
Chapter 10
DSP in Communications

10.1 Introduction

What we have learnt so far is how to convert an analog signal into a digital signal and
to process it using digital filters. The field of digital signal processing has fully
matured and has found applications in diverse fields. In this chapter, we will
concentrate on the application of DSP in one particular field, namely, the field of
digital communications. Radio, telephony, and video are a few of the areas that are
completely enveloped by modern digital and wireless communications. Radio
broadcast started with analog communications. It used analog modulation tech-
niques such as amplitude modulation (AM) and frequency modulation (FM) to
transmit the message signal using radio frequencies (RF). These modulation
schemes use the message signal to modulate a carrier signal in its amplitude
(AM) or in its instantaneous frequency (FM) before transmission. Later digital
modulation methods were introduced to serve the same purpose as the analog
counterparts. Digital modulation plays an important role in modern wireless com-
munications. The art of making very large-scale integrated (VLSI) circuits has
evolved tremendously. This has enabled the design and fabrication of application-
specific integrated circuits (ASIC), which in turn enables the implementation of
complex digital techniques in achieving communications successfully as well as
lowering the cost. Digital communication systems have many advantages over the
analog counterparts. For instance, digital communications has greater immunity to
noise. It is also robust to channel impairments. Another advantage is that many
different data can be multiplexed and transmitted over a single channel. The various
data may include voice, video, and other data, for instance. Since binary digits (bits)
are used in digital communications, there is greater security in the transmitted data.
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This is not feasible in analog communications. Even if there are errors in the received
data, they can be detected and corrected by employing what is known as the channel
coding, in which extra bits are added to the data bits. In analog communications, the
noise in the channel will distort the message signal and is, therefore, impossible to
recover the original signal. Even though digital modulation as such occupies a higher
bandwidth than analog modulation, source coding or data compression is used to
reduce the message bandwidth to start with. Digital communication link perfor-
mance can be improved by using encryption and channel equalization techniques.
Moreover, field programmable gate arrays (FPGA) enable the implementation of
digital modulation and demodulation functions purely in software. This has an
enormous implication because many handheld devices can perform a variety of
functions well in real time using software. These features are certainly a no-no in
analog communications.

In this chapter, we will describe a few DSP methods that are used in digital
communications. More specifically, we will describe how digital pulses can be
shaped at the transmitting side using DSP techniques to cancel what is known as
the inter-symbol interference (ISI). At the receiver, another DSP function, namely,
equalization, is used to mitigate the channel interference. In digital modulation, the
receiver has to detect in each bit interval whether a binary “1” or a binary “0” is
transmitted. This is achieved in an optimal fashion using the so-called matched filter
(MF) or equivalently a correlation filter. We will learn how to implement such filters
as well. We will also learn a few other DSP functions as applied to oversampled
ADC and DAC, digital modulation schemes, and phase-locked loop (PLL).

10.2 Sampling Rate Conversion

Before the transmission of a message signal such as voice or music using digital
modulation, the analog signal must be converted to a digital signal. As we have
seen earlier, the analog-to-digital conversion (ADC) is achieved by first sampling
the continuous-time signal at a minimum of Nyquist rate and then converting the
analog samples to digital numbers. Typical bit widths of an ADC are between
8 and 12 bits. In wireless communications, for instance, the channel bandwidth is
an extremely precious thing. Therefore, the service providers do whatever it takes
to reduce the data rate of every subscriber. The first thing to do here is to reduce
the bit width of the ADC. A one-bit ADC will be super. How is that possible? It is
possible by using a very high sampling rate. We will first learn how to change the
sampling rate and then describe the various DSP methods that incorporate
different sampling rates. This is what is called multi-rate digital signal
processing. That is, a digital signal processing that involves different sampling
rates is termed multi-rate digital signal processing. In multi-rate DSP, sampling
rates at certain points are increased from its native rate. This is known as
upsampling. At other points the sampling rate is decreased from its native rate.
This process is termed downsampling. Upsampling or downsampling may use
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either integer sampling rate or rational sampling rate. Before we discuss ADC
with a sampling rate higher than the Nyquist rate, we need to know the effect of
upsampling or downsampling on the sampled signal.

10.2.1 Upsampling

Let {x[n],� 1 < n < 1} be a sequence that is sampled at the Nyquist rate. If the
original sampling rate is increased by a positive integer factor M, then we can
express the upsampled sequence xu[n] in terms of the original sequence as described
by

xu n½ � ¼ x n=M½ �, n ¼ 0, �M, � 2M, � � �
0, otherwise

�
ð10:1Þ

From the above equation, we find that upsampling amounts to inserting M-1 zeros
between every two consecutive samples. To understand better the process of
upsampling, we need to describe the upsampled sequence in the Z-domain. The
Z-transform of the upsampled sequence is obtained using the definition of the
Z-transform and is given by

Xu zð Þ ¼
X1
n¼�1

xu n½ �z�n ð10:2Þ

In terms of the Z-transform of the original sequence, (10.2) reduces to

Xu z½ � ¼
X1
n¼�1

x
n

M

h i
z�n ð10:3Þ

Define m ¼ n
M and (10.3) becomes

Xu z½ � ¼
X1

m¼�1
x m½ �z�mM ¼

X1
m¼�1

x m½ � zM� ��m ¼ X zM
� � ð10:4Þ

The DTFT of the upsampled sequence can then be found by using z ¼ e jΩ in
(10.4), which is

Xu e jΩ� � ¼ X zð Þjz¼e jΩ ¼ X e jMΩ� � ð10:5Þ
The implication of (10.5) is that the spectrum of xu[n] is the same spectrum of x[n]

but repeated M times in the interval [0, 2π]. In other words, what happens to x[n] in
the frequency domain in the interval [0, 2π] happens M times to the upsampled
sequence in that interval. That is, there are M-1 images of the spectrum X(e jΩ) in the
spectrum of the upsampled sequence in the interval [0, 2π]. In order to preserve the
integrity of the original sequence, the upsampled sequence must be lowpass filtered
to reject the M-1 images.
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Example 10.1 In this example, we will consider a signal consisting of three
sinusoids of frequencies 950 Hz, 1800 Hz, and 1917 Hz, which is sampled at a
rate of 5000 Hz. This signal is then upsampled by a factor of M ¼ 6. We have to
compute the spectra of the original and upsampled sequences as well as the spectrum
of the lowpass filtered upsampled signal to verify that the images are removed from
the spectrum of the upsampled signal.

Solution The actual input signal before sampling is described by

x tð Þ ¼ sin 2πf 1tð Þ þ 2 sin 2πf 2tð Þ þ 1:75 sin 2πf 3tð Þ, t � 0 ð10:6Þ
where the frequencies are f1 ¼ 950Hz, f2 ¼ 1800Hz, and f3 ¼ 1917Hz. In Fig. 10.1 is
shown the stem plots of the input sequence, upsampled sequence, and upsampled
and lowpass filtered sequence in the top, middle, and bottom plots, respectively. As
seen in the middle plot, there are M-1 ¼ 5 zeros between every two consecutive
samples. The corresponding spectra are shown in Fig. 10.2. There are three frequen-
cies present in the spectrum of the original signal. Since the plot is over the interval

Fig. 10.1 Stem plots of the sequences: top, input sequence sampled as 5000 samples/sec; middle,
upsampled sequence using an upsampling factor of 6; bottom, lowpass filtered upsampled
sequence; every sixth sample is plotted
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[0, fs], we see the mirror image of the three frequencies in the top plot. The spectrum
of the upsampled sequence consists of M-1 ¼ 5 images in the interval between zero
and the sampling frequency. The bottom plot depicts the spectrum of the lowpass
filtered sequence wherein the images have been removed. Since there are M-1
images in the interval between zero and the sampling frequency, the frequency is
compressed. So, if Ωc is the cutoff frequency of the original sequence, the same
frequency will appear at Ωc

M . Therefore, to remove the images from the upsampled
sequence, we should use a lowpass filter having a cutoff frequency Ωc

M . The
MATLAB program used for this example is listed in the M-file named Example
10_1.m.

Upsampling Identity The upsampling process consists of first filtering the input
sequence by a lowpass filter and then increasing the sampling rate by the positive
integer factor M. It is equivalent to first upsampling the input sequence by the factor
M followed by lowpass filtering. These two processes are shown in Fig. 10.3.
Because of the identity of the two processes, one can use either one to realize
upsampling of a sequence. In both cases, the image spectra are removed.

Fig. 10.2 Spectra of the sequences in Example 10.1: top, spectrum of input sequence; middle,
spectrum of upsampled sequence; bottom, spectrum of lowpass filtered sequence
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10.2.2 Downsampling

Let us look at the process of reducing the sampling rate by a positive integer factor.
The process of reducing the sampling rate is called downsampling. Consider a
discrete-time sequence {x[n],� 1 < n < 1} which is assumed to be sampled at
the Nyquist rate. If this sequence is downsampled by an integer factor D, we can then
express the downsampled sequence xd[n] in terms of the original sequence as given
by

xd n½ � ¼ x nD½ �,D2Z ð10:7Þ
To understand better the effect of downsampling on the sequence, we will have to

describe the downsampled sequence in the frequency domain. The Z-transform of
the downsampled sequence is obtained from the definition of Z-transform and is
described by

Xd zð Þ ¼
X1
n¼�1

xd n½ �z�n ¼
X1
n¼�1

x nD½ �z�n ð10:8Þ

Let

x0 n½ � ¼ x n½ �, n ¼ 0, � D, � 2D, � � �
0, otherwise

�
ð10:9Þ

In terms of the new sequence, the Z-transform of the downsampled sequence
becomes

Xd zð Þ ¼
X1
n¼�1

x0 nD½ �z�n ð10:10Þ

By using m ¼ nD in the above equation, we have

Xd zð Þ ¼
X1

m¼�1
x0 m½ �z�m

D ¼
X1

m¼�1
x0 m½ � z

1
D

� ��m
¼ X0 z

1
D

� �
ð10:11Þ

We still haven’t expressed the Z-transform of the downsampled sequence in
terms of the Z-transform of the input sequence. In order to do that, let us define
another function given in (10.12):

g n½ � ¼ 1, n ¼ 0, � D, � 2D, � � �
0, otherwise

�
ð10:12Þ

Fig. 10.3 Upsampling identity
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The above sequence can be expressed as the inverse DTFT of the frequency
points, W kn

D ; 0 � k � D� 1
� �

, where, W k
D ¼ e�j2πkD , as given by

g n½ � ¼ 1
D

XD�1

k¼0

W kn
D ð10:13Þ

The sequence x
0
[n] can be expressed in terms of x[n] and g[n] as

x0 n½ � ¼ g n½ �x n½ � ð10:14Þ
Now using (10.13) and (10.14) in (10.11), we find that

X0 zð Þ ¼
X1

n¼�1
g n½ �x n½ �z�n ¼

X1
n¼�1

1
D

XD�1

k¼0

W nk
D

 !
x n½ �z�n ð10:15Þ

By interchanging the order of summation in (10.15), we have

X0 zð Þ ¼ 1
D

XD�1

k¼0

X1
n¼�1

x n½ � zW�k
D

� ��n ¼ 1
D

XD�1

k¼0

X zW�k
D

� � ð10:16Þ

Finally, using (10.16) in (10.11), we obtain the Z-transform of the downsampled
sequence as

Xd zð Þ ¼ 1
D

XD�1

k¼0

X z
1
DW�k

D

� �
ð10:17Þ

From (10.17), the DTFT of the downsampled sequence is determined to be

Xd e jΩ� � ¼ Xd zð Þjz¼e jΩ ¼ 1
D

XD�1

k¼0

X e j Ωþ2πk
Dð Þ� �

¼ 1
D

XD�1

k¼0

X e j Ω�2πk
Dð Þ� �

ð10:18Þ

From the above equation, we notice that the spectrum of the downsampled
sequence is the sum of the shifted and stretched versions of the spectrum of the
original sequence. Let us make it clearer by way of an example after we establish the
identity of downsampling.

Downsampling Identity The process of downsampling a sequence by a positive
integer factor D can be identified as first lowpass filtering the input sequence and
then downsampling. This identity is equivalent to first downsampling followed by
lowpass filtering. The two processes are shown in Fig. 10.4.

Example 10.2 Use the same sequence as in Example 10.1 and downsample it by a
factor of D ¼ 6. Compute the spectra of the original, downsampled, and filtered
sequences and plot them.

Solution The downsampling and filtering operations are done using the MATLAB
M-file named Example 10_2.m. The original, downsampled, and filtered sequences
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are shown in Fig. 10.5 in the top, middle, and bottom plots, respectively. We see
from the middle plot, the sequence corresponds to every sixth sample of the input
sequence. The corresponding spectra are shown in Fig. 10.6.

10.3 Oversampled ADC

As mentioned earlier, an ADC converts a continuous-time signal into a digital signal
by first sampling the input signal uniformly at Nyquist rate and then quantizing the
analog samples using a B-bit uniform quantizer. The typical bit width of an ADC is

Fig. 10.4 Downsampling identity

Fig. 10.5 Downsampling the sequence in Example 10.2: top, original sequence; middle, sequence
downsampled by a factor of 6; bottom, lowpass filtered downsampled sequence

434 10 DSP in Communications



in the range of 8–14 bits. Since the sampling process may introduce aliasing
distortion, the input continuous-time signal is filtered by an antialiasing analog filter
before sampling. Because of a narrower transition bandwidth, the required analog
filter order will be very high. This makes the IC design more complex and it may also
lead to instability. In order to ease the requirements on the antialiasing analog filter,
one can increase the sampling rate much higher than the Nyquist rate. As we will see
below, this will increase the transition bandwidth, thereby lowering the antialiasing
filter order. As a result of lowering the filter order, the IC design becomes simpler
and more compact. Of course, the output of the ADC must be downsampled to bring
the sampling rate back to the Nyquist rate. Figure 10.7 shows the block diagram of
an oversampled ADC. The input continuous-time signal is first filtered by an analog
lowpass filter of a small order and then input to the ADC. The sampling rate of the
ADC is assumed to be M times the Nyquist sampling rate. The output of the ADC is
passed through an antialiasing digital filter before it is downsampled by the factor
M. In what follows, we will give a brief analysis of the oversampled ADC.

Fig. 10.6 Frequency spectra of the sequences in Fig. 10.5: top, spectrum of the original sequence;
middle, spectrum of the downsampled sequence; bottom, spectrum of the downsampled sequence
after lowpass filtering
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10.3.1 Transition Bandwidth Reduction

Let us assume the maximum frequency in the input continuous-time signal to be fm.
The corresponding Nyquist frequency is 2fm. If the actual sampling frequency Fs of
the ADC is M times the Nyquist frequency, then Fs ¼ 2Mfm. This amounts to the
frequency specification of the antialiasing analog filter as described by

Ha fð Þ ¼ 1, 0 � fj j � f m
0,Mfm < fj j < 1

�
ð10:19Þ

The above equation reveals the fact that the passband edge frequency of the
antialiasing filter is still the maximum frequency in the analog signal. However, the
stopband edge frequency has moved to M times the maximum frequency. Therefore,
the transition width, which is the difference between the stopband edge and passband
edge, has increased as given by

Δ f ¼ M � 1ð Þf m ð10:20Þ
If the transition width is large, the filter order will be smaller. That’s how the

oversampling eases the filter order requirement.

10.3.2 Analysis of Oversampled ADC

Let us go a bit deeper and see the effect of oversampling on the ADC. Let the
amplitude range of the input analog signal be

xa tð Þj j � xmax ð10:21Þ
The corresponding quantization step size of a B-bit ADC is expressed as

q ¼ xmax � xmin
2B

¼ 2xmax
2B

¼ xmax
2B�1 ð10:22Þ

The noise due to quantization is uniformly distributed in the range �q=2; q=2�½ , and
its variance is determined to be

σ2q ¼
q2

12
¼ x2max

12� 22B�2 ¼
x2max

3� 22B
ð10:23Þ

Fig. 10.7 Block diagram of an oversampled ADC
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The output of the ADC is filtered by an antialiasing digital filter, followed by
downsampling by the factor M. Let y[n] be the downsampled signal. Since the
downsampled signal has the same power as that of the signal before downsampling,
we have

σ2y ¼ Gσ2q ð10:24Þ

where G is the power gain of the antialiasing digital filter, and it is related to the
impulse response sequence of the digital filter. If the digital filter is an Nth-order FIR
filter, then

G ¼
XN
n¼0

h n½ �j j2 ð10:25Þ

The power gain can also be obtained from the frequency domain since the power
is conserved in both domains. Thus,

G ¼ 1
Fs

Z Fs
2

�Fs
2

H fð Þj j2df ¼ 1
Fs

ZFs2M

�Fs
2M

df ¼ 1
M

ð10:26Þ

Therefore, the variance of the noise due to quantization is reduced by the
oversampling factor, which is

σ2y ¼
σ2q
M

ð10:27Þ

This is really great! Not only does oversampling reduce the quantization noise, it
also spreads it over the frequency range 0; Fs

2

	 

. But the cutoff frequency of the

antialiasing digital filter is Fs
2M. Therefore, it rejects the noise in the range

Fs
2M;

Fs
2

	 

. This

reduction in the quantization noise is related to the reduction in the number of bits of
the ADC as compared to the ADC that does not use oversampling. Let BM and B
denote the bit widths of the ADCs with and without oversampling. Since the
quantization noise power must be the same in both ADCs for the sake of comparison,
the output noise powers can be expressed as

σ2q
M

¼ x2max
3�M � 22BM

¼ x2max
3� 22B

ð10:28Þ

From (10.28) we have

M � 22BM ¼ 22B ð10:29aÞ

BM ¼ B� 1
2
log2M ð10:29bÞ
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Thus, for the same given quantization noise power, an oversampled ADC needs a
bit width that is less than that required by the Nyquist sampled ADC by one half
times the logarithm to the base 2 of the oversampling factor.

Oversampling Factor Versus the Filter Order We can relate the oversampling
factor M to the filter order for a specific filter as follows. Consider a kth-order
Butterworth antialiasing analog filter with a cutoff frequency fm. The corresponding
magnitude of the frequency response is given by

Ha fð Þj j ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f

f m

� �2kr ð10:30Þ

The maximum error δ due to aliasing distortion will occur at the folding frequency
Fs
2 and is equal to

δ ¼ Ha
Fs

2

� ���� ���� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Mfm

f m

� �2kr ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM2k

p ð10:31Þ

Then,

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM2k

p � δ ð10:32Þ

Or

1þM2k � δ�2⟹M � δ�2 � 1
� � 1

2k ð10:33Þ
For instance, if δ ¼ 0.005 and k ¼ 3, then from (10.33), we find that the

oversampling factor M ¼ d5.848e ¼ 6. If the filter order is reduced to 2, then for
the same maximum aliasing distortion, the oversampling ratio hikes up to 15. A
decrease by one in the filter order increases the oversampling ratio almost by a factor
of 3! The maximum aliasing error in dB can be expressed in terms of the
oversampling factor and the Butterworth filter order using (10.33) and is given by

δ ¼ �10log10 1þM2k
� �

dB ð10:34Þ
Figure 10.8 shows the maximum aliasing error in dB against the oversampling

factor for four values of the Butterworth filter order. As seen from the figure, the
oversampling factor increases as the Butterworth filter order decreases for a fixed
value of the maximum aliasing error.

Example 10.3 Let us work out an example using MATLAB to digest what we
learnt about oversampled ADC. We will use the same input signal that was used in
the previous example. The Nyquist sampling rate is 4000 Hz and the oversampling
factor used is 15. We will use a 5-bit ADC to quantize the analog samples.
The antialiasing digital filter is a fourth-order FIR filter with a normalized cutoff
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frequency of 1/M. The M-file to solve this problem is named Example 10_3.m. The
program designs a 5-bit uniform quantizer before quantizing the input signal.
Figure 10.9 depicts the input-output relationship of the quantizer as a step
function. The horizontal axis refers to decision regions and the vertical axis to the
reconstruction levels. The actual and 5-bit quantized input sequence is shown in
Fig. 10.10 as a stem plot. It appears that the 5-bit quantized version very nearly
approximates the full-precision signal. The downsampled versions of the full-
precision and 5-bit quantized version of the input signal are shown in Fig. 10.11 in
the top and bottom plots, respectively. In Fig. 10.12 is shown the spectra of the input
sequence, filtered output, and filtered downsampled output sequences in the top,
middle, and bottom plots, respectively. As seen from the figure, the folding fre-
quency of the downsampled signal reverts to 2000 Hz. As pointed out, the quanti-
zation noise of the ADC is uniformly distributed in the range�q

2. Figure 10.13 shows
the 5-bit quantizer noise sequence along with its histogram and spectrum in the top,
middle, and bottom plots, respectively. As expected, the histogram appears uniform
implying that the quantizer noise is uniformly distributed. The program also com-
putes the noise variances of the quantizer before and after filtering by the antialiasing
digital filter. The noise variance or power of the 5-bit quantizer is found to be 0.0081.
The corresponding SNR is 26.96 dB. The noise variance and the resulting SNR after
filtering are, respectively, 0.0037 and 30.33 dB. Because of oversampling, the
quantization noise power at the output of the antialiasing digital filter has decreased
by more than 3 dB!

Fig. 10.8 Oversampling factor versus the maximum aliasing error in dB for four different values of
the Butterworth analog filter order
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Fig. 10.9 Input/output relationship of a 5-bit uniform quantizer of Example 10.3 as a step function

Fig. 10.10 Full-precision and 5-bit quantized input sequence: top, full-precision; bottom, 5-bit
quantized sequence



10.4 Oversampled DAC

In the previous section, we described an oversampled ADC. The purpose of using a
sampling rate much higher than the Nyquist rate is to ease the requirements on the
antialiasing analog prefilter by increasing the transition width. Oversampling also
reduces the ADC bit width and rejects the out-of-band noise. After transmission and
reception of the digital signal, it must be converted back to the analog domain. Since
the sampling rate at the ADC is high, it has to be brought back to the Nyquist rate. A
block diagram of an oversampled DAC is shown in Fig. 10.14. Since the process of
downsampling introduces spectral images, the images must be removed using an
anti-imaging lowpass analog filter. The output of the anti-imaging lowpass analog
filter is the recovered analog signal. Let us exemplify the oversampled DAC
operation by an example using MATLAB.

Example 10.4 This example uses the same signal used in the previous example. To
be self-contained, the oversampled ADC is incorporated. Its output is then converted
to an analog signal. The anti-imaging lowpass analog filter is incorporated into the
DAC. The M-file to execute Example 10.4 is named Example 10_4.m. The input to

Fig. 10.11 Downsampled sequences: top, full-precision sequence; bottom: 5-bit quantized
sequence
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the DAC is a 5-bit quantized sequence that is oversampled by a factor of 6. The anti-
imaging filter is a second-order Butterworth filter. The input analog signal and the
DAC output signal are shown in Fig. 10.15 in the top and bottom plots, respectively.
They seem to be pretty close. The corresponding spectra are shown in Fig. 10.16.
Because of quantization, there appears some noise in the output spectrum. The SNR
between the input analog signal and the DAC output signal is found to be 25.36 dB.
In both oversampled ADC and DAC, DSP plays an important role in filtering the
sequences using digital filters.

10.5 Cancelation of Inter-Symbol Interference

In a digital communications system, messages are represented in binary format. Each
binary symbol is transmitted as a pulse. These pulses are first lowpass filtered at the
transmitter before transmission to confine them to a certain specified bandwidth. As
these pulses travel through the channel, they are distorted in their amplitude and
phase due to the channel reactance. As a result, the pulses expand in time and so

Fig. 10.12 Spectra of the sequences in Example 10.3: top, input sequence; middle, filtered output
sequences; bottom, filtered and downsampled sequence
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overlap between neighboring pulses. The heart of digital communications is in its
precise timing. If pulses from neighboring bit intervals overlap, then error occurs in
the detection of the actual transmitted pulse in each bit interval. That is to say that
interference between pulses occurs due to distortion in the transmitted pulses. This is
known as the inter-symbol interference (ISI). The transmitter/channel/receiver chain
can be modeled as a cascade of three LTI systems as described by

H fð Þ ¼ Ht fð ÞHc fð ÞHr fð Þ ð10:35Þ
where Ht( f ) represents the transmitter, Hc( f ) the channel, and Hr( f ) the receiver.
The ISI can be canceled or minimized by adjusting the transmitter and receiver
filters. Since the channel is not under our control, we cannot do anything with it. By a
proper choice of the transmitter, we can shape the transmitted pulses in such a way

Fig. 10.13 5-bit quantizer noise: top, noise sequence; middle, histogram of the quantizer noise;
bottom, spectrum of the quantizer noise

Fig. 10.14 Block diagram of an oversampled DAC
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that the ISI can be minimized. This process is known as pulse shaping and is
accomplished at the transmitter. Having taken care of the share of the transmitter,
the channel effect can be canceled or minimized by a proper choice of a filter at the
receiver. This is known as channel equalization. We have learnt phase and group
delay equalization in the chapter on IIR digital filters. However, when the channel
characteristics change slowly, then the equalizing digital filter coefficients should
also change. This results in adaptive equalizers at the receiver. In any case, digital
filtering is involved.

10.5.1 Pulse Shaping

According to Nyquist, if the overall system H( f ), from transmitter to receiver in
(10.35), amounts to an ideal filter with a cutoff frequency equal to half the trans-
mission symbol rate Rs, then there will be no ISI at the receiver. The ideal filter has
the characteristics
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Fig. 10.15 Input analog and DAC output analog signals: top, input analog signal; bottom, DAC
output
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H fð Þ ¼ 1, fj j � W0

0, otherwise

�
ð10:36Þ

where

W0 ¼ 1
2Ts

¼ Rs

2
ð10:37Þ

The corresponding impulse response of the ideal filter is given by

h tð Þ ¼ sin 2πW0tð Þ
πt

¼ 2W0sinc 2W0tð Þ, �1 < t < 1 ð10:38Þ

The problem with the above ideal filter is that its impulse response is not zero for
t < 0 and is, therefore, non-causal, meaning that it is not physically realizable as is. It
is also susceptible to small timing errors. In effect, what we mean by the above
statements is that the Nyquist bandwidth of the filter in (10.37) is not realizable. So,
what are we going to do? Fortunately, one can allow some excess bandwidth,
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Fig. 10.16 Spectra of the signals in Fig. 10.15: top, spectrum of the input analog signal; bottom,
spectrum of the DAC output analog signal

10.5 Cancelation of Inter-Symbol Interference 445



thereby making the filter realizable. A small excess bandwidth is tolerable indeed.
This is accomplished by using a filter with a frequency response described by

HRC fð Þ ¼
1, fj j � 2W0 �W

cos 2
π

4
fj j þW � 2W0

W �W0

� 
, 2W0 �W < fj j � W

0, fj j > W

8>><>>: ð10:39Þ

Since the frequency response of the filter in (10.39) follows the square of a cosine
function, it is called the raised cosine (RC) filter. In the raised cosine filter, the
quantity W � W0 is the excess bandwidth and the roll-off factor is defined as

r ¼ W �W0

W0
ð10:40Þ

Corresponding to (10.39), the impulse response of the RC filter can be shown to
be

hRC tð Þ ¼ 2W0sinc 2W0tð Þ cos 2π W �W0ð Þtð Þ
1� 4 W �W0ð Þtð Þ2
" #

, �1 < t < 1 ð10:41Þ

Have we solved anything in using RC filter? Even though the impulse response of
the RC filter is non-causal, it decays very rapidly, and so it can be truncated without
incurring any penalty. Thus, the RC filter becomes causal and realizable. What we
are implying is that if the overall frequency response of the communications system
from transmitter to receiver corresponds to the raised cosine filter response, i.e.,

H fð Þ ¼ HRC fð Þ, ð10:42Þ
then there will be zero ISI because it satisfies Nyquist condition. One way to design
the transmitter and receiver filters is to use the following:

Ht fð Þj j ¼ Hr fð Þj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HRC fð Þ

p
ð10:43Þ

If (10.43) is satisfied, the overall frequency response of the communications
system will not only satisfy Nyquist condition for zero ISI but will also be physically
realizable.

Figure 10.17 shows the impulse response of an analog RC filter over the time
interval�0.02� t� 0.02 sec for three roll-off factors of 0, 0.5, and 1. As can be seen
from the plots, the impulse response decays very rapidly for the roll-off factor 1. The
frequency response of the RC filter corresponding to the three roll-off factors is
shown in Fig. 10.18. The excess bandwidth is the largest for the case where the roll-
off factor is 1. By discretizing the impulse response of the analog RC filter, we can
obtain the impulse response of the corresponding digital filter. Figure 10.19 shows
the discrete version of the impulse response of the RC filter, and its frequency
response is shown in Fig. 10.20 for the same three values of the roll-off factor. For
the discrete-time version of the RC filter, the sampling frequency is assumed to be
4.5 times the Nyquist bandwidth. We further show in Fig. 10.21 the process of
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filtering a sequence of rectangular pulses with the RC filter. We see no interference
in the main lobe because of the RC shape of the lowpass filter. Even though there is
some overlapping of the pulses in adjacent symbol intervals, there is no significant
ISI due to the facts that the RC filter response decays very rapidly in the time domain
and due to sinc(x) nature of the impulse response. TheMATLABM-file to obtain the
impulse and frequency responses of the RC filter in both the continuous-time and
discrete-time domains is named Raised_cosine.m.

Simulink Example for Pulse Shaping In this example we simulate the process of
shaping a pulse sequence by a raised cosine filter using MATLAB’s Simulink.
Figure 10.22 shows the block diagram consisting of a pulse generator, whose output
is filtered by an RC filter and two scopes to display the respective signals. The
parameters of the pulse generator and RC filter are listed by the side of the respective
blocks, as shown in the figure. The simulation time is chosen to be 1 sec. After
starting the simulation, the respective outputs in the time domain are displayed on
the scopes and are shown in Figs. 10.23 and 10.24. The Simulink program is named
RC_filter.slx.

10.5.2 Equalization

Equalization is the process of correcting the ISI induced by the channel. There are
linear and nonlinear equalization techniques available in the literature. We will only
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Fig. 10.21 Processing a sequence of pulses through the RC filter
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Fig. 10.22 Block diagram to simulate RC filtering of a pulse sequence

Fig. 10.23 Input pulse sequence to the RC filter
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deal with linear equalization procedures in this book. Mobile radio channel is
nonstationary, meaning that the channel characteristics keep changing from time to
time. This happens because the transmitted signal takes different paths as a result of
reflection from the nearby tall buildings, hills, towers, etc. Also, since the receiver is
not fixed, these reflected signals cause fading. This effect is known as multipath
fading. Due to the relative motion between the transmitter and the receiver, there is
the effect of Doppler spread in the received frequency. These impairments cause
severe inter-symbol interference, which results in a high rate of bit errors at the
receiver. As we saw earlier, if the overall system corresponds to a raised cosine filter
function, then there will be no ISI. Therefore, the product of the transmitter and
receiver filters equals the raised cosine filter response. In Fig. 10.25 is shown the

+Ht(f) Hc(f) Hr(f) He(f)
Input Output

Noise
n(t)

Fig. 10.25 Transmitter-receiver chain with an equalizing filter at the receiver to correct ISI due to
channel impairments

Fig. 10.24 RC-filtered sequence with no ISI
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transmitter-channel-receiver tandem. At the receiver, an equalizing filter is employed
to correct the channel impairments. The most common equalization filter is the
transversal filter, which is an FIR filter. Due to the non-stationarity of the channel,
the filter coefficients must be adapted to the changing statistics of the radio channel.

A block diagram of a linear adaptive transversal equalizer with 2 N + 1 taps is
shown in Fig. 10.26. The delay in each delay element corresponds to a symbol
duration. This type of equalizer is termed a symbol-spaced equalizer. The response
of the transversal filter y[k] can be expressed in terms of the input x[n] as

y k½ � ¼
XN
n¼�N

cnx k � n½ �, � N � k � N ð10:44Þ

In compact matrix form, (10.44) can be written as

y ¼ Xc ð10:45Þ
where

y ¼ y�N � � �� � �yN½ �T ð10:46aÞ

c ¼ c�N � � �c0� � �cN½ �T and ð10:46bÞ

X ¼

x�N � � �� � �� � �0
x�Nþ1 x�N � � �

⋮
⋮

0 0� � �� � �� � �xN

266664
377775 ð10:46cÞ

Fig. 10.26 A linear adaptive transversal filter as a channel equalizer
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The criterion for selecting the filter coefficients {cn} is based on minimizing an
objective function such as the mean square error (MSE) or absolute peak error. Since
the channel statistics are time-variant, these coefficients are frequently changed
using a suitable adaptation scheme. The number of taps in the transversal filter is
usually chosen to be larger than the number of symbols involved in the ISI.

Simulink Example for Equalization In order to get a better picture of equalization
to cancel ISI in digital communications, let us look at an example using MATLAB’s
Simulink. In this example, we consider an 8-ary QAM (quadrature amplitude
modulation) scheme. In QAM, the amplitude of a carrier is modulated using discrete
values. More specifically, the transmitted waveform is described by

xQAM tð Þ ¼ Ap tð Þ cos 2πf ctð Þ þ Bp tð Þ sin 2πf ctð Þ ð10:47Þ
where p(t) is a rectangular pulse of duration equal to the symbol duration, {A} and
{B} are the sets of amplitudes with M values each, and fc is the carrier frequency.
These amplitudes have M ¼ 2k discrete values corresponding to k-bit symbols. Let
us choose M ¼ 8. The simulation will be carried in the baseband, that is, no carrier
modulation will be used. The channel introduces additive white Gaussian noise
(AWGN) with a signal-to-noise ratio (SNR) of 20 dB. The channel is modeled as
a four-tap FIR filter whose impulse response is described by

he n½ � ¼ 1� 0:3z�1 þ 0:1z�2 þ 0:2z�3 ð10:48Þ
The adaptive transversal equalizer has 8 taps. The simulation uses least mean square

(LMS) algorithm to adaptively estimate the filter taps. The signal sets are typically
viewed as a constellation, where the two-dimensional vectors are described by

dm ¼ ffiffiffiffiffi
Es

p
A

ffiffiffiffiffi
Es

p
B

� � ð10:49Þ
where Es is the signal energy and {A} and {B} have M ¼ 8 discrete values. In
Fig. 10.27 is shown the block diagram of the 8-ary QAM system. The input to the
LMS adapter is the signal from the AWGN block, and the desired signal is the output
of the QAM modulator. The constellation diagrams of the signals before and after
equalization are shown in Fig. 10.28 for an SNR of 20 dB. When the SNR is
increased to 40 dB, the clusters appear more focused as seen from Fig. 10.29. The
Simulink file is named Adaptive_Equalizer.slx. For more details on the parameters
used in various blocks in Fig. 10.27, the reader may double-click each block to learn
and modify the parameters.

10.5.3 Matched Filter

In digital communications, PCM binary digits are represented by pulses for trans-
mission. In baseband communications, these pulses are transmitted as such, whereas
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in carrier communications, these pulses modulate a carrier using different modula-
tion schemes. We will consider baseband transmission here. The binary pulses may
take one of non-return to zero (NRZ), return to zero (RZ), and Manchester code.
Each one of these pulse types will affect the communications in terms of the DC
component, self-clocking, error detection, bandwidth compression, noise immunity,
etc. Our task here is to find out what is matched filter, why is it used in digital
communications, and can it be realized as a digital filter. As pointed out earlier, the

Fig. 10.28 Constellation diagram of the 8-ary QAM system in Fig. 10.27 showing the signal sets
before and after equalization for an SNR of 20 dB: left, before equalization; right, after equalization

Fig. 10.27 Block diagram to simulate an 8-ary QAM system with equalization using LMS
algorithm
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key factor in digital communications is the timing. The main task of the detector or
receiver is to determine in each bit interval which binary digit – a binary “0” or a
binary “1” – was transmitted. If there is no channel disturbance such as noise, then
there is no problem in deciding which bit is transmitted in a given bit interval.
However, the channel adds noise, namely, white Gaussian noise. Since the noise is
added to the transmitted signal, this channel-induced noise is called the additive
white Gaussian noise (AWGN). The received signal r(t) is the sum of the transmitted
signal and noise, as defined by

r tð Þ ¼ si tð Þ þ n tð Þ, i ¼ 1, 2; 0 � t � T ð10:50Þ
where T is the bit period and the transmitted signal takes the form

si tð Þ ¼ s1 tð Þ, 0 � t � T , for a binary
0
1

0

s2 tð Þ, 0 � t � T , for a binary
0
0

0

�
ð10:51Þ

The processing consists of first filtering the received signal r(t) followed by
sampling the filtered signal z(t) at the end of the bit period. Since the filter is LTI,
the filtered signal is expressed as

z tð Þ ¼ ai tð Þ þ n0 tð Þ ð10:52Þ
The sampled signal value z(T ) is then compared against a predetermined thresh-

old value to decide which binary bit was transmitted in that bit interval. The sampled
signal is described by

z Tð Þ ¼ ai Tð Þ þ n0 tð Þ ð10:53Þ
If the threshold value is denoted by γ, then the decision amounts to

Fig. 10.29 Constellation diagram of the 8-ary QAM system in Fig. 10.27 showing the signal sets
before and after equalization for an SNR of 40 dB: left, before equalization; right, after equalization
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bs tð Þ ¼ s1 tð Þ if z Tð Þ > γ
s2 tð Þ if z Tð Þ < γ

�
ð10:54Þ

Figure 10.30 depicts the receiver operation. The linear time invariant (LTI) filter
is implemented as a digital filter. The noise component in (10.53) is a zero-mean
Gaussian random variable with a standard deviation σ0. The probability density
function (pdf) of the noise component n0(T ) takes the form

p n0ð Þ ¼ 1

σ0
ffiffiffiffiffi
2π

p exp � n20
2σ20

� 
ð10:55Þ

Since z(T ) is the sum of Gaussian noise and a signal component, it is also a
Gaussian random variable with the same standard deviation as that of n0(T ) but with
a mean of ai(T ). Thus, depending on which binary digit is transmitted, the pdf of z(T )
is given by

p zjs1ð Þ ¼ 1

σ0
ffiffiffiffiffi
2π

p exp � z� a1ð Þ2
2σ20

 !
ð10:56aÞ

p zjs2ð Þ ¼ 1

σ0
ffiffiffiffiffi
2π

p exp � z� a2ð Þ2
2σ20

 !
ð10:56bÞ

The two conditional pdfs in (10.56a) and (10.56b) are illustrated in Fig. 10.31 for
the case a1 ¼ � a2 ¼ 2.

The objective of the detector is to detect which binary digit is transmitted in a
given bit interval with the least amount of average bit error. As seen from Fig. 10.30,
there are two variables to adjust so as to minimize the probability of a bit error. The
first variable is the linear filter. By choosing the right filter, the probability of a bit
error is minimized. This results in what is known as the matched filter (MF). The
second variable is the threshold. Choosing the optimal threshold further minimizes
the bit error probability. This results in maximum likelihood receiver.

Maximum Likelihood Receiver The decision threshold γ is chosen so as to
minimize the probability of a bit error. This is achieved by maximizing the likeli-
hood ratio

Fig. 10.30 Linear processing at the receiver to detect transmitted binary symbols
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if
p zjs1ð Þ
p zjs2ð Þ >

P s2ð Þ
P s1ð Þ , choose s1 tð Þ ð10:57aÞ

if
p zjs1ð Þ
p zjs2ð Þ <

P s2ð Þ
P s1ð Þ , choose s2 tð Þ ð10:57bÞ

In the above equations, P(s1) and P(s2) are the a priori probabilities of the binary
waveforms s1(t) and s2(t), respectively. Based on (10.57), the optimal threshold
corresponds to the intersection of the two conditional pdfs, which is given by

γ0 ¼
a1 þ a2

2
ð10:58Þ

With the threshold value being determined, the probability of a bit error is
determined as follows. The probability of making an error given s1 was transmitted
equals the area under the curve p(z|s1) from �1 to γ0, which is

p ejs1ð Þ ¼
Z γ0

�1
p zjs1ð Þdz ð10:59Þ

Similarly, the probability of making an error given s2 was transmitted equals the
area under the curve p(z|s2) from γ0 to 1, which is

Fig. 10.31 Conditional probability density functions of the linearly processed and sampled signal
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p ejs2ð Þ ¼
Z 1

γ0

p zjs2ð Þdz ð10:60Þ

Since there are two symbols in the system, the average bit error is the weighted
sum of the two conditional error probabilities in (10.59) and (10.60), which is
expressed as

PB ¼ P s1ð Þp ejs1ð Þ þ P s2ð Þp ejs2ð Þ ð10:61Þ
If the binary symbols are equally likely, that is, if P s1ð Þ ¼ P s2ð Þ ¼ 1

2, then the
probability of a bit error reduces to

PB ¼
Z 1

γ0¼a1þa2
2

p zjs2ð Þdz ¼ 1

σ0
ffiffiffiffiffi
2π

p
Z 1

γ0

exp � z� a2ð Þ2
2σ20

 !
dz ð10:62Þ

By replacing z�a2
σ0

by x, the lower limit in (10.62) becomes a1�a2
2σ0

. Then the

probability of a bit error amounts to

PB ¼ 1ffiffiffiffiffi
2π

p
Z

a1�a2
2σ0

1
exp �x2

2

� 
dx ¼ Q

a1 � a2
2σ0

� 
ð10:63Þ

where Q(x) is called the complementary error function and is defined as

Q xð Þ ¼ 1ffiffiffiffiffi
2π

p
Z 1

x
exp �x2

2

� 
dx ð10:64Þ

In other words, the complementary error function equals the area under the
normal curve with zero mean and unit variance from x to 1. It does not have a
closed form solution but is found in most standard textbooks on digital communi-
cations. It is also available in MATLAB as a built-in function erfc.

Matched Filter From (10.63), we observe that larger the threshold value, smaller
the area under the normal curve or smaller the probability of a bit error. The matched
filter maximizes the argument of the complementary error function. Let the input to
the LTI filter in Fig. 10.30 be the sum of a known signal s(t) and an AWGN n(t). The
output of the filter at the end of the bit interval T equals

z Tð Þ ¼ ai Tð Þ þ n0 Tð Þ ð10:65Þ
Therefore, the signal-to-noise ratio at t ¼ T is

S

N

� 
T

¼ a2i
σ20

ð10:66Þ

What we need is a filter that maximizes the SNR in (10.66). The signal compo-
nent at the filter output can be related to the filter transfer function via Fourier
transform by
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a tð Þ ¼
Z 1

�1
H fð ÞS fð Þe j2πftdf ð10:67Þ

In (10.67), S(f) is the Fourier transform of the signal s(t). If we assume the
two-sided power spectral density of the output Gaussian noise to be N0

2 watts/Hz,
then the noise power at the output of the filter is given by

σ20 ¼
N0

2

Z 1

�1
H fð Þj j2df ð10:68Þ

Using (10.66, 10.67, and 10.68), the SNR at the end of the bit interval becomes

S

N

� 
T

¼
R1
�1 H fð ÞS fð Þe j2πfTdf

�� ��2
N0
2

R1
�1 H fð Þj j2df ð10:69Þ

Using Schwartz’s inequality, the numerator of (10.69) can be written asZ 1

�1
H fð ÞS fð Þe j2πfTdf

���� ����2 � Z 1

�1
H fð Þj j2df

Z 1

�1
S fð Þj j2df ð10:70Þ

Using (10.70) in (10.69), the expression for the SNR at t ¼ T takes the form

S

N

� 
T

� 2
N0

Z 1

�1
S fð Þj j2df ð10:72Þ

The maximum SNR is then equal to

max
S

N

� 
T

¼ 2
N0

Z 1

�1
S fð Þj j2df ¼ 2E

N0
ð10:73Þ

where the signal energy E is given by

E ¼
Z 1

�1
S fð Þj j2df ð10:74Þ

The equality holds in Schwartz’s inequality if the following condition is met:

H fð Þ ¼ H0 fð Þ ¼ KS* fð Þe�j2πfT ð10:75Þ
The interpretation of (10.75) in the time domain from the time reversal property

of the Fourier transform is that the impulse response of the matched filter is the time-
reversed and right-shifted version of the signal. Mathematically speaking, it amounts
to

h tð Þ ¼ Ks T � tð Þ, 0 � t � T
0, otherwise

�
ð10:76Þ
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From the above equation, we see that the filter impulse response is a replica of the
transmitted pulse waveform but for the amplitude and time reversing and shifting.
That is the reason the filter is known as the matched filter. Since the MF maximizes
the SNR at the end of the bit interval, the maximum SNR is written as

S

N

� 
T

¼ a1 � a2ð Þ2
σ20

¼ Ed
N0
2

¼ 2Ed

N0
ð10:77Þ

where energy difference in (10.77) stands for

Ed ¼
Z T

0
s1 � s2ð Þ2dt ð10:78Þ

Using (10.77) and (10.78), the probability of a bit error reduces to

PB ¼ Q
a1 � a2
2σ0

� 
¼ Q

ffiffiffiffiffiffiffiffi
2Ed

N0

r� 
ð10:79Þ

Correlation Filter Another interpretation of the MF is as follows. We can express
the response of the MF to the received signal at time t as

z tð Þ ¼
Z t

0
r τð Þs T � t þ τð Þdτ ð10:80Þ

At the end of the bit interval t ¼ T, the MF response becomes

z Tð Þ ¼
Z T

0
r τð Þs τð Þdτ, ð10:81Þ

which is what is known as the correlation of r(t) with s(t). Therefore, the MF is
also a correlation filter. To implement the MF as a correlation filter, we multiply the
received signal by a replica of the transmitted signal and integrate the product over
the bit interval. The output of the correlation filter at the end of the bit interval is the
same as that of the MF.

MF Example Let us consider a simple example based on MATLAB to determine
the impulse response and the filter response of a matched filter corresponding to a
binary signal set. Let the two signals be defined by

s1 n½ � ¼ 1, 0 � n � 9
0, otherwise

�
ð10:82aÞ

s2 n½ � ¼ �1, 0 � n � 9
0, otherwise

�
ð10:82bÞ

Figure 10.32 shows the signal s1[n] in the top plot and the impulse response of the
corresponding matched filter in the bottom plot. Note that the two sequences look
identical because the MF impulse response is flipped and shifted to the right by the
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bit duration, which is of length ten samples. Similarly, the signal s2[n] and the
corresponding MF impulse response are shown in Fig. 10.33. The responses of the
two matched filters to input signal plus noise are shown in Fig. 10.34, where the top
plot shows the MF response to the signal s1[n] plus noise and the bottom plot shows
the MF response to the signal s2[n] plus noise. The noise is a Gaussian noise with a
standard deviation of 0.25. As expected, the response is a maximum at the end of the
bit interval. The responses of the corresponding correlation filters to the two signals
are depicted in Fig. 10.35. The responses reach the maximum value at the end of the
bit interval. Therefore, the correlation filters are equivalent to the matched filters.
The M-file is named Matched_filter.m.

10.5.4 Phase-Locked Loop

Phase-locked loop, PLL for short, is a closed-loop control system. It acquires and
tracks the phase of an incoming carrier signal and follows it so as to enable coherent
demodulation. Analog modulation schemes may be amplitude modulation (AM) or
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Fig. 10.32 Signal s1[n] and its MF impulse response: top, signal s1[n]; bottom, corresponding MF
impulse response
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frequency modulation (FM). In either case, the message waveform can be recovered
using coherent demodulation. Coherent demodulation requires a replica of the
transmitted carrier to be available at the receiver. That is, the locally available carrier
must have the same frequency and phase as that of the received carrier. The aim of
the PLL is to enable coherent demodulation.

A PLL can be implemented either in analog form or digital form. We will first
describe the analog PLL and then discuss the digital version later. A PLL consists of
a phase detector, a loop filter, and a voltage-controlled oscillator (VCO). This is
shown in Fig. 10.36. The phase detector produces a signal, which is the difference in
phase between the incoming and locally generated signals. The loop filter filters the
output of the phase detector to pass the slowly varying phase component and reject
the high-frequency component. The VCO generates a replica of the incoming carrier
signal based on the output signal of the loop filter. The input to the VCO is a measure
of the difference in phase between that of the incoming signal and VCO output. This
input then drives the phase of the VCO output in the direction of the phase of the
incoming carrier. Since a PLL is a closed-loop system, the phase error tends to zero a
little after the start of the PLL. Once the phase error is zero, the PLL is said to be in
lock. Then it tracks the phase of the incoming carrier.
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Analysis of a PLL As seen from Fig. 10.36, r(t) is the received signal; x(t) is the
output of the VCO; the output of the phase detector is e(t), which is the product of r
(t) and x(t); and v(t) is the output of the loop filter, which is the input to the VCO. Let
the incoming carrier signal be described by

r tð Þ ¼ sin 2πf ct þ θ tð Þð Þ ð10:83Þ
where the nominal frequency of the carrier is fc and θ(t) is its phase, which is a slowly
varying signal. Let the VCO output be defined as

x tð Þ ¼ 2 cos 2πf ct þ φ tð Þð Þ ð10:84Þ
The phase detector accepts both r(t) and x(t) as inputs and outputs the product of

the two input signals as described below.

e tð Þ ¼ r tð Þx tð Þ ¼ 2 sin ωct þ θ tð Þð Þ cos ωct þ φ tð Þð Þ ð10:85Þ
Using the trigonometric identity, the phase detector output can be written as
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e tð Þ ¼ sin θ tð Þ � φ tð Þð Þ þ sin 2ωct þ θ tð Þ þ φ tð Þð Þ ð10:86Þ
Since the aim of the PLL is to track the phase of the incoming signal, the loop

filter is designed to be a lowpass filter, which rejects the signal at twice the carrier
frequency and passes the lowpass signal sin(θ(t) � φ(t)). The VCO generates a
frequency deviation that is proportional to its input voltage v(t). When v(t) ¼ 0, the

12

10

8

6

4

2

0
0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9
time index n

Correlation filter response to signal s2 plus noise

Correlation filter response to signal s1 plus noise
A

m
pl

itu
de

A
m

pl
itu

de

10

8

6

4

2

0
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Fig. 10.36 Block diagram
of a PLL
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VCO nominal frequency is ωc. Denoting the instantaneous frequency deviation from
ωc by Δω(t), we have

Δω tð Þ ¼ dϕ tð Þ
dt

¼ Kv tð Þ ð10:87Þ

where K is a VCO gain in rad/volt. Note that frequency is the derivative of the phase.
If the impulse response of the loop filter is denoted by g(t), then, since the loop filter
is LTI, its response is the convolution of its input and impulse response. That is,

v tð Þ ¼ e tð Þ*g tð Þ ð10:88Þ
Under locked condition, the phase error is very small and so

e tð Þ ’ θ tð Þ � φ tð Þ ð10:89Þ
Therefore, (10.87) becomes

Δω tð Þ ¼ K θ tð Þ � φ tð Þð Þ*g tð Þ ð10:90Þ
This gives rise to the linearized PLL, which is shown in Fig. 10.37. Using (10.87)

in (10.90), we have

dφ tð Þ
dt

þ Kφ tð Þ*g tð Þ ¼ Kθ tð Þ*g tð Þ ð10:91Þ

By applying the Laplace transform on both sides of (10.91) and using the
differentiation and convolution properties of the Laplace transform, (10.91) can be
written as

sΦ sð Þ þ KΦ sð ÞG sð Þ ¼ KΘ sð ÞG sð Þ ð10:92Þ
From (10.92) the closed-loop transfer function of the linearized PLL is expressed as

H sð Þ 	 Φ sð Þ
Θ sð Þ ¼

KG sð Þ
sþ KG sð Þ ð10:93Þ

Fig. 10.37 Linearized PLL
in the Laplace domain
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In (10.92) and (10.93), Θ(s) and Φ(s) are the Laplace transforms of θ(t) and φ(t),
respectively. The linearized PLL in the Laplace domain is shown in Fig. 10.37. For
s ¼ jω, the frequency response of the linearized PLL takes the form

H ωð Þ ¼ KG ωð Þ
jωþ KG ωð Þ ð10:94Þ

Steady-State Phase Error The Laplace transform of the phase error is given by

E sð Þ ¼ L e tð Þf g ¼ Θ sð Þ �Φ sð Þ ð10:95Þ
From (10.93),

Φ sð Þ ¼ KG sð ÞΘ sð Þ
sþ KG sð Þ ð10:96Þ

Using (10.96) in (10.95), the phase error in the Laplace domain is found to be

E sð Þ ¼ Θ sð Þ 1� KG sð Þ
sþ KG sð Þ

� �
¼ sΘ sð Þ

sþ KG sð Þ ð10:97Þ

The steady-state phase error is the phase error as t tends to infinity. Using one of
the properties of the Laplace transform, the steady-state phase error is obtained from

lim
t!1 e tð Þ ¼ lim

s!0
sE sð Þ ¼ lim

s!0

s2Θ sð Þ
sþ KG sð Þ ð10:98Þ

Step Phase Response Let us assume that the PLL is in phase lock. When a unit step
phase is then applied to the PLL at t ¼ 0, the input phase in the Laplace domain is
given by

Θ sð Þ ¼ 1
s

ð10:99Þ

If G(0) 6¼ 0, then the steady-state phase error becomes

lim
t!1 e tð Þ ¼ lim

s!0

1
s

s2

sþ KG sð Þ ¼ 0 ð10:100Þ

From (10.100), it is clear that the PLL tracks the input step phase.

PLL Response to a Frequency Step What happens if an abrupt step in the input
frequency occurs? Will the PLL be able to track a frequency step? Let us investigate.
Incidentally, a frequency step change could indicate a Doppler shift in the incoming
signal frequency. This shift may be due to a relative motion between the transmitter
and receiver. Since phase is the integral of the frequency, it changes linearly with
respect to time when the frequency change is a step function. Using the integral in
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time property of the Laplace transform, the input phase due to a frequency step
change Δω is given by

Θ sð Þ ¼ Δω
s2

ð10:101Þ

The steady-state phase error is found to be

lim
t!1 e tð Þ ¼ lim

s!0
sE sð Þ ¼ lim

s!0

s2 Δω
s2

sþ KG sð Þ ¼
Δω

KG 0ð Þ ð10:102Þ

The steady-state error depends on G(0). There are three possible types of loop
filter, which are allpass, lowpass, and lead-lag filters and are defined below in that
order.

G sð Þ ¼ 1⟹G 0ð Þ ¼ 1 ð10:103aÞ

G sð Þ ¼ β

sþ β
⟹G 0ð Þ ¼ 1 ð10:103bÞ

G sð Þ ¼ β

α

� 
sþ α

sþ β
⟹G 0ð Þ ¼ 1 ð10:103cÞ

In any case, G(0) ¼ 1. Therefore, the steady-state phase error becomes

lim
t!1 e tð Þ ¼ Δω

K
ð10:104Þ

and so the PLL tracks a step change in the input frequency. Even though the steady-
state phase error is a constant and not zero, the PLL tracks a step change in input
frequency with a constant phase error. Let us clarify the above discussion with a
couple of examples.

Example 10.5a Step Phase: In this example, let us calculate the response of the
PLL to a step phase input with the following specs. G sð Þ ¼ 1

sþ1, and the VCO

output is X sð Þ ¼ K
s V sð Þ. Since we are going to implement this PLL in S/W, we will

use a digital lowpass loop filter. The integrator, which models the VCO, in the
discrete-time domain is simply a delayed accumulator. Let the VCO gain K ¼ 0.1
and let the phase step of 0.95 rad be applied at the time index n ¼ 510. The input
phase, the VCO output phase, and the phase error are shown in Fig. 10.38 in top,
middle, and bottom plots, respectively. As seen from the figure, the VCO phase
undergoes a transient state and reaches a steady state after about ten sampling
intervals. Similarly, the phase error reaches a steady state after about ten sampling
intervals. The VCO input and output are shown in Fig. 10.39 in the top and bottom
plots, respectively.
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Example 10.5b Pulse Phase: In this example we consider an input pulse phase to
the PLL with the same loop filter and VCO as in the previous example. In Fig. 10.40
are shown the input phase, the VCO phase, and the phase error in the top, middle,
and bottom plots, respectively. The VCO phase is a distorted pulse and so is the
phase error. Similar to the previous case, the VCO input and output are shown in the
top and bottom plots of Fig. 10.41.

Example 10.5c Ramp Phase: As a third example, let the input to the PLL be a
ramp phase. The phase changes from 0 to 1 rad over 20 samples. Note that the
instantaneous frequency is the time derivative of the phase. Since the phase varies
linearly with time, the frequency will be a constant equal to the slope of the phase.
Figure 10.42 shows the input phase, the VCO phase, and the phase error in the top,
middle, and bottom plots, respectively. The VCO input and output are shown in the
top and bottom plots in Fig. 10.43. The M-file used for the three cases of Example
10.5 is named Example 10_5.m.

Simulink Example to Simulate a Linearized Analog PLL To get a hands-on
experience in working with PLL, let us look at simulating a linearized analog PLL
using MATLAB’s Simulink. In this example, the PLL functions in the baseband.
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Fig. 10.38 Input phase and VCO phase in Example 10.5a: top, input step phase; middle, VCO
output phase; bottom, phase error
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Under the Communications System Toolbox, we will find the subsystem named
Synchronization, and under Synchronization, we have Components in which we will
find the block named Linearized Baseband PLL. This block has one input and three
outputs. The input is the signal whose phase is to be tracked. The three outputs are
the phase detector (PD), the loop filter (Filt), and the voltage-controlled oscillator
(VCO). The loop filter parameters to be entered in the PLL Block Parameters are the
coefficients of the numerator and denominator polynomials of the lowpass filter
transfer function. The coefficients correspond to the descending powers of the
Laplace variable s. The filter chosen is a third-order Butterworth analog filter with
a passband edge of 100 rad/s. The VCO parameter is its gain or input sensitivity in
Hz/V. The input to the PLL block is a baseband sinusoidal source, which is found
under Simulink – Source category. We have the option to use either sample based or
time based. We will use sample based as the parameter under “sine type.” We will
also choose 100 samples/period under “samples per period” and an offset of 10 sam-
ples. The sample time is 0.01 s. The reader can view all the parameter options
available as well as what are selected by double clicking each block in the simulation
diagram. We can also add white Gaussian noise to the signal and the sum is fed to
the PLL. Figure 10.44 shows the simulation block diagram used in this example.
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Fig. 10.39 Input and output phase of VCO in Example 10.5a: top, VCO input; bottom, VCO
output phase
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After connecting all the blocks, we need to save the diagram in a file. The simulation
time is chosen to be 10 s. To start the simulation, we have to click the green right
arrow. If there are no errors, the simulation will start, and the results will be
displayed on the respective scopes. First, let us simulate the PLL without noise.
The input signal is shown in Fig. 10.45. As seen from the figure, there are 10 cycles
over the 10 sec duration. The VCO output is shown in Fig. 10.46. As expected, it
takes a few samples before the locking condition occurs. Next, we add white
Gaussian noise with a power of 0.01 W and start the simulation. The VCO output
is shown in Fig. 10.47 when noise is added. Due to the presence of noise, the VCO
takes more time to track the incoming phase. The MATLAB file to simulate the
linearized analog PLL is named Linear_PLL.slx.

Digital Phase Lock Loop A digital phase lock loop (DPLL) achieves the same
purpose as the analog counterpart but with many advantages. A DPLL has a superior
performance over an analog PLL. It is able to acquire and track much faster than an
analog PLL. It is much more reliable and has lower size and cost. The VCO of an
analog PLL is highly sensitive to temperature and power supply variations. There-
fore, it needs not only an initial calibration but also frequent adjustments. This will
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Fig. 10.40 Input phase and VCO phase in Example 10.5b: top, input pulse phase; middle, VCO
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be a problem in consumer products such as a cellular phone. DPLL has no such
problem. The phase detector in an analog PLL uses analog multipliers, which are
sensitive to drift in DC voltage, whereas DPLL does not suffer from this problem.
An analog PLL does not function well at low frequencies because the lowpass loop
filter is analog. A larger time period is necessary for a better frequency resolution,
which in turn reduces the locking speed. DPLL does not have this problem either.
Moreover, since an analog PLL uses analog multipliers and analog filter, self-
acquisition is slow and unreliable. DPLL has a faster locking speed. With so many
advantages over an analog PLL, it is certainly desirable to use a DPLL instead. This
also gives us the motivation to look into DPLL.

A simple block diagram of a DPLL is shown below in Fig. 10.48. There are
different DPLLs available in the literature. One of them is called the Nyquist DPLL.
In this type of PLL, the input analog sinusoidal signal is uniformly sampled at least at
the Nyquist rate, and the analog samples are quantized to B-bits to form the input
digital signal. It is then digitally multiplied by the output of the digital-controlled
oscillator (DCO) to form the error sequence. This error sequence is then filtered by a
lowpass digital filter. The output of the lowpass digital filter then controls the DCO
frequency. Figure 10.49 shows the block diagram of a Nyquist DPLL.
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Fig. 10.41 Input and output phase of VCO in Example 10.5b: top, VCO input; bottom, VCO
output phase
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Software-Based DCO Unlike the analog VCO, the DCO in the DPLL in Fig. 10.49
uses software or algorithm to generate the sinusoid. It uses the basic idea behind the
analog VCO in the following manner. In the continuous-time or analog domain, the
VCO output is described by

y tð Þ ¼ B cos ωct þ K

Z t

0
v τð Þdτ

� 
ð10:105Þ

In the discrete-time domain, we can write the above VCO output as

y n½ � ¼ B cos
2πf c
f s

nþ K
Xn�1

i¼0

v i½ �
 !

ð10:106Þ

where fs is the sampling frequency and the summation inside the argument of the
cosine function corresponds to the integral of the VCO input. The sequence in
(10.106) is then converted to a square wave, which is obtained by
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Fig. 10.42 Input phase and VCO phase in Example 10.5c: top, input ramp phase; middle, VCO
output phase; bottom, phase error
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y n½ � ¼ sq
2πf c
f s

nþ K
Xn�1

i¼0

v i½ �
 !

ð10:107Þ

where the function sq(x) is defined as

sq xð Þ ¼ 1, 0 � x < π
�1, π � x < 2π

�
ð10:108Þ

and it is periodic as indicated below.

sq xþ 2mπð Þ ¼ sq xð Þ,m2Z ð10:109Þ

An Example to Illustrate the Function in Equation 10.108 Let us illustrate the
conversion of the sequence in (10.107) into a square sequence using MATLAB. For
the sake of illustration, we choose the sinusoidal frequency to be 100 Hz with a
sampling frequency of 1000 Hz. Let the DCO gain be equal to 1 rad/volt. The
program to run is named SQ.m. The discrete square sequence is shown in Fig. 10.50
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output phase
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Fig. 10.45 Input analog sinusoid

Fig. 10.44 Block diagram to simulate a linearized analog PLL using MATLAB’s Simulink
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Fig. 10.46 VCO output with no input noise

Fig. 10.47 VCO output with a white Gaussian noise of 0.01 W of power



as a stem plot. The same sequence when the DCO gain is K ¼ 2 is shown in
Fig. 10.51 for comparison.

Simulink Example of a DPLL In this example, we will simulate a DPLL using
MATLAB’s Simulink. The block diagram for the simulation is shown in Fig. 10.52.
It is similar to the one used in the simulation of an analog PLL. The main difference
is in the PLL block. It is called charge-pump PLL. The phase detector outputs a
square waveform as opposed to a continuous-time signal. The loop filter is a lowpass
analog filter. The input signal is the same sinusoid used in the previous Simulink
example. The loop filter is a third-order Butterworth lowpass filter with a passband
edge of 10 rad/s. The VCO gain is 1.25 rad/volt. The block diagram for the
simulation is shown in Fig. 10.52. The details of the parameters can be found by
double clicking the respective block. The outputs of the phase detector, loop filter,
and the VCO are shown in Figs. 10.53, 10.54, and 10.55, respectively. The VCO
seems to track the incoming phase. The same three outputs are displayed in
Figs. 10.56, 10.57, and 10.58 when the input signal is corrupted by an additive
white Gaussian noise with a power of 0.01. Again, the VCO tracks the phase of the
incoming signal.

Fig. 10.48 Block diagram of a typical DPLL

Fig. 10.49 Block diagram of a Nyquist DPLL
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Fig. 10.51 The same output sequence of the sq(x) function with the DCO gain equal to 2
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Fig. 10.52 Simulation block diagram of a charge-pump PLL

Fig. 10.53 Output of the phase detector when no noise is present
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Fig. 10.54 Output of the loop filter when no noise is present

Fig. 10.55 Output of the VCO when no noise is present



Fig. 10.56 Output of the phase detector when AWGN with power 0.01 is present

Fig. 10.57 Output of the loop filter when AWGN with power 0.01 is present



10.5.5 OFDM

OFDM stands for orthogonal frequency-division multiplexing. It is also a
multicarrier modulation scheme. In a conventional frequency-division multiplexing,
data from different subscribers each modulate a subcarrier to form a non-overlapping
spectrum. These subcarriers then modulate a final carrier for transmission. The
problem with the conventional frequency-division multiplexing is the ISI at the
receiver due to the dispersive fading channel effect and requires complex equaliza-
tion. On the other hand, OFDM uses subcarriers that are orthogonal, which does not
cause ISI. It also supports high data rates. Therefore, OFDM has gained popularity
and is used in standards such as digital audio broadcasting and digital TV. It is also
used in high data rate transmission in mobile wireless channels. Remember that our
objective here is to show that DSP is used in OFDM.

OFDM Basics OFDM is a digital multicarrier modulation. The symbols from
different users to be transmitted simultaneously are denoted by {X(k), 0� k�N� 1}.
The OFDM signal in the time domain can be described by

x tð Þ ¼
XN�1

k¼0

X kð Þe j2πf k t, 0 � t � Ts ð10:110Þ

Fig. 10.58 Output of the VCO when AWGN with power 0.01 is present
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