This effective length is a function of two main factors:

1. The unsupported length, /,, represents the unsupported height of the column between two
floors. It is measured as the clear distance between slabs, beams, or any structural member
providing lateral support to the column. In a flat slab system with column capitals, the
unsupported height of the column is measured from the top of the lower floor slab to
the bottom of the column capital. If the column is supported with a deeper beam in one
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direction than in the other direction, I, should be calculated in both directions (about the
x- and y-axes) of the column section. The critical (greater) value must be considered in
the design.

2. The effective length factor, K, represents the ratio of the distance between points of zero
moment in the column and the unsupported height of the column in one direction. For
example, if the unsupported length of a column hinged at both ends, on which sidesway
is prevented, is /,, the points of zero moment will be at the top and bottom of the
column—that is, at the two hinged ends. Therefore, the factor K = [/, is 1.0. If a
column is fixed at both ends and sidesway is prevented, the points of inflection (points of §
moment) are at [,/4 from each end. Therefore, K = 0.51,/I, = 0.5 (Fig. 12.2). To evaluate
the proper valve of K, two main cases are considered.

When structural frames are braced, the frame, which consists of beams and columns,
is braced against sidesway by shear walls, rigid bracing, or lateral support from an adjoining
structure. The ends of the columns will stay in position, and lateral translation of joints is
prevented. The range of K in braced frames is always equal to or less than 1.0. The ACl
Code, Section 10.10, recommends the use of K = 1.0 for braced frames.

When the structural frames are unbraced, the frame is not supported against sidesway,
and it depends on the stiffness of the beams and columns to prevent lateral deflection. Joint
translations are not prevented, and the frame sways in the direction of lateral loads. The
range of K for different columns and frames is given in Fig. 12.2, considering the two
cases when sidesway is prevented or not prevented.

12,3 EFFECTIVE LENGTH FACTOR (K)

The effective length of columns can be estimated by using the alignment chart shown in Fig. 12.3
[10). To find the effective length factor K, it is necessary first to calculate the end restraint factors
W4 and ¥ p at the top and bottom of the column, respectively, where

L E1/1.of columns

V= T EI/1Iof beams (2.
(both in the plane of bending) where /. = length center to center of joints in a frame and
I = span length, center to center of joints. The ¥ factor at one end shall include all columns
and beams meeting at the joint. For a hinged end, ¥+ is infinite and may be assumed to be
10.0. For a fixed end, ¥ is zero and may be assumed to be 1.0. Those assumed values may be
used because neither a perfect frictionless hinge nor perfectly fixed ends can exist in reinforced
concrete frames.

The procedure for estimating X is to calculate v 4 for the top end of the column and v 3 for
the bottom end of the column. Plot ¥4 and ¥ p on the alignment chart of Fig. 12.3 and connect
the two points to intersect the middle line, which indicates the K-value. Two nomograms are
shown, one for braced frames where sidesway is prevented, and the second for unbraced frames,
where sidesway is not prevented. The development of the charts is based on the assumptions
that (1) the structure consists of symmetrical rectangular frames, (2) the girder moment at a joint
is distributed to columns according to their relative stiffnesses, and (3) all columns reach their
critical loads at the same time.
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Long columns in an office building.

12.4 MEMBER STIFFNESS (EJ)

The stiffness of a structural member is equal to the modulus of elasticity E times the moment of
inertia I of the section. The values of E and / for reinforced concrete members can be estimated
as follows:

1. The modulus of elasticity of concrete was discussed in Chapter 2; the ACI Code gives the
following expression:

E.=33w'"3/f/ or E.=57,000 VIl (psi)

for normal-weight concrete. The modulus of elasticity of steel is E; = 29 x 10® psi.
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Figure 12.2 (a) Effective lengths of columns and length factor K and (b) effective
lengths and K for portal columns.
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Figure 12.3 Alignment chart.

2. For reinforced concrete members, the moment of inertia / varies along the member, depend-

ing on the degree of cracking and the percentage of reinforcement in the section considered.

To evaluate the factor v, EI must be calculated for beams and columns. For this
purpose, I can be estimated as follows (ACI Code, Section 10.4.4.1):

a. Compression members:
Columns I = 0.701,
Walls—Uncracked / = 0.701,

—(Cracked) I = 0.351,
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b. Flexural members:
Beams I = 0.35],

Flat plates and flat slabs 7 = 0.25/,

Alternatively, the moments of inertia of compression and flexural members, / shall be
permitted to be computed as follows:

¢. Compression members:
Ay M, P, )
I=1080+25—|[1—- —-05—) I, <0875/ 12.2
( Ag)( pa~0p,) =08 (122
where P, and M, shall be determined from the particular load combination under
consideration, or the combination of P, and M, determined in the smallest value of 7, [
need not be taken less than 0.35/,.

d. Flexural members:

by
I = (0.10+ 25p) (1.2 - 0.2?") I, < 0.51, (12.3)

where I, = the moment of inertia of the gross concrete section about the centroidal
axis, neglecting reinforcement.

p = ratio of A;/bd in cross section

The moment of inertia of T-beams should be based on the effective flange width defined
in Section 3.15.2. It is generally sufficiently accurate to take /, of a T-beam as two times
the I, of the web, 2Abh3112).

If the factored moments and shears from an analysis based on the moment of inertia of
a wall, taken equal to 0.70/,, indicate that the wall will crack in flexure, based on the
modulus of rupture, the analysis should be repeated with I = 0.35], in those stories
where cracking is predicted using factored loads.

The values of the moments of inertia were dervied for nonprestressed members. For
prestressed members, the moments of inertia may differ depending on the amount,
location, and type of the reinforcement and the degree of cracking prior to ultimate.
The stifness value for prestressed concrete members should include an allowance for
the variabilty of the stifnesses.

For continuous flexural members, / shall be permitted to be taken as the average of
values obtained from Eq. (12.3) for the critical positive and negative moment sections.
I need not be taken less than 0.25/7,.

The cross-sectional dimensions and reinforcement ratio used in the above formulas shall
be within 10 percent of the dimensions and reinforcement ratio shown on the design
drawings or the stiffness evaluation shall be repeated.

3. Area, A = 1.0A; (gross-sectional area).

4, The moments of inertia shall be divided by (1 + Bans) When, sustained lateral loads act on
the structure or for stability check, where

maximum factored axial sustained load  1.2D (sustained) <

Bans = 1.0 (124

maximum factored axial load T 12D+16L
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125 LIMITATION OF THE SLENDERNESS RATIO (K/,/r)

12.5.1 Nonsway Frames

The ACI Code, Section 10.10.1 recommends the following limitations between short and long
columns in braced (nonsway) frames:

1. The effect of slenderness may be neglected and the column may be designed as a short
column when
K, 12M
<34 =1
r M,
where M| and M, are the factored end moments of the column and 3 is greater than M.

2. The ratio M,/M, is considered positive if the member is bent in single curvature and
negative for double curvature (Fig. 12.4).

3. The term (34 — 12M,/M;) shall not be taken greater than 40.
4. If the factored column moments are zero or ¢ = M,/ P, < émin, the value of M should be
calculated using the minimum eccentricity given by ACI Code Section 10.10.6.5:
emin = (0.6 +0.034) (inch) (12.6)
M, = P,(0.6 4+ 0.03h) (12.7)

where M, is the minimum moment. The moment M, shall be considered about each axis
of the column separately. The value of K may be assumed to be equal to 1.0 for a braced
frame unless it is calculated on the basis of EI analysts.

(12.5)

Mip My, P

o) ¥

My MZbd_i 4‘ :

|

P
Single curvature Double curvature P — A effect
M= Ple + A)

(a) (b) (©

Figure 12,4 Single and double curvatures.
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5. It shall be permitted to consider compression members braced against sidesway when
bracing elements have a total stiffness, resisting lateral movement of that story, of at least
12 times the gross stiffness of the columns within the story.

12.5.2 Sway Frames

In compression members not braced (sway) against sidesway, the effect of the slendemess ratio
may be neglected when

i
Kl <22 (ACI Code Section 10.10.1) (12.8)

12.6 MOMENT-MAGNIFIER DESIGN METHOD

12.6.1 Introduction

The first step in determining the design moments in a long column is to determine whether the
frame is braced or unbraced against sidesway. If lateral bracing elements, such as shear walls
and shear trusses, are provided or the columns have substantial lateral stiffness, then the lateral
deflections produced are relatively small and their effect on the column strength is substantially
low. It can be assumed that a story within a structure is nonsway if

0= 2P, Ay
Vuslc

where £ P, and V,; are the story total vertical load and story shear, respectively, and Ay is the
first-order relative deflection between the top and bottom of the story due to V5. The length I,
is that of the compression member in a frame, measured from center to center of the joints in
the frame.

In general, compression members may be subjected to lateral deflections that cause sec-
ondary moments. If the secondary moment, M’, is added to the applied moment on the column,
M,, the final moment is M = M, + M’. An approximate method for estimating the final moment
M is to multiply the applied moment M, by a factor called the magnifving moment factor §,
which must be equal to or greater than 1.0, or M., = M, and § > 1.0. The moment M, is
obtained from the elastic structural analysis using factored loads, and it is the maximam moment
that acts on the column at either end or within the column if transverse loadings are present.

If the P-A effect is taken into consideration, it becomes necessary to use a second-order
analysis to account for the nonlinear relationship between the load, lateral displacement, and the
moment. This is normally performed using computer programs. The ACI Code permits the use of
first-order analysis of columns. The ACI Code moment-magnifier design method is a simplified
approach for calculating the moment-magnifier factor in both braced and unbraced frames.

<0.05 (12.9)

12.6.2 Magnified Moments in Nonsway Frames

The effect of slenderness ratio X/,/r in a compression member of a braced frame may be ignored
if Ki,/r <34 — 12M/M>, as given in Section 12.5.1. If K/, /r is greater than (34 — 12M/M>),
then slendemness effect must be considered. The procedure for determining the magnification
factor ;s in nonsway frames can be summarized as follows (ACI Code, Section 10.10.6):

1. Determine if the frame is braced against sidesway and find the unsupported length, /,, and
the effective length factor, X' (X may be assumed to be 1.0).
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2. Calculate the member stiffness, E/, using the reasonably approximate equation

2E. 1, + El
o 92Eels t Bole {12.10)
1+ ﬁdns
or the more simplified approximate equation

04E.1
El=—-2% (12.11)

1+ agdns
EI =025E.1; (for By = 0.6) (12.12)

where

E. = 57.000 ./f!

E, = 29 x 10%psi

I, = gross moment of inertia of the section about the axis considered,
neglecting A;

I, = moment of inertia of the reinforcing steel

Bune = maximum factored axial sustained load _ 1.2D (sustained)
. maximum factored axial load T 12D+ 16L

Note: The above By is the ratio used to compute magnified moments in columns due to
sustained loads.

Equations 12.11 and 12.12 are less accurate than Eq. 12.10. Moreover, Eq. 12.12 is
obtained by assuming 8, = 0.6 in Eq. 12.11.
For improved accuracy EI can be approximated using suggested E and [ values provided
by:

A M P
I= (0.80 + 25i‘) (1 -—— - 0.5—“) I, <0.8751,
A, P.h Po

{ need not be taken less than 0.357,
where
A,y = Total area of longitudinal reinforcement (in.?)
P, = nominal axial strenght at zero eccentricity (Ib)
P, = Factored axial force (+ve for compression) (lb)
M, = Factored moment at section (lb.in.)
h = thikness of member (in.)

3. Determine the Euler buckling load, P.:
_ w*EI
T (Kl

Use the values of Ef, K, and /, as calculated from steps 1 and 2.

4. Calculate the value of the factor C,, to be used in the equation of the moment-magnifier
factor. For braced members without transverse loads,

0.4M,

2

(12.13)

[

Cn=06+ > 04 (12.14)

where M;/M> is positive if the column is bent in single curvature. For members with
transverse loads between supports, C,, shall be taken as 1.0.
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5. Calculate the moment magnifier factor 8y:
Ch .
1—-(P,/OT5P) —
where P, is the applied factored load and P, and C,, are as calculated previously.
6. Design the compression member using the axial factored load, P,, from the conventional
frame analysis and a magnified moment, M., computed as follows:
M, =8, M> (12.16)

where M, is the larger factored end moment due to loads that result in no sidesway and
should be >P,(0.6 + 0.03h). For frames braced against sidesway, the sway factor is §; =
0. In nonsway frames, the lateral defiection is expected to be less than or equal to H/1500,
where H is the total height of the frame.

1.0 (12.15)

‘Sns =

12.6.3 Magnified Moments in Sway Frames

The effect of slenderness may be ignored in sway (unbraced) frames when K{,/r < 22. The proce-
dure for determining the magnification factor, &;, in sway (unbraced) frames may be summarized
as follows (ACI Code, Section 10.10.7):

1. Determine if the frame is unbraced against sidesway and find the unsupported length /,
and X, which can be obtained from the alignment charts (Fig. 12.3).

2—4. Calculate EI, P,, and C,, as given by Egs. 12.2, 12.10 through 12.14. Note that Bans
(to calculate 1) is the ratio of maximum factored sustained shear within a story to the
total factored shear in that story.

5. Calculate the moment-magnifier factor, §; using one of the following methods:
a. Magnifier method
1
& = e
1—-(ZP,/0.7T5EPF,)
where §; < 2.5 and ¥ P, is the summation for all the factored vertical loads in a
story and X P, is the summation for all sway-resisting columns in a story. Also,
M;
>
1-(XP,/0.T5EP,) —
where M; is the factored end moment due to loads causing appreciable sway.
b. Approximate second order analysis

1.0 (12.17)

My =

M; (12.18)

1 M
8, = o >1 or &M, = 1_"Q > M, (12.19)
where
TP A
= %9 (12.20)
Vasle
where

P, = Factored axial load (Ib)

A, = Revative lateral deflection between the top and bottom of a story due to
lateral forces using a first order elastic frame analysis
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V,s = Factored horizontal shear in a story (Ib)
l. = Length of compression member in a frame (m.)

If 8, exceeds 1.5, 8, shall be calculated using second order elastic analysis or the
magnifier method described in a.

6. Calculate the magnified end moments M; and M, at the ends of an individual compres-
sion member, as follows:

Ml =M|ns+5le‘\‘ (1221)

M; = M3 ps + 8s Mo (12.22)

where M, and M, are the moments obtained from the no-sway condition, whereas
M, and M, are the moments obtained from the sway condition. If M; is greater than
M, from structural analysis, then the design magnified moment is

Mv:MZns"'(S.\'Ml\' (1223)

T S I S

PR e T S

Columns, University of Wisconsin, Madison, Wisconsin.

Example 12.1

The column section shown in Fig. 12.5 carries an axial load Pp = 136K and a moment Mp =
116 K-ft due to dead load and an axial load P; = 110K and a moment M; = 93 K-ft due to live
load. The column is part of a frame that is braced against sidesway and bent in single curvature about
its major axis. The unsupported length of the column is /. = 19ft, and the moments at both ends of
the column are equal. Check the adequacy of the column using f/ =4 ksi and f; = 60Kksi.
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Figure 125 Example 12.1.

Solution
1. Calculate factored loads:
P,=12Pp+16P =12x1364+16x110=3392K

M, =12Mp + 1.6My, = 1.2 x 116 + 1.6 x 93 = 288 K-ft
M, 288x12

2. Check if the column is long. Because the frame is braced against sidesway, assume K = 1.0,
r =037 =03 x 22 = 6.6in,, and I, = 191t.

K, 1 x19x12
= T _345
r 6.6

For braced columns, if K/, /r < 34 — 12M/M>, slenderness effect may be neglected. Given
end moments M; = M» and M,/M; positive for single carvature,

M
Right-hand side = 34 — 12# =3M4-12x1=22
2

Because Ki,/r = 34.5 > 22, slenderness effect must be considered.
3. Calculate £/ from Eq. 12.10:
a. Calculate E,:
E. = 57,000/ f/ = 57,000 V4000 = 3605 ksi
E; = 29,000 ksi

b. The moment of inertia is

14(22)3
o=

=12422in® A, = A, =4.01in’

_ 2
le =2x40 (222—5) = 578 in.*

The dead-load moment ratio is
1.2 x 136 _

Pans = —33g5 =048
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¢. The stiffness is

Bl = 0.2E Iy + Eglse
1 + ﬂdns

(0.2 x 3605 x 12,422) + (29,000 x 578)

- 14048

= 17.40 x 10°K-in.2
4. Calculate P,.: R ) .

El 17.40
p = FEL _2WTA0x10) _ 433k

SELE T (2 x 192

5. Calculate C,, from Eq. 12.14:

0.4M,

2
=06+04(1)=1.0

Cpn =06+ >04

6. Calculate the moment-magnifier factor from Eq. 12.15:

Co 1

Sps = = _
1 —(P,/0.75P)  1—339.2/(0.75 x 3303)

1.16

7. Calculate the design moment and load: Assume (¢ = 0.65),

3392

=" —-52K

"7 065 i
288

M,= — =4431 K-
065 3.1 Kft

Design M. = 443.1(1.16) = 514 K ft. Design eccentricity = 514/522 = 0.98ft = 11.82in., or
12 in.

8. Determine the nominal load strength of the section using e = 12in. according to Example 11.4:

P, = 47.6a + 2264 — 4f, @
h 2
d—etd—o =124+195— 22 =20.50 in.
2 2
1 a
= — la7. 5_2 4(19.5 = 2.
P, 20-50[ 6a(195 2)+2264(195 25)]
= 45q — 1.15a% + 186.6 (10

Solving for a from Eqgs. I and II, ¢ = 10.6in. and P, = 535K. The load strength, P,, is
greater than the required load of 522 K; therefore, the section is adequate. If the section is not
adequate, increase steel reinforcement.

9, Check the assumed 9:

a=1061in. c¢=1247 in. d, = 195 in.

£ = (d’c_c) 0.003

= 0.00169 < 0.002
¢ = 0.65
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Example 12.2

Check the adequacy of the column in Example 12.1 if the unsupported length is /, = 10 ft. Determine
the maximum nominal load on the column.

Solution

1. Applied loads are P, = 522K and M, = 443.1K.

2. Check if the columnn is long: [, = 10ft, r = 0.3h = 0.3 x 22 = 6.6in., and X = 1.0 (frame
is braced against sidesway).

K, 1x(10x12)
ro 6.6
Check if Ki,/r = 34 — 12M3/M2y:
Right-hand side = 34 — 12 x 1 = 22
K1,

=18.2

=182<«22

Therefore, the slenderness effect can be neglected.

3. Determine the nominal load capacity of the short column, as explained in Example 11.4. From
Example 11.4, the nominal compressive strength is P, = 612.1K (for ¢ = 10 in.), which
is greater than the required load of 522K, because the column is short with e = 10.2 in.
(Example 12.1).

Example 12.3

Check the adequacy of the column in Example 12.1 if the frame is unbraced (sway) against sidesway,
the end-restraint factors are 44 = 0.8 and ¥z = 2.0, and the unsupported length is /, = 16ft.

Solution

1. Determine the value of X from the alignment chart (Fig. 12.3) for unbraced frames. Connect
the values of ¥4 = 0.8 and 5 = 2.0, to intersect the K-line at K = 1.4,

Kl 14 x (16 x 12)
ro 6.6
2. For unbraced frames, if K{,/r < 22, the column can be designed as a short column. Because
actunal Ki,r = 40.7 > 22, the slenderness effect must be considered.

3. Calculate the moment magnifier 8, given C,, = 1.0, K = 1.4, EI = 17.40 x 10° K-in.2
(from Example 12.1), and

_ nlEl _ 72 % 17.40 x 100
TKL)? T (1.4x16x12)?

8ps = Co = ad =124

(P (3392
0.75 X P 0.75 x 2377

4. From Example 12.1, the applied loads are P, = 339.2K and M, = 288 K-ft, or
P, =522K and M, =4431Kft
The design moment M, = 1.24(443.1) = 549.4 K.ft; hence,

Sps M 12
e= %n” =5494 x — =1263in.  say, 13in.

= 40.7

P. =2377K
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5. The requirement now is to check the adequacy of a short column for P, = 522K, M, =
5494 K-ft, and ¢ = 13in. The procedure is explained in Example 11.4.

6. From Example 114,
P, = 47.6a +226.4 - 4 f;

e'=e+d-—g=13+19.5—%=2].5in.
1 a
Pu= 51 [4‘7.6a (19.5 - §) +226.4(19.5 — 2.5)]

=43.16a — 1.1a*+ 179 a = 104 in.

Thus, ¢ = 12.24in. and P, = 508 K. This load capacity of the column is less than the required
P, of 522 K. Therefore, the section is not adequate,

7. Increase steel reinforcement to four no. 10 bars on each side and repeat the calculations to get
P, = 568K, & < 0.002, and ¢ = 0.65.

Example 12.4

Design an interior square column for the first story of an eight-story office building. The clear height
of the first floor is 16ft, and the height of all other floors is 11 ft. The building layout is in 24 bays
(Fig. 12.6), and the columns are not braced against sidesway. The loads acting on a first-floor interior
column due to gravity and wind are as follows:

Axial dead load = 380 K
Axial live load = 140 K
Axial wind Joad = 0 K
Dead-load moments = 32 K-ft (top) and 54 K-ft {bottom)
Live-load moments = 20 K-ft (top) and 36 K-ft (bottom)
Wind-load moments = 50 K-ft (top) and 50 K-ft (bottom)
E1/! for beams = 360 x 10° K.in.

Use f/ =5 ksi, f, = 60ksi, and the ACI Code requirements. Assume an exterior column load of
two-thirds the interior column load, a corner column load of one-third the interior column load, and
Bans = 0.55.

I

I\
= G0’ =

$
+
$
'
' 3
s
—3 X 20

o
X
3
1l
&
.

Figure 126 Example 12.4.
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Solution

1. Calculate the factored forces using load combinations. For gravity loads,

P, =12D+ 1.6L =1.2(380) + 1.6(140) = 680 K
My = My, = 12Mp + 1.6M; = 1.2(54) + 1.6(36) = 122.4 K ft

For gravity plus wind load,

P, = (12D + 0.5L 4+ 1.6W)
= [1.2(380) + 0.5(140 + 0)] = 526 K
Muns = M, = (1.2 x 54 + 1.6 x 36) = 122.4 K-ft
My = Mas = (1.6M,,) = (1.6 x 50) = 80 K-ft

Other combinations are not critical:

P, =09D + 1.6W =0.9(380) + 1.6(0) = 342 K
My = My =09Mp = 0.9(54) = 48.6 K-ft
My, = 1.6M,, = 1.6(50) = 80 K.ft

Mu Mzns 12 .
= — = 1224 x — =2.16 in.
X 620 in

P, Py,
min ¢ = 0.6 + 0.03(18) = 1.14 in. < 2.16

2. Select a preliminary section of column based on gravity load combination using tables or charts.
Select a section 18 by 18in. reinforced by four no. 10 bars (Fig. 12.7).

3. Check Ki,/r:
_ gy

- = 8748 in* E,=4.03x 10®psi

I

for columns, 7 = 0.7 I
For a 16-ft column,

EI  (0.7)(8748)(4.03 x 10% 6
—_— = = 1285 x 10
I 16 % 12 X
For an 11-ft column,
7 . 6
EJ _ (0.7)(8748)(4.03 x 10%) — 187 x 10°

A 11 x 12
For beams, and El/ly = 360 x 108, ] = 0.35 I,, and EIfl, = 0.35EI/l, = 126 x 105

L(EI/l)  (1285+187) .
T(EI/L) ~ 2020

¥ (top) = yr(bottom) =

From the chart (Fig. 12.3), X is 1.37 for an unbraced frame and 0.8 for a braced frame.

Kl _ 13706 12) _ ..
r 0.3 x 18

which i1s more than 22. Therefore, the sienderness ratio must be considered.



12.6 Moment-Magnifier Design Method 41

18" 4#10

f————— 18—

Figure 12.7 Column cross section, Example 12.4.

4. Compute P.:
E. =403 x 10°ksi E, =29 x 10*ksi

13\* _
I, = 8748 in.* I = 5.06 (?) =214 in*
ﬁdns = 055
_02E g + Ese
| + ﬂdns
2(4.03 x 10% x 8748) + 29 x 10°(214
pp = 22403 x 107 x 8748) +29 x 10°Q) _ ¢ 55 106 Kein.2

14+0.55

For calculation of &, Bans = 0 and E = 8.55 x 10%(1.55) = 13.25 x 10° K-in.2

7 Bl 7%(8.55 x 10%)
( {Kln)z (0-8 X 16 x 12)2 ( race )

_ @X(13.25 x 10%)
€T (137 x 16 x 12)2

For one floor in the building, there are 14 interior columns, 18 exterior columns, and four
corner columns.

2 1
TP, = 14(526) + 18 ('i x 526) +4 (§ X 526) =14377 K

= 1890 K (unbraced)

2
TP = 14(1890) +22(§ b 1890) = 54,180 K

1.0
§ = =1.54

| 14,377
0.75 % 54,180

which is greater than 1.0 (Eq. 12.17).
M. = Maqs + 8 Mz, = (122.4) + 1.54(80) = 245.6 K ft

5. Design loads are P, = 526K and M, = 245.6Kft.

245.6(12)
e = — =

576 5.6 in.
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min = 0.6 4+0.03(18) = 1.14in. < ¢

By analysis, for e = 5.6in. and A, = A, =2.53 in.2, (¢ = 0.65in.) the load capacity of the
18 x 18-in. column is ¢ P, = 556 K and ¢ M, = 259 K ft, so the section is adequate. (Solution
steps are similar to Example 11.4. Values are ¢ = 10.37in., ¢ = {3in., f; = 17ksi, f; = 60 ksi,
@¢P, = 385K, and ¢, = 8.9in.).

(15.5-13)

& = 0.003—1§——-~ = 0.00058 < 0.002, ¢ =0.65.

SUMMARY
Sections 12.1-12.3

1. The radius of gyration is r = /1/A, where r = 0.3k for rectangular sections and 0.25D for
circular sections.

2. The effective column length is K{,. For braced frames, K = 1.0; for unbraced frames, X
varies as shown in Fig. 12.2.

3. K can be determined from the alignment chart (Fig. 12.3) or Egs. 12.2 through 12.6.
Section 12.4
Member stiffness is £17:

E.=33w!d J/f!

The moment of inertia, /, may be taken as I = 0.35/; for beams, 0.70/, for columns,
0.701, for uncracked walls, 0.35/, for cracked walls, and 0.257, for plates and flat slabs.

Alternatively, the moments of inertia of compression and flexural members, 7, shall be
permitted to be computed as follows:

1. Compression members:

Ag M, P,
I={080+25— |1 - — 05— )1, <0.8757 12.2
( + Ag)( P 05P0)g_085g ( )
2. Flexural members:
b
I =(0.10+25p) (1.2 - 0.27'”) I, <051, (12.3)
Section 12.5
The effect of slenderness may be neglected when
Kl
£ <22 (for unbraced frames) (12.8)
r _
Kle 34 120 (for braced columns) (12.5)
2 M2

where M| and M, are the end moments and M, > M,.



Summary
Section 12.6
1. For nonsway frames,
El = 02E 1, + Esl
1+ ﬁdns
or the more simplified equation
El — 04E.1,
1+ JBdns
1.2D

Pans = 155 ¥ 16L
More simply,

EI = O.ZSECIg (ﬂdns = 0.6)
The Euler buckling load is

’E
p— T EL
(K1,)?
0.4M
Cp=06+——>04
2
The moment-magnifier factor (nonsway frames) is
C
b = —p—
—_
0.75P;
The design moment is
Mc = Sns M2

For sway (unbraced) frames, the moment-magnifier factor is calculated either from

a. Magnifier method

3 = SP. >1.0
0.75Z P,
b. Approximate second order analysis
1

& = ——

1-¢Q
P A

°=

the design moment is
My = Mips + 85 My

M2 = M2ns +8.r MZs
If My > M, then:
Mc = M2ns +8s MZs

413

(12.10)

(12.11)

(12.4)

(12.12)

(12.13)

(12.14)

(12.15)

(12.16)

(12.17)

(12.19)

(12.20)

(12.21)

(12.22)

(12.23)

where M, is the unmagnified moment due to gravity loads (nonsway moment) and §; Mo,

is the magnified moment due to sway frame loads.
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PROBLEMS

12.1 The column section in Fig. 12.8 carries an axial load Pp = 128K and a moment Mp = 117K ft

due to dead load and an axial load P; = 95K and a moment M; = 100 K-ft due to live load. The
column is part of a frame, braced against sidesway, and bent in single curvature about its major axis.
The unsupported length of the column is !, = 18 ft, and the moments at both ends are equal. Check
the adequacy of the section using f/ = 4 ksi and f, = 60ksi.

12.2 Repeat Problem 12.1 if {, = 12ft.
12.3 Repeat Problem 12.1 if the frame is unbraced against sidesway and the end-restraint factors are

(top) = 0.7 and ¥ (bottom) = 1.8 and the unsupported height is [, = 14 ft.

12.4 The column section shown in Fig. 12.9 is part of a frame unbraced against sidesway and supports

an axial load Pp = 166K and a moment Mp = 107 K ft due to dead load and P; = 115K and M,
= 80K-ft due to live load. The column is bent in single curvature and has an unsupported Iength
I, = 16ft. The moment at the top of the column is M, = 1.5M;, the moment at the bottom of
the column. Check if the section is adequate using f = 5 ksi, f, = 60ksi, ¢ (top) = 2.0, and
{bottom) = 1.0.

12.5 Repeat Problem 12.4 if the column length is /, = 14ft.
12.6 Repeat Problem 12.4 if the frame is braced against sidesway and M, = M,.
12.7 Repeat Problem 12.4 using f] =4 ksi and f, = 60ksi.
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Figure 12.8 Problem 12.1 (4 = A) = 5 no. 9 bars and b = 14in.
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Figure 12.9 Problem 12.4.

12.8 Design a 20-ft-long rectangular tied column for an axial load Pp = 214.5K and a moment Mp =
64 K.ft due to dead load and an axial load P, = 120K and a moment M; = 40K.ft due to live
load. The column is bent in single curvature about its major axis, braced against sidesway, and the
end moments are equal. The end-restraint factors are ¥ (top) = 2.5 and ¢ (bottom) = 1.4. Use
f!=5ksi, fy = 60ksi, and b = 15in.

12.9 Design the column in Problem 12.8 if the column length is 101t.

12.10 Repeat Problem 12.8 if the column is unbraced against sidesway.
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FOOTINGS

13.1
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Office building under construction, New
Orleans, Louisiana.

INTRODUCTION

Reinforced concrete footings are structural members used to support columns and walls and to
transmit and distribute their loads to the soil. The design is based on the assumption that the
footing is rigid, so that the variation of the soil pressure under the footing is linear. Uniform soil
pressure is achieved when the column load coincides with the centroid of the footing. Although
this assumption is acceptable for rigid footings, such an assumption becomes less accurate as
the footing becomes relatively more flexible. The proper design of footings requires that

1. The load capacity of the soil is not exceeded.
2. Excessive settlement, differential settlement, or rotations are avoided.
3. Adequate safety against sliding and/or overturning is maintained.

The most common types of footings used in buildings are the single footings and wall
footings (Figs. 13.1 and 13.2). When a column load is transmitted to the soil by the footing, the
soil becomes compressed. The amount of settlement depends on many factors, such as the type of
soil, the load intensity, the depth below ground level, and the type of footing. If different footings
of the same structure have different settlements, new stresses develop in the structure. Excessive
differential settlement may lead to the damage of nonstructural members in the buildings or even
failure of the affected parts.
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Figure 13.1 Wall footing.
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Figure 13.2 Single footing.
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Vertical loads are usually applied at the centroid of the footing. If the resultant of the applied
loads does not coincide with the centroid of the bearing area, a bending moment develops. In this
case, the pressure on one side of the footing will be greater than the pressure on the other side.

If the bearing soil capacity is different under different footings—for example, if the footings
of a building are partly on soil and partly on rock—a differential settlement will occur. It is
usual in such cases to provide a joint between the two parts to separate them, allowing for
independent settlement,

The depth of the footing below the ground level is an important factor in the design
of footings. This depth should be determined from soil tests, which should provide reliable
information on safe bearing capacity at different layers below ground level. Soil test reports
specify the allowable bearing capacity to be used in the design. In cold areas where freezing
occurs, frost action may cause heaving or subsidence. It is necessary to place footings below
freezing depth to avoid movements.

13.2 TYPES OF FOOTINGS

Different types of footings may be used to support building columns or walls. The most common
types are as follows:

1. Wall footings are used to support structural walls that carry loads from other floors or to
support nonstructural walls. They have a limited width and a continuous length under the
wall (Fig. 13.1). Wall footings may have one thickness, be stepped, or have a sloped top.

2. Isolated, or single, footings are used to support single columns (Fig. 13.2). They may be
square, rectangular, or circular. Again, the footing may be of uniform thickness, stepped,
or have a sloped top. This is one of the most economical types of footings, and it is nsed
when columns are spaced at relatively long distances. The most commonly used are square
or rectangular footings with uniform thickness.

3. Combined footings (Fig. 13.3) usually support two columns or three columns not in a row.
The shape of the footing in plan may be rectangular or trapezoidal, depending on column
loads. Combined footings are used when two columns are so close that single footings
cannot be used or when one column is located at or near a property line.

4. Cantilever, or strap, footings (Fig. 13.4) consist of two single footings connected with a
beam or a strap and support two single columns. They are used when one footing supports
an eccentric column and the nearest adjacent footing lies at quite a distance from it. This
type replaces a combined footing and is sometimes more economical.

5. Continuous footings (Fig. 13.5) support a row of three or more columns. They have limited
width and continue under all columns.

6. Raft, or mat, foundations (Fig. 13.6) consist of one footing, usually placed under the entire
building area, and support the columns of the building. They are used when

a. The soil-bearing capacity is low.

b. Columa loads are heavy.

¢. Single footings cannot be used.

d. Piles are not used.

e. Differential settlement must be reduced through the entire footing system.

7. Pile caps (Fig. 13.7) are thick slabs used to tie a group of piles together and to support
and transmit column loads to the piles.
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Figure 13.3 Combined footing.
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Figure 13.4 Strap footing.
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Columns
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Figure 13.8 Continuous footing.
Columns
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Footing
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Figure 13.6 Raft, or mat, foundation.
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Elevation
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Figure 13.7 Pile cap footing.

13.3 DISTRIBUTION OF SOIL PRESSURE

Fig. 13.8 shows a footing supporting a single column. When the column load, P, is applied on
the centroid of the footing, a uniform pressure is assumed to develop on the soil surface below
the footing area. However, the actual distribution of soil pressure is not uniform but depends on
many factors, especially the composition of the soil and the degree of flexibility of the footing.

For example, the distribution of pressure on cohesionless soil (sand) under a rigid footing
is shown in Fig.13.9. The pressure is maximum under the center of the footing and decreases
toward the ends of the footing. The cohesionless soil tends to move from the edges of the
footing, causing a reduction in pressure, whereas the pressure increases around the center to
satisfy equilibrium conditions. If the footing is resting on a cohesive soil such as clay, the
pressure under the edges is greater than at the center of the footing (Fig. 13.10). The clay near
the edges has a strong cohesion with the adjacent clay surrounding the footing, causing the
nonuniform pressure distribution.

__/|/_r
Colurmn

Footing

ttrtrtrtt

Figure 13.8 Distribution of soil pressure assuming uniform pressure.
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Column

-

Figure 13.9 Soil pressure distribution in cohesionless soil (sand).

Footing

Column
Footing

Figure 13.10 Soil pressure distribution in cohesive soil (clay).

The allowable bearing soil pressure, g,, is usually determined from soil tests. The allowable
values vary with the type of soil, from extremely high in rocky beds to low in silty soils. For
example, g,, for sedimentary rock is 30ksf, for compacted gravel is 8ksf, for well-graded
compacted sand is 6 ksf, and for silty-gravel soils is 3 ksf.

Referring to Fig. 13.8, when the load P is applied, the part of the footing below the
column tends to settle downward. The footing will tend to take a uniform curved shape, causing
an upward pressure on the projected parts of the footing. Each part acts as a cantilever and must
be designed for both bending moments and shearing forces. The design of footings is explained
in detail later.

13.4 DESIGN CONSIDERATIONS

Footings must be designed to carry the column loads and transmit them to the soil safely. The
design procedure must take the following strength requirements into consideration:

1. The area of the footing based on the allowable bearing soil capacity
2. On-way shear

3. Two-way shear, or punching shear

4. Bending moment and steel reinforcement required



13.4 Design Considerations 423

5. Bearing capacity of columns at their base and dowel requirements
6. Development length of bars
7. Differential settlement

These strength requirements are explained in the following sections.

Reinforcing rebars placed in two layers in a raft foundation.

13.4.1 Size of Footings

The area of the footings can be determined from the actual external loads (unfactored forces and
moments) such that the allowable soil pressure is not exceeded. In general, for vertical loads

total service load (including self-weight)

Area of footing = (13.1)

allowable soil pressure, g,

or
P (total)

Ga

where the total service load is the unfactored design load. Once the area is determined, a factored
soil pressure is obtained by dividing the factored load, P, = 1.2D + 1.6L, by the area of the

Area =
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footing. This is required to design the footing by the strength design method.
B P,
area of footing

Qu (13.2)

The allowable soil pressure, ¢, is obtained from soil test and is based on service load conditions.

13.4.2 One-Way Shear (Beam Shear) (V,,)

For footings with bending action in one direction, the critical section is located at a distance d
from the face of the column. The diagonal tension at section m-m in Fig. 13.11 can be checked
as was done before in beams. The allowable shear in this case is equal to

V. =201/ flbd (¢ = 0.75) (13.3)
where b = width of section m-m. The factored shearing force at section m-m can be calculated
as follows:

Ly €
Vi, = qub (5—5—%1) (13.4)
If no shear reinforcement is to be used, then d can be determined, assuming V,, = ¢V,
Va
d=—— (13.5)
21/ flb

Wall and column footings, partly covered.
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Figure 13.11 One-way shear.

13.4.3 Two-Way Shear (Punching Shear) (V,;,)

Two-way shear is a measure of the diagonal tension caused by the effect of the column load
on the footing. Inclined cracks may occur in the footing at a distance d/2 from the face of the
column on all sides. The footing will fail as the column tries to punch out part of the footing
(Fig. 13.12).

The ACI Code, Section 11.11.2 allows a shear strength, V,, in footings without shear
reinforcement for two-way shear action, the smallest of

V., = 4r/flbod (13.6)

V., = (2 + %) A/ flbod (13.7)

V., = (":d +2) a/ Tibod (13.8)
(]

where

B = Ratio of long side to short side of the rectangular column
by = perimeter of the critical section taken at d/2 from the loaded area (column section)
(see Fig. 13.12)
d = effective depth of footing
A = is a modification factor for type of concrete (ACI 8.6.1)
A = 1.0 Normal-weight concrete
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Figure 13.12 Punching shear (two-way).

A = 0.85 sand-lightweight concrete
A = 0.75 for all-lightweight concrete
Linear interpolation shall be permitted between 0.85 and 1.0 on the basis of volumetric frac-

tions, for concrete containing normal-weight fine aggregate and a blend of lightweight and
normal-weight coarse aggregate.

PR S Bt w0 L1
y "q‘ Y A N
s N Y b\ TR

Reinforced concrete single footings.
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For the values of V., and V., it can be observed that V, controls (less than V,,) whenever
B < 2, whereas V,, controls (less than V) whenever S, > 2. This indicates that the allowable
shear V, is reduced for relatively long footings. The actual soil pressure variation along the long
side increases with an increase in 8. For shapes other than rectangular, B is taken to be the ratio
of the longest dimension of the effective loaded area in the long direction to the largest width
in the short direction (perpendicular to the long direction).

For Eq. 13.8, o, is assumed to be 40 for interior columns, 30 for edge columns, and 20
for corner columns. The concrete shear strength, V., represents the effect of an increase in by
relative to d. For a high ratio of by/d, V., may control.

Based on the preceding three values of V., the effective depth, d, required for two-way
shear is the largest obtained from the following formulas (¢ = 0.75):

v,
dy = —2 — h 2 13.9
1 ¢4A.\/Tgbo (where 8 < 2) (13.9)
or
d Yy (where 8 > 2) (13.10)
1= .
6 (2+4)r/Flbo
v,
dy = “2 (13.11)
¢ (“go“ + 2) A/ Flbo

The two-way shearing force, V,,,, and the effective depth, d, required (if shear reinforcement
is not provided) can be calculated as follows (refer to Fig. 13.12):

1. Assume d.

2. Determine by: by = 4(c + d) for square columns, where one side = ¢. bp = 2 (¢1 + d) +
2(c» + d) for rectangular columns of sides ¢y and c».

3. The shearing force V,,, acts at a section that has a length by = 4 (¢ + d) or [2{(c, + d) +
2(c> + d)} and a depth d; the section is subjected to a vertical downward load, P,, and a
vertical upward pressure, g, (Eq. 13.2). Therefore,

Vi, = Py — quic+ d)? for square columns (13.12a)
Vi, = Py — qu(c1 +d)(cz -+ d) for rectangular columns (13.12b)

4. Determine the largest d (of d; and d). If d is not close to the assumed 4, revise your
assumption and repeat.

13.4.4 Flexural Strength and Footing Reinforcement

The critical sections for moment occur at the face of the column (section n-r, Fig. 13.13).
The bending moment in each direction of the footing must be checked and the appropriate
reinforcement must be provided. In square footings and square columns, the bending moments
in both directions are equal. To determine the reinforcement required, the depth of the foot-
ing in each direction may be used. Because the bars in one direction rest on top of the
bars in the other direction, the effective depth, d, varies with the diameter of the bars used.
An average value of 4 may be adopted. A practical value of d may be assumed to be
(h —4.5) in.
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Figure 13.13 Critical section of bending moment.

The depth of the footing is often controlled by shear, which requires a depth greater than
that required by the bending moment. The steel reinforcement in each direction can be calculated
in the case of flexural members as follows:

Asf
M, = ¢A d— Y 13.13
= oas 1= 225) 113
Also, the steel ratio, p, can be determined as follows (Eq. 4.2):
0.85f/ 2R
p= fe 1— [1— —*% (13.14)
5y $(0.85f1)

where R, = M,/bd?. When R, is determined, p can also be obtained from Eq. 13.15.

The minimum steel ratio requirement in flexural members is equal to 200/ f, when f/ <
4500 psi and equal to 3,/ 7/ f, when f > 4500 psi. However, the ACI Code, Section 10.5, indi-
cates that for structural slabs of uniform thickness, the minimum area and maximum spacing of
steel bars in the direction of bending shall be as required for shrinkage and temperature reinforce-
ment. This last minimum steel requirement is very small, and a higher minimum reinforcement
ratio is recommended, but it should not be greater than 200/ f,.

The reinforcement in one-way footings and two-way footings must be distributed across
the entire width of the footing. In the case of two-way rectangular footings, the ACI Code,
Section 15.4.4, specifies that in the long direction, a portion of the total reinforcement y A,
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distributed uniformly along the width of the footing. In the short direction, a certain ratio of the
total reinforcement in this direction must be placed uniformly within a bandwidth equal to the
length of the short side of the footing according to

2

511 (13.15)

Vs =

where
long side of footing

short side of footing

g= (13.16)

The bandwidth must be centered on the centerline of the column (Fig. 13.14). The remain-
ing reinforcement in the short direction must be uniformly distributed outside the bandwidth.
This remaining reinforcement percentage shall not be less than that required for shrinkage and
temperature.

When structural steel columns or masonry walls are used, then the critical sections for
moments in footings are taken at halfway between the middle and the edge of masonry walls
and halfway between the face of the column and the edge of the steel base place (ACI Code,
Section 15.4.2).

13.4.5 Bearing Capacity of Column at Base

The loads from the column act on the footing at the base of the column, on an area equal to the
area of the column cross-section. Compressive forces are transferred to the footing directly by
bearing on the concrete.

Forces acting on the concrete at the base of the column must not exceed the bearing strength
of concrete as specified by the ACI Code, Section 10.14:

Bearing strength Ny = ¢(0.85f/A,) (13.17)

where ¢ = 0.65 and A, = the bearing area of the column. The value of the bearing strength given
in Eq. 13.17 may be multiplied by a factor ./A>/A; < 2.0 for bearing on footings when the sup-
porting surface is wider on all sides than the loaded area. Here Aj is the area of the part of the sup-
porting footing that is geometrically similar to and concentric with the loaded area (Fig. 13.15).
Because A, > A, the factor /A;/A, is greater than unity, indicating that the allowable

|-— Bondwidth —|

2/

—— ——— O

Y

b -

- L -

Figure 13.14 Bandwidth for reinforcement distribution.



Chapter 13  Footings

%&”//

7
=
7

[—————————

L ® A—_—

! -

Figure 13.15 Bearing areas on footings. A1 = ¢2, Ay = b

bearing strength is increased because of the lateral support from the footing area surrounding
the column base. The modified bearing strength is

Ny = ¢(0.85f/A1) ,-i—f < 2¢(0.85f/A1) (13.18)

If the factored force, P,, is greater than either N, or N3 reinforcement must be provided
to transfer the excess force. This is achieved by providing dowels or extending the column
bars into the footing. The excess force is Pex = P, — N and the area of the dowel bars is
Asq = (Pc,/ fy) = 0.005 Ay, where Ay is the area of the column section. At least four bars should
be used at the four corners of the column. If the factored force is less than either Ny or N,
then minimum reinforcement must be provided. The ACI Code, Section 15.8.2, indicates that
the minimum area of the dowel reinforcement is at least 0.005A4, (and not less than four bars),
where A, is the gross area of the column section. The minimum reinforcement requirements
apply also to the case when the factored forces are greater than Ny and N;. The dowel bars
may be placed at the four corners of the column and extended in both the column and footing.
The dowel diameter shall not exceed the diameter of the longitudinal bars in the columns by
more than 0.15 in. This requirement is necessary to ensure proper action between the column and
footing. The development length of the dowels must be checked to determine proper transfer of
the compression force into the footing.

13.4.6 Development Length of the Reinforcing Bars

The critical sections for checking the development length of the reinforcing bars are the same as
those for bending moments. The development length for compression bars was given in Chapter 7:

_0.02fydp
c A' \/T({

but this value cannot be less than 0.0003 f,d; > 8in. For other values, refer to Chapter 7.

la (7.15)

13.4.7 Differential Settiement {Balanced Footing Design)
Footings usually support the following loads:

« Dead loads from the substructure and superstructure
« Live load resulting from occupancy
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» Weight of materials used in backfilling
« Wind loads

Each footing in a building is designed to support the maximum load that may occur on
any column due to the critical combination of loadings, using the allowable soil pressure.

The dead load, and maybe a small portion of the live load (called the usual live load), may
act continuously on the structure, The rest of the live load may occur at intervals and on some
parts of the structure only, causing different loadings on columns. Consequently, the pressure
on the soil under different footings will vary according to the loads on the different columns,
and differential settlement will occur under the various footings of one structure. Because partial
settlement is inevitable, the problem turns out to be the amount of differential settlement that
the structure can tolerate. The amount of differential settlement depends on the variation in the
compressibility of the soils, the thickness of the compressible material below foundation level,
and the stiffness of the combined footing and superstructure. Excessive differential settlement
results in cracking of concrete and damage to claddings, partitions, ceilings, and finishes.

Differential settlement may be expressed in terms of angular distortion of the structure.

Bjerrum {5] indicated that the danger limits of distortion for some conditions vary between .

600
to ﬁ depending on the damage that will develop in the building.

For practical purposes it can be assumed that the soil pressure under the effect of sustained
loadings is the same for all footings, thus causing equal settlements. The sustained load (or
the wsual load) can be assumed to be equal to the dead load plus a percentage of the live
load, which occurs very frequently on the structure. Footings then are proportioned for these
sustained loads to produce the same soil pressure under all footings. In no case is the allowable
soil bearing capacity to be exceeded under the dead load plus the maximum live load for each
footing. Example 13.4 explains the procedure for calculating the areas of footings, taking into
consideration the effect of differential settlement.

13.5 PLAIN CONCRETE FOOTINGS

Plain concrete footings may be used to support masonry walls or other light loads and transfer
them to the supporting soil. The ACI Code Section 22.7 allows the use of plain concrete pedestals
and footings on soil, provided that the design stresses shall not exceed the following:

1. Maximum flexural stress in tension is less than or equal to 5¢A,/ f! (where ¢ = 0.60).

4
2. Maximum stress in one-way shear (beam action) is less than or equal to 3 qbk\/fj’ {where

¢ = 0.60).
3. Maximum shear stress in two-way action according to ACI Code Section 22.5.4 is
4 8
(5 + %) Prf] < 2.66 ¢/ f, (where ¢ = 0.60) (13.19)
where

B = Ratio of long side to short side of the rectangular column
A = modification factor described in 13.4.3.

4. Maximum compressive strength shall not exceed the concrete bearing strengths specified;
f! of plain concrete should not be less than 2500 psi.
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5. The minimum thickness of plain concrete footings shall not be less than 8in.

6. The critical sections for bending moments are at the face of the column or wall.

7. The critical sections for one-way shear and two-way shear action are at distances 4 and
d/2 from the face of the column or wall, respectively. Although plain concrete footings do
not require steel reinforcement, it will be advantageous to provide shrinkage reinforcement
in the two directions of the footing.

Stresses due to factored loads are computed assuming a linear distribution in concrete.

9. The effective depth, d, must be taken equal to the overall thickness minus 3 in.

10. For flexure and one-way shear, use a gross section bk, whereas for two-way shear, use boh
to calculate ¢ V..

o

Example 13.1

Design a reinforced concrete footing to support a 20-in.-wide concrete wall carrying a dead load of
26 K/ft, including the weight of the wall, and a live load of 20 K/ft. The bottom of the footing is 6 ft
below finat grade. Use normal-weight concrete with f; = 4 ksi, f, = 60 ksi, and an allowable soil
pressure of 5 ksf.

Solution

1. Calculate the effective soil pressure. Assume a total depth of footing of 20in. Weight of footing
is (%)(150) = 250 psf. Weight of the soil fill on top of the footing, assuming that soil weighs

100 Ib/t, is (6 — %) x 100 == 433 psf. Effective soil pressure at the bottom of the footing is
5000 — 250 — 433 = 4317 psf = 4.32ksf.

2. Calculate the width of the footing for a 1-ft length of the wall:
total load
effective soil pressure

26420
T 43

Width of footing =

= 10.74t

Use 11ft.
3. Net upward pressure = (factored load)/(footing width) (per 1 ft):

P,=12D+16L=12x26+16x20=632K

63.2
Net pressure = g, = = 5.745 ksf

4. Check the assumed depth for shear requirements. The concrete cover in footings is 3in., and
assume no. § bars; then d = 20 — 3.5 = 16.5. The critical section for one-way shear is at a
distance d from the face of the wall:

vo=a (3 -a-§)=smas (G- 5 - ST ) ik

2 2 12 2x12

Allowable one-way shear = ZA‘/E’ = (2)(1)@ = 126.5 psi
Ve 18.91 x 1000

@ /Fob  075(1265)(12)

= 1-ft length of footing = 12 in.

Total depth is 16.6 + 3.5 = 20.lin., or 20in. Actual d is 20 — 3.5 = 16.5in. (as assumed).
Note that few trials are needed to get the assumed and calculated d quite close.

Required 4 = = 16.6 in.
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5.

433

Calculate the bending moment and steel reinforcement. The critical section is at the face of the

wall:
1 (B ¢\* 5745 /11 20\2
M“_E"“(E'E) =22 (—-_) =626 Kft

M, 62.6x12,000

_e— e ——

bd?  12(16.5)?
From Table A.l1 in Appendix A, for R, =230 psi. f/ =4 ksi, and f, = 60 ksi, the steel
percentage is p = 0.0045 (or from Eq. 13.14). Minimum steel percentage for flexural members is

200 200

Pmin = ‘)‘T = 60,000

Percentage of shrinkage reinforcement is 0.18% (for f, = 60ksi). Therefore, use p = 0.0045
as calculated.

Ry

= 0.0033

A, = 0.0045 x 12 x 16.5 = 0.89 in.2

Use no. § bars spaced at 9in. (A; = 1.05 in.2) (Table A.14).
Check the development length for no. 8 bars:

lg = 48d, = 48(1) = 48 in. (Refer to Chapter 7).

Provided
111
p=8_¢_35p 10D 20 . o

2 T2 0™ 2 2

. Caleulate secondary reinforcement in the longitudinal direction: A; = 0.0018(12)(20) = 0.43

in.2/ft. Choose no. 5 bars spaced at 8in. (A; = 0.46in.2). Details are shown in Fig. 13.16.

Example 13.2

Design a square single footing to support an 18-in.-square tied interior column reinforced with eight
no. 9 bars. The column carries an unfactored axial dead load of 245K and an axial live load of 200 K.
The base of the footing is 4 ft below final grade and the allowable soil pressure is S ksf. Use normal-
weight concrete, with f/ = 4 ksi and f, = 60ksi.

— 20" |o—
Wall
116.5"
4——-3,29’——9—!4—»—- tt——— 4 657 ———]
Top 1emperc1ure—.\ i I l
steel may be added X Tt
#8 bars @ ¢~ # g 20"
N L ey |
- 10 - T

Figure 13.16 Exampie 13.1: Wall footing.
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Solution

1. Calculate the effective soil pressure. Assume a total depth of footing of 2ft. The weight of
the footing is 2 x 150 = 300 psf. The weight of the soil on top of the footing (assuming the
weight of soil = 100 pcf) is 2 x 100 = 200 psf.

Effective soil pressure = 5000 — 300 — 200 = 4500 psf
2. Calculate the area of the footing:
Actval loads = D+ L =245+ 200 =445 K

445
Area of footing = 15 = 98.9 fi®

Side of footing = 9.94 ft.
Thus, use 10ft (Fig.13.17).

c =18
|
o o
S| r
section\‘} Column
o2 | II i 425 —]
nis .
| Dowels -
—Aaa 4 N arali = PEPUEA 4

A

13 it 7 bars eoch direction

0o

/I
Kz

I

f
{
]
J

l"""“"'"l‘i‘
1

T

g

|

c+da
= 378"

10 o -

Figure 13.17 Example 13.2: Square footing.
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3.

4.

Net upward pressure equals (factored load)/(area of footing).
P, =12D+1.6L
=12x2454+1.6x200=614 K

614
Net upward pressure, ¢, = 010 = 6.14 ksf

Check depth due to two-way shear. If no shear reinforcement is used, two-way shear determines
the critical footing depth required. For an assumed total depth of 24in., calculate d to the
centroid of the top layer of the steel bars to be placed in the two directions within the footing.
Let the bars to be used be no. 8 bars for calculating 4.

d =24 - 3 (cover) — 1.5 (bar diameters) = 19.5 in.
It is quite practical to assume d = A — 4.5 in.
by = 4{c +d) = 4(18 + 19.5) = 150 in.
c+d=184+195=375in. = 3125 f
Vi, = Py ~ qulc + d)* = 614 — 6,14(3.125)> = 554 K

v,
Required d} = ——— 2
AHEC A = 40/ Tbo)
554(1000) .
- =19.5 in. =1;Eq. 13.9
(4)(0.75)(1)~/4000(150) . (8 Eq )
554(1000
Required d; = 0% 195 ( )
0.75 (T + 2) (+/4000)(150)

= 10.8 in. (not critical)

{as = 40 for interior columns.) Thus, the assumed depth is adequate. Two or more trials may
be needed to reach an acceptable d that is close to the assumed one.

Check depth due to one-way shear action: The critical section is at a distance d from the face
of the column.

L
Distance from edge of footing = (5 — % - d) =2.625 ft

Vi, = 6.14 x (2.625)(10) = 161.2 K
The depth required for one-way shear is
d= Vi
0.75)()r,/f1b
_ 161.2(1000)
(0.75)(2)(1}{(+/4000) (10 x 12)

=142 in. < 19.5 in.

. Calculate the bending moment and steel reinforcement. The critical section is at the face of the

column. The distance from edge of footing is

L ¢ 1.5
Z—Z)=5--"=425ft
(2 2) 2



= q“ —_ .14‘ 4- i 5 l 5 I; ft

M, 554.5(12,000)
T obd? T (10 x 12)(19.5)2

R, = 145.8 psi

Applying Eq. 13.14, p = 0.0028.
As = pbd = 0.0028(10 x 12)(19.5) = 6.55 in.?

Minimum A; (shrinkage steel) = 0.0018(10 x 12)(24)
=5.18 in.2 < 6.55 in.?

Minimum 4, (fexure) = 0.0033(10 x 12)(19.5) = 7.72 in.2

Therefore, A, = 7.72in.2 can be adopted. Use 13 no. 7 bars (A; = 7.82 in.2), spaced at s =
(120 — 6)/12 = 9.51n. in both directions.

7. Check bearing stress:
a. Bearing strength, N at the base of the column (4; = 18 x 18in.) is

Ny = $(0.085 /A1) = 0.65(0.85 x 4)(18 x 18) =716 K
b. Bearing strength, N, at the top of footing (A2 = 10 x 10ft) is

No— Ny 22 <on
2 = i¥] A]— 1

18 x 18

A =10x10=100f¢ A, = =225 i
Az

— =6.67>2

A, 6.67 >

Therefore, N2 = 2N | = 1432 K. Because P, = 614K < N, bearing stress is adequate. The
minimum area of dowels required is 0.005 A; = 0.005 (18 x 18) = 1.62 in.2. The minimum
number of bars is four, so use four no. 8 bars placed at the four comers of the column.

¢. Development length of dowels in compression:
0.02dp £y,  0.02(1)(60,000) .
lae = = = 19in
AT (1)~/4000

(controls). Minimum 4 is 0.00034, f, = 0.0003(1) (60,000) = 18in. > 8in. Therefore, use
four no. 8 dowels extending 19in. into column and footing. Note that /4 is less than d of
19.5in., which is adequate.

8. The development length of main bars in footing for no. 7 bars is Iy = 484, = 42in. (refer
to Chapter 7), provided /; = Lf2 — ¢/2 — 3in. = 48in. Details of the footing are shown in
Fig. 13.17 on page 430.

Example 13.3

Design a rectangular footing for the column of Example 13.2 if one side of the footing is limited to
8.51t.
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Solution
1. The design procedure for rectangular footings is similar to that of square footings, taking into
consideration the forces acting on the footing in each direction separately.
2. From the previous example, the area of the footing required is 98.9 ft’:

98.9
Length of footing = 5 = 11.63 ft

so use 12ft (Fig. 13.18). Footing dimensions are 8.5 x 12ft.
3. P, = 614 K. Thus, net upward pressure is
614
T 85x12

4. Check the depth due to one-way shear. The critical section is at a distance d from the face of
the column. In the longitudinal direction,

L ¢
V“] =(§—§—d) Xq“b

= 6.02 ksf

Qu

12 1.5 195
= (—2—— —2-————15—) x6.02x85=1855K

19 #6 10 #9 >
DA K

l+d—->

a/2—] e |e—qs2

1T 571
7 A _Jl‘“ |
|

|
//% i B &

o

[ P —

‘+(c+ d)»—'

- 12 Q" -

N

Figure 13.18 Example 13.3: Rectangular footing.
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This shear controls. In the short direction, V,, = 135.4 K (not critical).

Vo, 185.5 x 1000
200/ F6 (2)(0.75)(1)/4000 x (8.5 x 12)

d provided = 19.5 in. > 19.2 in.

Required 4 = = 19.2 in.

5. Check the depth for two-way shear action (punching shear). The critical section is at a distance
d/2 from the face of the column on four sides.

by = 4(18 +19.5) = 150 in.
(c+d)=18+19.5=375in. =3.125 ft

12
=—=14 2
B 33 141 <

(Use V. = 4¢A./ fibod.)
Vi, = Pu — qu(c + d)* = 614 — 6.02(3.125)* = 5552 K

Vi 55521000
T 4r/fibo  4(0.75)(1)/4000 x 150

dy» = 10.6 in. (Does not control.)

d, = 19.5 in.

6. Design steel reinforcement in the longitudinal direction. The critical section is at the face of
the support. The distance from the edge of the footing is
L ¢ 12 15

M, = ?1_(6.02)(5.25)2(8.5) =705.2 K-ft

R — M, 705.2(12,000)
“Tbd2 T (8.5 x 12)(19.5)2

=218 psi

Applying Eq. 13.14, p = 0.0042:
Ag = 0.0042(8.5 x 12)(19.5) = 8.35 in.2

Min A; (shrinkage) = 0.0018(8.5 x 12)(24) = 4.4 in.2
Min A, (flexure) = 0.0033(8.5 x 12)(19.5) = 6.56 in.2

Use A; = 8.35in. and 10 no. 9 bars (A, = 10in.%) spaced at § = (102 — 6)/9 = 10.7in.

7. Design steel reinforcement in the short direction. The distance from the face of the column to
the edge of the footing is

85 1.5
— —— =35 ft
2 2

M, = %(6.02)(3.5)2(12) = 4225 K ft

M, 442.5(12,000)
Ru=15 = 2
bd (12 x 12)(19.5)

= 97 psi
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Applying Eq. 134, p = 0.0019:
A; = 0.0019(12 x 12)(19.5) = 5.34 in.2
Min A, (shrinkage) = 0.0018(12 x 12)(24) = 6.22 in.?
Min A; (flexure) = 0.0033(12 x 12)(19.5) = 9.26 in.2
The value of A, to be used must be greater than or equal to 6.22in.2 Use 18 no. 6 bars (4; =

7.92in2), ) )

Vs = = =0.83
2
B+1 (l_)+1

8.5

The number of bars in an 8.5-ft band is 18(0.83) = 15 bars. The number of bars left on each
side is (18 — 15)/2 = 2 bars. Therefore, place 15 no. 6 bars within the 8.5-ft band; then place
two no. 6 bars (A, = 0.88in.2) within (12 — 8.5)/2 = 1.625ft on each side of the band.
The total number of bars is 19 no. 6 bars (A, = 8.36 in.2). In this example, the bars may be
distributed at equal spacings all over the 12-ft length; § = (144 — 6)/18 = 7.6in. Details of
reinforcement are shown in Fig.13.18.

8. Check the bearing stress at the base of the column, as explained in the previous example. Use
four no. 8 dowel bars.

9. Development length of the main reinforcement: {; = 29in. for no. 6 bars and 54in. for no.
9 bars.

Provided Iy (long direction) = (5 ¢ 3 in.) — 60 in.

Provided /; (short direction) = 39 in. > 29 in.

Example 13.4

Determine the footing areas required for equal settlement (balanced footing design) if the usual live
load is 20% for all footings. The footings are subjected to dead loads and live loads as indicated in
the following table. The allowable net soil pressure is 6 ksf.

Footing Number
1 2 3 4 5
Dead load 120K 180K 140K 190K 210K
Live load 150K 220K 200K 170K 240K

Solution
1. Determine the footing that has the largest ratio of live load to dead load. In this example, the
footing 3 ratio of 1.43 is higher than the other ratios.
2. Calculate the usual load for all footings. The usual load is the dead load and the portion of live
load that most commonly occurs on the structure. In this example,

Usual load = D.L. 4+ 0.2(L.L.)

The values of the usual loads are shown in the following table.

3. Determine the area of the footing that has the highest ratio of LL./D.L.

DL.+LL _ 1404200
allowable soil pressure 6

Area of footing 3 = = 56.7 ft?
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The usual soil pressure under footing 3 is

Usual load 180
Area of footing = 56.7
4. Calculate the area required for each footing by dividing its usual load by the soil pressure

of footing 3. The areas are tabulated in the following table. For footing 1, for example, the
required area is 150/3.18 = 472 .

5. Calcuiate the maximum soil pressure under each footing:

= 3.18 ksf

D+ L
Gmax = + < 6 ksf (allowable soil pressure)
Footing Number
Description 1 2 3 4 5
Live load
_— . . 1.4 . 1.14
Dead load 1.25 1.22 3 0.90
Usual load = D.L. + 0.2 (L.L.} (kips) 150 224 180 224 258
usual load _,

ired= —— . X . 704 81.1
Area required 318 ko (ft*) 47.2 70.4 56.7 0
Max. soil pressure = %(ksf) 572 5.68 6.00 5.11 5.535

Example 13.5

Design a plain concrete footing to support a 16-in.-thick concrete wall. The loads on the wall consist
of a 16-K/ft dead load (including the self-weight of wall) and a 10-K/ft live load. The base of the
footing is 4 ft below final grade. Use f! = 3 ksi and an allowable soil pressure of 5ksf.

Solution

1. Calculate the effective soil pressure. Assume a total depth of footing of 28 in.
28
Weight of footing = The 145 = 338 psf

The weight of the soil, assuming that soil weighs 100 pcf, is (4 — 2.33) x 100 = 167 psf.
Effective soil pressure is 5000 — 338 — 167 = 4495 psf.

2. Calculate the width of the footing for a 1-ft length of the wall (b = 1 ft):
total load
effective soil pressure

16 + 10
= 2495 = 5.79 ft

Width of footing =

Use 6.0 1t (Fig. 13.19).

J.2.U=12D+ 16L =12 x 16 + 1.6 x 10 = 352K/ft. The net upward pressure is g, =
35.2/6 = 5.87 ksf.

4. Check bending stresses. The critical section is at the face of the wall. For a 1-ft length of wall

and footing,
1 /L c\* 1 6 16 \?
My = 34 (5—5) —5(5'87)(5‘M) = loKE

[T SO |
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1 §" e

Wall

24

&0 -

F y

Figure 13.18 Example 13.5: Plain concrete wall footing.

Let the effective depth, d, be 28 — 3 = 25in., assuming that the bottom 3 in. is not effective.

bd®> 12
f= 15 = E(25)3 = 15,625 in*

The flexural tensile stress is

Sr=

Muc _ (16 x 12,000) (25

I = 15625 7):'53 pet

The allowable flexural tensile stress is 5¢./f] = 5 x 0.55+/3000 = 151 psi (close).
5. Check shear stress: The critical section is at a distance d = 25in. from the face of the wall.

Vu=qn(£—%*d)=5-37(§—i—§)=1-4“(

2 2 2x12 12
4 0.55) (%) (1)+/3000(12)(25
¢Vc=¢(— A\/E’bd=( (5 D) _ 1205k
3 1000
Therefore, the section is adequate. It is advisable to use minimum reinforcement in both

directions.

13.6 COMBINED FOOTINGS

When a column is located near a property line, part of the single footing might extend into the
neighboring property. To avoid this situation, the column may be placed on one side or edge
of the footing, causing eccentric loading. This may not be possible under certain conditions,
and sometimes it is not an economical solution. A better design can be achieved by combining
the footing with the nearest internal column footing, forming a combined footing. The center of
gravity of the combined footing coincides with the resultant of the loads on the two columns.
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N\

Rectanguiar

Trapezoidal

Figure 13.20 Combined footings.

Another case where combined footings become necessary is when the soil is poor and the
footing of one column overlaps the adjacent footing. The shape of the combined footing may be
rectangular or trapezoidal (Fig. 13.20). When the load of the external column near the property
line is greater than the load of the interior column, a trapezoidal footing may be used to keep
the centroid of footing in line with the resultant of the two column loads. In most other cases,
a rectangular footing is preferable.

The length and width of the combined footing are chosen to the nearest 3 in., which may
cause a small variation in the uniform pressure under the footing, but it can be tolerated. For
a uniform upward pressure, the footing will deflect, as shown in Fig. 13.21. The ACI Code,
Section 15.10, does not provide a detailed approach for the design of combined footings. The
design, in general, is based on structural analysis.

A simple method of analysis is to treat the footing as a beam in the longitudinal direction,
loaded with uniform upward pressure, g,. For the transverse direction, it is assumed that the

e~ ...--‘”’ HHHHH S~ f’/f"'l t\\‘-._ _-//1
U o N0 I B I o S - _
”H“llllHH“'
[ Side view
% f\s
-l L -

Figure 13.21 Upward deflection of a combined footing in two directions.
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Figure 13.22 Analysis of combined footing in the transverse direction.

column load is spread over a width under the column equal to the column width plus d on
each side, whenever that is available. In other words, the column load acts on a beam under the
column within the footing, which has a maximum width of (¢ + 2d) and a length equal to the
short side of the footing (Fig. 13.22). A smaller width, down to (¢ + d), may be used. The next
example explains the design method in detail.

Example 13.6

Design a rectangular combined footing to support two columns, as shown in Fig. 13.23. The edge
column, 1, has a section 16 by 16in. and carries a D.L. of 180K and an L.L. of 120K. The interior
column, I1, has a section 20 by 20in. and carries a D.L. of 250K and an L.L. of 140K. The allowable
soil pressure is 5 ksf and the bottom of the footing is 5 ft below final grade. Design the footing using
fl =4 ksi, f, = 60ksi, and the ACI strength design method.

Solution

1. Determine the location of the resultant of the column loads. Take moments about the center of
the extedor column I
v (250 + 140) x 16
(250 4+ 140) + (180 + 120)
The distance of the resultant from the property line is 9 4 2 = 11.0ft. The length of the footing

is 2 x 11 = 22.0ft. In this case the resultant of column loads will coincide with the resultant
of the upward pressure on the footing.

2. Determine the area of the footing. Assume the footing total depth is 36in. (d = 36 — 4.5 =
31.5in.)

Total actual (working) loads = 300 + 390 = 690 K

36
New upward pressure = 50600 — (—» X 150) — (2 x 100) = 4500 psf

=9 ft from column I

12
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(Assumed weight of soil is 100 psf.)
Required area = %q = 1533 fe

Width of footing = %5:23 =697 ft

Use 7 ft. Choose a footing 22 by 7 ft (area = 154 ft?).
3. Determine the factored upward pressure using factored loads:

P, (columnI) = 1.2 x 180+ 1.6 x 120 =408 K
P (column II) = 1.2 x 250+ 1.6 x 140 =524 K

The net factored soil pressure is g, = (408 + 524)/154 = 6.05 ksf.

4. Draw the factored shearing force diagram as for a beam of L = 22 ft supported on two columns
and subjected to an upward pressure of 6.05ksf x 7 (width of footing) = 42.35 K/ft (per foot
length of footing).

8
V, (at outer face column I} = 42.35 (2 — E) =565K

8
V. (at interior face column I) = 408 — 42.35 (2 + E) =295K

10
V, (at outer face column II) = 42.35 (4 - E) =1341K

10
V. (at interjor face column I) = 524 — (4 + 1—2) x 42.35=3193 K

Find the point of zero shear, x; distance between interior faces of columns I and II is

8 10
2 _ 2
16 TIET) 5 ft
295
- (145) =69 ft
*= o5 +3193) U4 6.9

5. Draw the factored moment diagram considering the footing as a beam of L = 22 ft supported
by the two columns. The uniform upward pressure is 47.5 K/ft.

(1.33)2

M, (at outer face column I) = 423.5 =376 KAt

=212.8 K-t

(3.17)2
M, (at outer face column II) = 42.35 2

The maximum moment occurs at zero shear:

. , 8 42.35 8 2
Maximum M, (calculated from column I side) = 408 { 6.9 + Bl 2 6.9 + o +2

= 1149 K -ft

10\ 4235 10 ?
Maximum M, (from column II side) = 524 (?.6 + E) - (7.6 + - + 4)

= 1146 K-ft
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The moments calculated from both sides of the footings are close enough, and M, =
1149 K.-ft may be adopted. This variation occurred mainly because of the adjustment of the
length and width of the footing.

6. Check the depth for one-way shear. Maximum shear occurs at a distance d = 31.5in. from the
interior face of column H (Fig. 13.23).

1.
Vi, = 3193 - 3«3-12—5(42.35) =2087 K

gV 202.7 x 100
T $OAMIDb  0.75(2(1)4/4000)(7 x 12)

The effective depth provided is 31.5in. > 26.1in.; thus, the footing is adequate.
7. Check depth for two-way shear (punching shear). For the interior column,

= 26.1 in.

4
bp=4(c+d)= (E) Q0+ 31.5) = 1717 ft

_20+31.5
12
The shear V,,, at a section d/2 from all sides of the column is equal to

(c+d) =429 ft

Vi, = Pu2 — qu(c +d)? = 524 — 6.05(4.29)* = 413 K

g Ve _ 413(1000)
T p@A/fDby  0.75(4(1)/4000)(17.7 x 12)

The exterior column is checked and proved not to be critical.
8. Check the depth for moment and determine the required reinforcement in the long direction.

=103 < 31.5in

Maximum bending moment = 1149 K.-ft

R Me _ 1149(12,000)
“Tbd? (7 x 12)(31.5)2

Applying Eq. 13.14, the steel percentage is o = 0.0033 = 0.0033 (pmin)-
A = 0.0033(84 x 31.5) = 8.73 in.?

= 166 psi

Min A, (shrinkage) = 0.0018(84)(36) = 5.44 in.”
A, = 8.73 in.2 controls. Use 10 no. 9 bars (A; = 10 in.%).

84 —6 t
Spacing of bars = (concre e. cover) = 8.67 in.
9 (no. of spacings)

The bars are extended between the columns at the top of the footing with a concrete
cover of 3in. Place minimum reinforcement at the bottom of the projecting ends of the footing
beyond the columns to take care of the positive moments. Extend the bars a development length
;7 beyond the side of the column.

The minimum shrinkage reinforcement is 5.44 in.? Use seven no. 8 bars (A; = 5.5in.%)

The development length required for the main top bars is 1.3/y = 1.3(54) = 70in. beyond
the point of maximum moment. Development lengths provided to both columns are adequate.

9. For reinforcement in the short direction, calculate the bending moment in the short (transverse)
direction, as in the case of single footings. The reinforcement under each column is to be placed
within 2 maximum bandwidth equal to the column width twice the effective depth 4 of the
footing (Fig. 13.24).
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Figure 13.23 Example 13.6: Design of a combined footing.
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= o
| I |
| | |
|
ra-——5' 6"*—| |477‘ 0”——-[--«—— 25"
- 220"
(@)
A 1
re—2' 10— 1’ 4" pe—2 10" —»] |e—2 8"—! 18" [o—2 B'—m
> 70 - 7o -
Exterior footing | Interior footing It
(b) (c)

Figure 13.24 Design of combined footing, transverse direction: {g) plan, {b) exterior

footing, and (c) interior footing.

a. Reinforcement under exterior column I:

Bandwidth = 16 in. (column width)
+ 16 in. (on exterior side of column)
+ 315 in. (d)
=63.5in. =53 ft

Use 5.5 ft. Net upward pressure in the short direction under column 1 is
P _ 408

= =58.3 K/t
width of footing 7

Distance from the free end to the face of the column is % - % =283 ft.

%(2‘83)2 = 233.5 K-ft

_ M,  2335x 12,000
T bd? (5.5 x 12)(31.5)2

M, (at face of column I) =

Ry

43 psi
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The steel percentage, p, is less than minimum p for shrinkage reinforcement ratio of 0.0018.
Agsmin = (0.0018)(5.5 x 12)(36) = 4.3 in.?

Use six no. 8 bars (A, = 4.71in.%) placed within the bandwidth of 66in.
b. Reinforcement under the interior column I1:

Bandwidth = 20 + 31.5 + 31.5 = 83 in. = 6.91 ft

Use 71t (841in.).

2
Pur 2 25 )/t

Net d = =
el upward pressure width of footing 7

7 10
Distance to face of column = 37 = 2.67 ft

M, (at face of column II in short direction) = %(’75)(2.6’)’)2 = 267 K-ft
_(267)(12,000)
“T(84)(31.5)2

which is very small. Use a minimum shrinkage reinforcement ratio of 0.0018.

As = (0.0018)(84)(36) = 5.44 in.?

= 38 psi

Use seven no. 8§ bars placed within the bandwidth of 84 in. under column II, as shown in
Figs. 13.23 and 13.24. The development length /; of no. 8 bars in the short direction is
48 in.

13.7 FOOTINGS UNDER ECCENTRIC COLUMN LOADS

When a column transmits axial loads only, the footing can be designed such that the load acts
at the centroid of the footing, producing uniform pressure under the footing. However, in some
cases, the column transmits an axial load and a bending moment, as in the case of the footings
of fixed-end frames. The pressure g that develops on the soil will not be uniform and can be
evaluated from the following equation:

=_4+"">90 13.19

I=3=7 2 ( )
where A and I are the area and moment of inertia of the footing, respectively. Different soil
conditions exist, depending on the magnitudes of P and M, and allowable soil pressure. The
different design conditions are shown in Fig. 13.25 and are summarized as follows:

1. When e = M/P < L/6, the soil pressure is trapezoidal.

P Mc P oM
_F =P oM 13.20
Ymax A + ] LB + BL2 ( )

P Mc P 6M
a=Me_ L 2% 13.21
Min =4 "7 TLB  BL? a2l

e s it i e Sinak ki
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p (@) Case 1. e < L1, Qumox =
f M P - % = .ﬂ + @
M= M & Hp /#\ ATt
e=M/P (b) Triangular soit pressure (e = (/)
| _o-L_M
H I Qoun = - ‘.B 812
} > _ P 6Mm 2P
h ¢ Groe = 18" B2 " 1B
—+— (¢) Triangular soil pressure (e > L/6)
IL L =1| x=(L-pw3=tr-e
P = Qo (302} 8
Grmn t ¥ Gmor = API3B(L — 2€)
Oeax  (d) Footing moved a distance e from the axis
of the column, Maximurn moment occurs
ot section n—n. This is @ case of uniform soil
(0) pressure.
p| e
Qenin H M=M + Hh
: \LJ\J\]\‘\I\ Qv ! o= M/P
wj M
—— t r! Y nql
b \
© ! ]
)
e LT
- /2 {
i Grax [ L -
|
: X
e
«©) (d)
Figure 13.25 Single footing subjected to eccentric loading: L = length of footing, 8 =
width, and h = height.
2. When ¢ = M/P = L/6, the soil pressure is triangular.
P oM 2P
=—+ === 13.22
o= TE v B2 LB (1322)
P oM P eM
in=0= =~ or = 13.23
min LB BL? LB~ BL? (13.23)
3. When e > L/6, the soil pressure is triangular.
L—-y L
X=—>"—"=——¢
2
3x
2P 4P

Tmax = 3B = 3B(L - 2¢)
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4. When the footing is moved a distance e from the axis of the column to produce uniform
soil pressure under the footing. Maximum moment occurs at section n-n.

M
M=M —Hh and e=F

13.8 FOOTINGS UNDER BIAXIAL MOMENT

In some cases, a footing may be subjected to an axial force and biaxial moments about its
x- and y-axes; such a footing may be needed for a factory crane that rotates 360°. The footing
then must be designed for the critical loading.
Referring to Fig. 13.26, if the axial load P acts at a distance e, from the y-axis and e,
from the x-axis, then
M,=Pe, and M, = Pe,

The soil pressure at corner 1 is
P Mg, + Mcx

Gmax = X + I 1
At comer 2,
P Mc, Mc,
gy =——
At comer 3,
P My My,
g3=—=
At comer 4,
P My, My,
g4 = —
A I I,
y

P+
a6} _g
B X—1 - [ .._.A_.___.t_..x
B8/6

"6 L1/
® v @

e

Figure 13.26 Footing subjected to P and biaxial moment. If e, < L/6 and e, < 8/6,
footing will be subjected to upward soil pressure on all bottom surface (nonuniform
pressure).
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Again, note that the allowable soil pressure must not be exceeded and the soil cannot take
any tension; that is, g > 0.

Example 13.7

A 12-in. by 24-in. column of an unsymmetrical shed shown in Fig. 13.27« is subjected to an axial
load Pp = 220K and a moment M, = 180 K-ft due to dead load and an axial load Py = 165K
and a moment M; = 140K-ft due to live load. The base of the footing is 5 ft below final grade, and
the allowable soil bearing pressure is 5 ksf. Design the footing using f/ = 4 ksi and f, = 60ksi.

¢ column

g |

1 !
re—(L{2 + e)—-—t—gl/g%—

e

L/2 /2

qeunior)] _f F F 1} T 1

TR 57
RN PR AS
’ PR A RN

(@ )
M 12" fawbend 127
T
flp\ !
“_‘h_ — ] |—10
] ;
& 67— (1 f— 5 6" Lt—5 (' —fa—5' (' —]
Width
by =¢ 3
A i - B
C, . D !
-—1/2——1--1-—' 1] 2 oy .
‘ 1
\ Wz
\‘() 518 s
Qi = 6.77 Kef l
AS—— s

(c) ()
Figure 13.27 Example 13.7.
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Solution
The footing is subjected to an axial load and a moment

P =220+165=385K
M = 180 + 140 = 320 K-ft

The eccentricity is

e=—=——-—=997in. say, 10 in.

The footing may be designed by two methods.

Method 1: Move the center of the footing a distance ¢ = 10in. from the center of the column.

In this case, the soil pressure will be considered uniformly distributed under the footing (Fig. 13.275).

Method 2: The footing is placed concentric with the center of the column. In this case, the soil

pressure will be trapezoidal or triangular (Fig. 13.27¢), and the maximum and minimum values can
be calculated as shown in Fig. 13.27.

1.

2.

The application of the two methods to Example 13.7 can be explained briefly as follows:

For the first method, assume a footing depth of 20in. (d = 16.5 in.) and assume the weight of soil
is 100 pcf. Net upward pressure is 5000 — % x 150 (footing) — (5 — %) x 100 == 4417 psf.

Area of footing = % =87.1 ft*

Assume a footing width of 9 ft; then the footing length is 87.1/9 = 9.7 ft, say, 10ft. Choose a
footing 9 by 10ft and place the column eccentrically, as shown in Fig. 13.27d. The center of
the footing is 10in. away from the center of the column.

The design procedure now is similar to that for a single footing. Check the depth for two-way
and one-way shear action. Determine the bending moment at the face of the column for the
longitudinal and transverse directions. Due to the eccentricity of the footing, the critical section
will be on the left face of the column in Fig. 13.27d. The distance to the end of footing is
(5 x 12) — 2 = 58in, = 4.833ft.

P,=12D+16L=12x200+1.6x%165=504 K

_ 504
T 9x10

Gu = 5.6 ksf

2
Maximum M, = (5.6 X 9) x (4.333)

= 588.6 K-ft (in 9-ft width)

In the transverse direction,

42
M, =((5.6x10) x % = 448 K ft

Revise the assumed depth if needed and choose the required reinforcement in both directions
of the footing, as was explained in the single-footing example.

For the second method, calculate the area of the footing in the same way as explained in the
first method; then calculate the maximum soil pressure and compare it with that allowable
using actual loads.

Total load P =385 K
Size of footing = 10 x 9 ft
Because the eccentricity is e = 10 in. < L/6 =10 X % = 20 in., the shape of the upward soil
pressure is trapezoidal. Calculate the maximum and minimum soil pressure:

oM 385 6 x 320

9o = 7E ¥ 312~ 10x0 T 91002 ” ®
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The footing is not safe. Try a footing 9.25 x 13 ft (area = 120.25ft?).
385 + 6 x 320

Gmax = 12025  9.25(13)2

Jmin = 3.2 — 1.22 = 1.98 ksf

4. Calculate the factored upward pressure using factored loads; then calculate moments and shears,
as explained in previous examples.

= 4.22 ksf < 4.42 ksf

13.9 SLABS ON GROUND

A concrete slab laid directly on ground may be subjected to

1. Uniform load over its surface, producing small internal forces.

2. Nonuniform or concentrated loads, producing some moments and shearing forces. Tensile
stresses develop, and cracks will occur in some parts of the slab.

Tensile stresses are generally induced by a combination of

1. Contraction due to temperature and shrinkage, restricted by the friction between the slab
and the subgrade, causing tensile stresses

2. Warping of the slab
3. Loading conditions
4. Settlement

Contraction joints may be formed to reduce the tensile stresses in the slab. Expansion joints
may be provided in thin slabs up to a thickness of 10Qin.

Basement floors in residential structures may be made of 4- to 6-in. concrete slabs reinforced
in both directions with a wire fabric reinforcement. In warehouses, slabs may be 6 to 12 in. thick,
depending on the loading on the slab. Reinforcement in both directions must be provided, usually
in the form of wire fabric reinforcement. Basement floors are designed to resist upward earth
pressure and any water pressure. If the slab rests on very stable or incompressible soils, then
differential settlement is negligible. In this case the slab thickness will be a minimum if no water
table exists. Columns in the basement will have independent footings. If there is any appreciable
differential settlement, the floor slab must be designed as a stiff ra ft foundation.

13.10 FOOTINGS ON PILES

When the ground consists of so ft material for a great depth, and its bearing capacity is very
low, it is not advisable to place the footings directly on the soil. It may be better to transmit
the loads through piles to a deep stratum that is strong enough to bear the loads or to develop
sufficient friction around the surface of the piles.

Many different kinds of piles are used for foundations. The choice depends on ground
conditions, presence of ground water, function of the pile, and cost. Piles may be made of
concrete, steel, or timber.

In general, a pile cap (or footing) is necessary to distribute the load from a column to the
heads of a number of piles. The cap should be of sufficient size to accommodate deviation in
the position of the pile heads. The caps are designed as beams spanning between the pile heads
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and carrying concentrated loads from columns. When the column is supported by two piles, the
cap may be designed as a reinforced concrete truss of a triangular shape.

The ACI Code, Section 15.2, indicates that computations for moments and shears for
footings on piles may be based on the assumption that the reaction from any pile is concentrated
at the pile center. The base area of the footing or number of piles shall be determined from the
unfactored forces and moments.

The minimum concrete thickness above the reinforcement in a pile footing is limited to
12 in. (ACI Code, Section 15.7). For more design details of piles and pile footings, refer to books
on foundation engineering.

13.11 SI EQUATIONS

1. One-way shear:

¢V, = 0.17r¢\/ f/bd (13.3)
2. Two-way shear:
V., = 0.331/ flbod (13.6)
V., =0.17 (1 + %) r/ Flbod (13.7)
ol
V., = 0.083 (b— + 2) A fibod (13.8)
o

Other equations remain the same.

SUMMARY

Sections 13.1-13.4

1. General:
H = distance of the bottom of footing from final grade (ft)
h = total depth of footing (in.)
¢ = wall thickness (in.)
q. = allowable soil pressure (ksf)
g. = effective soil pressure
W, = weight of soil (pcf) (Assume 100 pef if not given)
2. Design of wall footings: The design steps can be summarized as follows.
a. Assume a total depth of footing 4 (in.). Consider 1-ft length of footing.
b. Calculate g, = g, — (h/12)(150) — W (H — h/12) (g, in psf).
¢. Calculate width of footing: B = (total service load)/g. = (Pp + P,p)/q.. (Round to the
nearest higher half foot.) The footing size is (B x 1) ft.

d. Calculate the factored upward pressure, g, = P,/B
P, =12Pp+ 1.6FP,
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e. Check the assumed depth for one-way shear requirements considering d, = (h — 3.5)
in. (Two-way shear does not apply.)

V.(1000)

= da
@22/ f)(12)

f. Calculate the bending moment and main steel. The critical section is at the face of the
wall.

o M, =05q, (LI2 — c/2)?; get R, = M, /bd*.
» Determine p from tables in Appendix A or from Eq. 13.14.
o A; = pbd = 12 pd in2ft; A; > Agpin.
» Minimum steel for shrinkage is
Ag = 0.0018 (bh) for f, = 60 ksi

Agn = 0.0020 (bh) for f, = 40, or 50 ksi
Minimum steel for flexure is

200
Ag = (@) bd = (—) (12d) when f! < 4500 psi
Iy Iy

3/ fH(12d)
5

A, calculated must be greater than Ag, (shrinkage). However, if A; < Ay, it is
recommended to use A; = Ag and then choose bars and spacings.
g. Check development length: Refer to Tables 7.1, 7.2, 7.3 and 7.4.

h. Calculate secondary reinforcement in the direction of the wall. A; = Agy, as calculated
in step 6d using b = 12in. Choose bars and spacings.

Required d =

Ag = when f] > 4500 psi

. Design of square/rectangular footings: The design steps are as follows.

a. Assume a total depth 2 (in.); let 4, (assumed) = (A — 4.5) in. Calculate g, = g, —
(h/12)(150) — W (H — h/12). (Use psf.)

b. Calculate the area of the footing, AF = (Pp + Pr)/g.. Choose either a square footing,
side = +/AF, or a rectangular footing of length L and width B (short length); then
round dimensions to the higher half ft.

¢. Calculate g, = P,/(LB).

d. Check footing depth due to two-way shear first. Maximum V,; occurs at a section
located at a distance equal to d/2 around the column.

1. Calculate by = 4(c + d) for square columns and by = 2 (¢c1 + d) + 2 (¢c2 + d) for
rectangular columns.

Ve, = Py — qulc + d)? for square columns

Vi, = Py — qulc1 +d)(c2 + d) for rectangular columns
2. Calculate d, = V,,,/4¢A\/flbo when B = LIB < 2.
— Vi,
6+ 4/B)A/Flbo

di when 8>2
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3. Calculate
— Vi
b (ersd /by + A/ Flbo
Let d = the larger of d; and dy. If d is less than d, (assumed), increase d, (or )
and repeat. The required d should be close to the assumed d, (within 5% or lin.
higher).
. Check one-way shear (normally does not control in single footings):
1. V,,, = quB(L/2 = c/2 — d) in the long direction (or for square footings).

dz

du = /T
291,/ fIB
2. Vu, = quL(B/2 — ¢/2 — d) in the short direction.
V. .
diy = L (for rectangular footings)
20A/fIL

3. Let d be the larger of dy; and d;»; then use the larger 4 from steps 4 and 5.
4. Determine & = (d + 4.5) in.; round to the nearest higher inch.
5. Calculate the final d = (k — 4.5) in.

. Calculate the bending moment and the main steel in one direction only for square
footings and two directions for rectangular footings.

1. In the long direction (or for square footings)

L B M
My = 0.5g, (— - f) R, = =%

2 2 Bd?

2. In the short direction (for rectangular footings):
B ¢\* My
Mus = 056}“ (-QT - E) Rus = m

3. Calculate the reinforcement in the long direction, Ag, and in the short direction, Ags,
using Eq. 13.14.

4. Check that Aq and Ag are greater than the minimum steel reinforcement. Choose
bars and spacings. For square footings, the same bars are used in both directions.
Distribute bars in the bandwidth of rectangular columns according to Eq. 13.15.

. Check bearing stress:

1. Calculate Ny and N, : Ny $(0.85f A1), where ¢ = 0.65 and A; = area of column
section; Iyz = N1/A3/A; < 2N, where A, == square area of footing under column
(Ay = B”).

2. If P, < N, bearing stress is adequate. Minimum area of dowels is 0.005 A. Choose
four bars to be placed at the four corners of column section.

3. If P, > Ni, determine the excess load, Pex = (P, — N)), and then calculate Agg
(dowels) = P/ fy. Asa must be equal to or greater than 0.005A,. Choose at least
four dowel bars.

4. Determine the development length in compression for dowels in the column and in
the footing.

i 5 st aa AR
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h. Calculate the development lengths, /;, of the main bars in the footings. The calculated
I3 must be greater than or equal to Iy provided in the footing. Provided I, is (L/2 — ¢/2
— 3) in. in the long direction and I; = (B/2 — ¢/2 — 3) in the short direction. Examples
13.2 and 13.3 explain these steps.

Section 13.5

Plain concrete may be used to support walls. The maximum flexural stress in tension should be
calculated and must be less than the allowable stress of 5¢./f/.

Section 13.6

A combined footing is used when a column is located near a property line. Design of such
footings is explained in Example 13.6.

Sections 13.7-13.9

Footings under eccentric column loads are explained in Example 13.7.
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PROBLEMS

For all problems in this chapter, use the following:
H, = distance from bottom of footing to the final grade
h = depth of concrete footing
g, = allowable soil pressure in ksf

Assume the weight of the soil is 100 pcf and f, = 60 ksi.

13.1 For each problem in Table 13.1, design a wall footing to support the given reinforced concrete wall
loads. Design for shear and moment; check the development length requirements. Also, determine
the footing bars and their distribution. (Assume d = & — 3.5in.)

13.2 For each problem in Table 13.2, design a square single footing to support the given square and round
column loads. Design for moments, shear, load transfer, dowel length, and development lengths for
footing main bars. Choose adequate bars and spacings. (Assume d = k& — 4.5in. for all problems.)
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Table 13.1 Problem 13.1
Part Answers
Wall Dead Live f, Qs H L h
Number Thickness (in.} Load (K/ft) Load (K/At) (Ksi) (Ksf) ({f) ({ft) {in.}
(a) 12 22 12 3 4 5 i0 19
(b) 12 18 14 3 5 4 7.5 17
{c) 14 28 16 3 6 6 8.5 20
(d) 14 26 24 3 4 5 14.5 27
(e) 16 32 16 3 5 5 11 23
(f) 16 24 20 4 6 8 9 19
(2) 14 20 18 4 4 6 11.5 19
(h) 14 28 20 4 5 4 10.5 21
(1) 12 18 14 4 6 5 6 14
()] 14 16 20 4 6 5 7 16
Table 13.2 Problem 13.2
Part Answers
Column Column Dead Live f. Gs H L h
Number {in.) bars Load (K) Load(K) (Ksi) (Ksf) (ft) (ft) {in.)
(a) 16 x 16 8 no. 8 150 115 3 5 6 3 20
(b) i8 x 18 8 no. 9 160 100 3 6 5 7 19
{c) 20x 20 12no.9 245 159 3 6 7 9 23
(d) 12 x 12 8 no. 8 180 140 3 5 8 9 24
(e) 14 x 14 8no. 9 140 160 4 5 6 8.5 21
) 16 x 16 8no. 9 150 140 4 4 5 10 21
(2) 18 x 18 12 no.8 200 120 4 6 7 8 20
(h) 20 x 20 12 no. 9 195 195 4 5 8 1O 22
i Dia. 20 8 no. 9 120 85 4 5 5 7 16
1] Dia. 16 8 no. 8 110 90 3 4 6 8 18
13.3 Repeat Problem 13.2a—h using rectangular footings with widths of 6, 6, 8, 8, 7, &, 6, and 911,

134

135

13.6

13.7

respectively.
Repeat Problem 13.2a-d using rectanguiar columns of 14 x 20ia., 16 x 20in., 16 x 24in., and
12 x 18in., respectively, and rectangular footings with the length equal to about 1.5 times the width.

Repeat Problem 13.1a—d using plain concrete wall footings and one-half the applied dead and live
loads.

Design a rectangular combined footing to support the two columns shown in Fig. 13.28. The center
of the exterior column is 1ft away from the property line and 14 ft from the center of the interior
column. The exterior column is square with 18-in. sides, is reinforced with no. 8 bars, and carries an
axial dead load of 160K and a live load of 140 K. The interior column is square with 20-in. sides,
is reinforced with no. 9 bars, and carries an axial dead load of 240K and a live load of 150K. The
bottom of the footing is 5 ft below final grade. Use f/ =4 ksi, f, = 60 ksi, and an allowable soil
pressure of 5 ksf.

Determine the footing areas required for a balanced footing design (equal settlement approach) if the
usual load is 25% for all footings. The allowable soil pressure is 5ksi and the dead and live loads
are given in Table 13.3,
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Figure 13.28 Problem 13.6.

Table 13.3 Problem 13.7

Footing no.
1 2 3 4 5 6
Dead load 130K 220K 150K 180K 200K 240K
Live load 160K 220K 210K 180K 220K 200K

13.8 The 12- by 20-in., (300- by 500-mm) column of the frame shown in Fig. 13.29 is subjected to an
axial load Pp = 200K and a moment Mp = 120K.ft due to dead load and an axial load P; =
160K and a moment M; = 110K-fi due to live load. The base of the footing is 4 ft below final
grade. Design the footing using f = 4 ksi, f; = 40 ksi, and an allowable soil pressure of 4 ksi. Use
a uniform pressure and eccentric footing approach.

13.9 Repeat Problem 13.8 if both the column and the footing have the same centerline (concentric case).

13.10 Determine the size of a square or round footing for the case of Problem 13.9, assuming that the
loads and moments on the footing are for a rotating crane fixed at its base.

";’/T\

Figure 13.29 Problem 13.8.



CHAPTER 1 4

RETAINING
WALLS

14.1 INTRODUCTION

Retaining walls are structural members used to provide stability for soil or other materials and
to prevent them from assuming their natural slope. In this sense, the retaining wall maintains
unequal levels of earth on its two faces. The retained material on the higher level exerts a force
on the retaining wall that may cause its overturning or failure. Retaining walls are used in bridges
as abutments, in buildings as basement walls, and in embankments. They are also used to retain
liquids, as in water tanks and sewage-treatment tanks.

14.2 TYPES OF RETAINING WALLS

Retaining walls may be classified as follows (refer to Fig. 14.1):

L

Gravity walls usually consist of plain concrete or masonry and depend entirely on their
own weight to provide stability against the thrust of the retained material. These walls are
proportioned so that tensile stresses do not develop in the concrete or masonry due to the
exerted forces on the wall. The practical height of a gravity wall does not exceed 10 ft.

Semigravity walls are gravity walls that have a wider base to improve the stability of the
wall and to prevent the development of tensile stresses in the base. Light reinforcement is
sometimes used in the base or stem to reduce the large section of the wall.

The cantilever retaining wall is a reinforced concrete wall that is generally used for heights
from 8 to 20 ft. It is the most common type of retaining structure because of economy and
simplicity of construction. Various types of cantilever retaining walls are shown in Fig. 14.1.

Counterfort retaining walls higher than 20 ft develop a relatively large bending moment
at the base of the stem, which makes the design of such walls uneconomical. One solu-
tion in this case is to introduce transverse walls (or counterforts) that tie the stem and
the base together at intervals. The counterforts act as tension ties supporting the vertical
walls. Economy is achieved because the stem is designed as a continuous slab spanning
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Figure 14.1 Types of retaining walls.

horizontally between counterforts, whereas the heel is designed as a slab supported on three
sides (Fig. 14.14).

5. The buttressed retaining wall is similar to the counterfort wall, but in this case the transverse
walls are located on the opposite, visible side of the stem and act in compression (Fig 14.17).
The design of such walls becomes economical for heights greater than 20 ft. They are not
popular because of the exposed buttresses.

6. Bridge abutments are retaining walls that are supported at the top by the bridge deck. The
wall may be assumed fixed at the base and simply supported at the top.
7. Basement walls resist earth pressure from one side of the wall and span vertically from the

basement-floor slab to the first-floor slab. The wall may be assumed fixed at the base and
simply supported or partially restrained at the top.
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14.3 FORCES ON RETAINING WALLS

Retaining walls are generally subjected to gravity loads and to earth pressure due to the retained
material on the wall. Gravity loads due to the weights of the materials are well defined and
can be calculated easily and directly. The magnitude and direction of the earth pressure on a
retaining wall depends on the type and condition of soil retained and on other factors and cannot
be determined as accurately as gravity loads. Several references on soil mechanics [1,2) explain
the theories and procedure for determining the soil pressure on retaining walls. The stability of
retaining walls and the effect of dynamic reaction on walls are discussed in Refs. 3 and 4.

Granular materials, such as sand, behave differently from cohesive materials, such as clay,
or from any combination of both types of soils. Although the pressure intensity of soil on a
retaining wall is complex, it is common to assume a linear pressure distribution on the wall. The
pressure intensity increases with depth linearly, and its value is a function of the height of the
wall and the weight and type of soil. The pressure intensity, p, at a depth % below the earth’s
surface may be calculated as follows:

p=Cwh

where w is the unit weight of soil and C is a coefficient that depends on the physical properties
of soil. The value of the coefficient C varies from 0.3 for loose granular soil, such as sand, to
about 1.0 for cohesive soil, such as wet clay. If the retaining wall is assumed absolutely rigid,
a case of earth pressure at rest develops. Under soil pressure, the wall may deflect or move a
small amount from the earth, and active soil pressure develops, as shown in Fig. 14.2. If the
wall moves toward the soil, a passive soil pressure develops. Both the active and passive soil
pressures are assumed to vary linearly with the depth of wall (Fig. 14.2). For dry, granular,
noncohesive materials, the assumed linear pressure diagram is fairly satisfactory; cohesive soils
or saturated sands behave in a different, nonlinear manner. Therefore, it is very common to use
granular materials as backfill to provide an approximately linear pressure diagram and also to
provide for the release or drainage of water from behind the wall.

For a linear pressure, the active and passive pressure intensities are determined as follows:

(14.1)

Pa = Cawh (14.2)
Py =Cpwh (14.3)
ey 50!
\
1
u ll
! Active
h
T Hy = Cowh?/2
e Passive I A
ey 2 s B e W
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Pqg = Cowh

Figure 14.2 Active and passive earth pressure.



14.4 Active and Passive Soil Pressures 463

where C, and C, are the approximate coefficients of the active and passive pressures,
respectively.

14.4 ACTIVE AND PASSIVE SOIL PRESSURES

The two theories most commonly used in the calculation of earth pressure are those of Rankine
and Coulomb [1,6].

1. In Rankine’s approach, the retaining wall is assumed to yield a sufficient amount to develop
a state of plastic equilibrium in the soil mass at the wall surface. The rest of the soil
remains in the state of elastic equilibrium. The theory applies mainly to a homogeneous,
incompressible, cohesionless soil and neglects the friction between soil and wall. The active
soil pressure at a depth 4 on a retaining wall with a horizontal backfill based on Rankine’s
theory is determined as follows:

1 —sing
P, =Cowh = wh | —— 14,
a = CaWh =W (1+sin¢>) (14.4)
where
[ — g
Co = (_‘fﬂ)
1 +sing
¢ = angle of internal friction of the soil (Table 14.1)
) wh? {1 —sin¢
Total active pressure, H, = 5 (1 e ¢) (14.5)

The resultant, H,, acts at #/3 from the base (Fig. 14.2). When the earth is surcharged at
an angle & to the horizontal, then

cosd — y/cos? 8 — cos?
. =088 v ¢ (14.6)
c0s § + /cos2 8§ — cos? ¢
wh?
P, =Cawk and H; = CaT
Table 14,1 Values of w and ¢
Unit Weight, W Angle of
Internal
Type of Backfill pcf kg/m® Friction, ¢
Soft clay 90-120 1440-1920 0°-15°
Medium clay 100-120 1600-1920 15°~30°
Dry loose silt 100-120 1600-1920 27°-30°
Dry dense silt 110-120 1760-1920 30°-35°
Loose sand and gravel 100--130 1600-2100 30°-40°
Dense sand and gravel 120-130 1920-2100 25°-35°
Dry loose sand, graded 115-130 1840-2100 33°-35°

Dry dense sand, graded 120-130 1920-2100 42" -46°
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Reinforced concrete retaining wall.

Retaining wall in a parking area.
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Figure 14.3 Active soil pressure with surcharge.
Table 14.2 Values of C,
¢ (Angle of Internal Friction)
A 28° 30° 32° 34° 36° 38° 40°
0° 0.361 0.333 0.307 0.283 0.260 0.238 0.217
10° 0.380 0.350 0.321 0.294 0.270 0.246 0.225
20° 0.461 0.414 0.374 0.338 0.306 0.277 0.250
25° 0.573 0.494 0434 0.385 0.343 0.307 0.275
30° 0 0.866 0.574 0.478 0411 0.358 0.315

The resultant, H,, acts at A/3 and is inclined at an angle & to the horizontal (Fig. 14.3).
The values of C,; expressed by Eq. 14.6 for different values of § and ¢ are shown in
Table 14.2.

Passive soil pressure develops when the retaining wall moves against and compresses
the soil. The passive soil pressure at a depth » on a retaining wall with horizontal backfill
is determined as follows:

(14.7)

| +si
Py = Cyuh = wh (2%

1 —sing

c _(l+sin¢)_ 1
P \1—sing T C,

where

Total passive pressure is

wh? (1 +sing
Hr=7 (l—sin¢) (14.8)
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The resultant, H,, acts at A’/3 from the base (Fig. 14.2). When the earth is surcharged at
an angle é to the horizontal, then

28 — 2
C, = coss cos 8 + 1/cos cos? ¢ (149)
€0s 8 — /cos2 8 — cos? ¢
k2

H, acts at #'/3 and is inclined at an angle & to the horizontal (Fig. 14.4). The values of
C, expressed by Eq.14.9 for different values of § and ¢ are shown in Table 14.3.

The values of ¢ and w vary with the type of backfill used. As a guide, common values of
¢ and w are given in Table 14.1.

. In Coulomb’s theory, the active soil pressure is assumed to be the result of the tendency of
a wedge of soil to slide against the surface of a retaining wall. Hence, Coulomb’s theory
is referred to as the wedge theory. While it takes into consideration the friction of the soil
on the retaining wall, it assumes that the surface of sliding is a plane, whereas in reality
it is slightly curved. The error in this assumption is negligible in calculating the active soil
pressure. Coulomb’s equations to calculate the active and passive soil pressure are as follows:

Figure 14.4 Passive s0il pressure with surcharge.

Table 14.3 Values of C,

¢ (Angle of internal Friction)

28° 30° 32° 34° 36° 38° 40°
0° 277 3.00 3.25 3.54 3.85 4.20 4.60
10° 2.55 2.78 3.02 3.30 3.60 3.94 4.32
207 1.92 213 2.36 2.61 2.89 3.19 3.53
25° 1.43 1.66 1.90 2.14 2.40 2.68 3.00
30° 0 0.87 1.31 1.57 1.83 2.10 2.38
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The active soil pressure is

Pa — Cawh
where
204 _
. cos’(¢p — 6) . (14.10a)
2 sin(¢ + B) sin(¢ — 9)
cos? 0 cos(f + B) [1 + \/cos(ﬁ? + B) cos(6 — 8)
where

¢ = angle of internal friction of soil

# = angle of the soil pressure surface from the vertical

B = angle of friction along the wall surface (angle between soil and concrete)
8 = angle of surcharge to the horizontal

The total active soil pressure is

wh? h
H =g = —_
a=C 5 Pa 2
When the wall surface is vertical, # = 0°, and if 8 = §, then C, in Eq. 14.10a reduces to
Eq. 14.6 of Rankine.

Passive soil pressure is

hIZ ht
Pp=prh' and H =(E)?“)CP=P —

where

2
C, = Cos (@ +9) (14.100)

2
) ~ _ [ sin(¢ + B) sin(¢ +8)
cos® @ cos(6 — B) |:1 \/cos(e — B)cos(¢p — &)

The values of ¢ and w vary with the type of backfill used. As a guide, common values of
¢ and w are given in Table 14.1.

3. When the soil is saturated, the pores of the permeable soil are filled with water, which exerts
hydrostatic pressure. In this case the buoyed unit weight of soil must be used. The buoyed
unit weight (or submerged unit weight) is a reduced unit weight of soil and equals w minus
the weight of water displaced by the soil. The effect of the hydrostatic water pressure must
be included in the design of retaining walls subjected to a high water table and submerged
soil. The value of the angle of internal friction may be used, as shown in Table 14.1.

14.5 EFFECT OF SURCHARGE

Different types of loads are often imposed on the surface of the backfill behind a retaining wall.
If the load is uniform, an equivalent height of soil, #;, may be assumed acting on the wall to
account for the increased pressure. For the wall shown in Fig. 14.5, the horizontal pressure due
to the surcharge is constant throughout the depth of the retaining wall.

We

he = — (14.11)
w
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Figure 14.5 Surcharge effect under a uniform load.

where

hs = equivalent height of soil (ft)
wy = pressure of the surcharge (psf)
w = unit weight of soil (pcf)

The total pressure is

hl
Ha = Hal + Haz = Caw (? +hh$) (1412)

In the case of a partial uniform load acting at a distance from the wall, only a portion of
the total surcharge pressure affects the wall (Fig. 14.6).

It 1s a common practice to assume that the effective height of pressure due to partial
surcharge is #', measured from point B to the base of the retaining wall [1]. The line AB forms
an angle of 45° with the horizontal.

In the case of a wheel load acting at a distance from the wall, the load is to be distributed
over a specific area, which is usually defined by known specifications such as AASHTO and
AREA [4] specifications.

Surcharge
AREER
'\7‘7\';\\‘:. f4<) l:'\'! f
450 (P R e
8 LY 7]
< -t
1 h
=1 H
_ll,\l' h' el 2 Ha
X
- /2 h/3
i B ¥
Py Pq

Figure 14.6 Surcharge effect under a partial uniform load at a distance from the wall.
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14.6 FRICTION ON THE RETAINING WALL BASE

The horizontal component of all forces acting on a retaining wall tends to push the wall in a
horizontal direction. The retaining wall base must be wide enough to resist the sliding of the
wall. The coefficient of friction to be used is that of soil on concrete for coarse granular soils
and the shear strength of cohesive soils [4]. The coefficients of friction x that may be adopted
for different types of soil are as follows:

« Coarse-grained soils without silt, & = 0.55
» Coarse-grained soils with silt, i = 0.45

« Silt, u = 0.35

+ Sound rock, ¢ = 0.60

The total frictional force, F, on the base to resist the sliding effect is
F=uR+Hp (14.13)
where
1t = the coefficient of friction

R = the vertical force acting on the base
H, = passive resisting force

The factor of safety against sliding is

F pR+Hp
ah Han
where H,y is the horizontal component of the active pressure, H,. The factor of safety against

sliding should not be less than 1.5 if the passive resistance H, is neglected and should not be
less than 2.0 if H), is taken into consideration,

Factor of safety = >1.5 (14.14)

14.7 STABILITY AGAINST OVERTURNING

The horizontal component of the active pressure, Hy, tends to overturn the retaining wall about the
point zero on the toe (Fig. 14.7). The overturning moment is equal to Mo = Hgh/3. The weight
of the concrete and soil tends to develop a balancing moment, or rightening moment, to resist the
overturning moment. The balancing moment for the case of the wall shown in Fig. 14.7 is equal to

Mp = wix) + waxy + w3x3 = Z wx

Mb Z wx

Factor of safety = E = “H.h >2.0 (14.15)

The factor of safety against overturning is

This factor of safety should not be less than 2.0.

The resultant of all forces acting on the retaining wall, R4, intersects the base at point C
(Fig. 14.7). In general, point C does not coincide with the center of the base, L, thus causing
eccentric loading on the footing. It is desirable to keep point C within the middle third to get
the whole footing under soil pressure. (The case of a footing under eccentric load was discussed
in Chapter 13.)
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Figure 14.7 Overturning of a cantilever retaining wall.

14.8 PROPORTIONS OF RETAINING WALLS

The design of a retaining wall begins with a trial section and approximate dimensions. The
assumed section is then checked for stability and structural adequacy. The following rules may
be used to determine the approximate sizes of the different parts of a cantilever retaining wall.

1.

2.

Height of the wall: The overall height of the wall is equal to the difference in elevation
required plus 3 to 4 ft, which is the estimated frost penetration depth in northern states.
Thickness of the stem: The intensity of the pressure increases with the depth of the stem
and reaches its maximum value at the base level. Consequently the maximum bending
moment and shear in the stem occur at its base. The stem base thickness may be estimated
as é to % of the height, 2. The thickness at the top of the stem may be assumed to be
8 to 121in. Because retaining walls are designed for active earth pressure, causing a small
deflection of the wall, it is advisable to provide the face of the wall with a batter (taper)
of % in. per foot of height, 4, to compensate for the forward deflection. For short walls up
to 10 ft high, a constant thickness may be adopted.

Length of the base: An initial estimate for the length of the base of % to % of the wall
height, 7, may be adopted. )
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Figure 14.8 Trial proportions of a cantilever retaining wall.

4. Thickness of the base: The base thickness below the stem is estimated as the same thickness

of the stem at its base, that is, ﬁ to % of the wall height. A minimum thickness of about
12in. is recommended. The wall base may be of uniform thickness or tapered to the ends
of the toe and heel, where the bending moment is 0.

The approximate initial proportions of a cantilever retaining wall are shown in Fig. 14.8.

14.9 DESIGN REQUIREMENTS

The ACI Code, Chapter 14, provides methods for bearing wall design. The main requirements
are as follows:

1.

2.

The minimum thickness of bearing walls is % the supported height or length, whichever
is shorter, but not less than 4in.
The minimum area of the horizontal reinforcement in the wall is 0.0025bh, where bh is
the gross concrete wall area. This value may be reduced to 0.0020b4 if no. 5 or smaller
deformed bars with f, > 60 ksi are used. For welded wire fabric (plain or deformed), the
minimum steel area is 0.0020bA.
The minimum area of the vertical reinforcement is 0.0015bh, but it may be reduced to
0.0012bh if no. 5 or smaller deformed bars with f, > 60 ksi are used. For welded wire
fabric (plain or deformed), the minimum steel area is 0.0012bh.
The maximum spacing of the vertical or the horizontal reinforcing bars is the smaller of
18 in. or three times the wall thickness.
If the wall thickness exceeds 10in., the vertical and horizontal reinforcement should be
placed in two layers parallel to the exterior and interior wall surfaces, as follows:

For exterior wall surfaces, at least % of the reinforcement A; {(but not more than %AS)

should have a minimum concrete cover of 2 in. but not more than % of the wall thickness.



