

UNIVERSIDAD NACIONAL DE CHIMBORAZO FACULTAD DE INGENIERÍA

Versión: 1 Página: 13 de 41

GUÍA DE PRÁCTICAS Período Académico: 2025 – 1S

CARRERA: Ingeniería en Telecomunicaciones	DOCENTE: Daniel Santillán	SEMESTRE: Cuarto PARALELO:
NOMBRE DE LA ASIGNATURA:	CÓDIGO :	LABORATORIO:
Procesamiento de Señales	36115	LABA309, LABA302
		No Grupos No Estudiantes

Práctica No. 5 Tema: Transformada Z Duración: 2 horas No. Grupos No. Estudiantes 10

Objetivo de la práctica:

Calcular numéricamente el diagrama de polos y ceros, la respuesta frecuencial, la respuesta al impulso, y la transformada inversa de la función de transferencia H(z)..

Fundamento teórico:

La transformada Z opera sobre una señal de tiempo discreto [1]. Desempeña el mismo papel en el análisis de sistemas LTI, que la transformada de Laplace en el análisis de señales continuas en el tiempo, y los sistemas lineales invariantes en el tiempo (LTI) [2].

En matemáticas, la transformada Z es utilizada para convertir una señal real o compleja que está definida en el dominio del tiempo en una representación en el dominio de la frecuencia compleja. Por este motivo, es utilizada en el procesamiento de señales.

Definición Matemática de la Transformada Z

Dada una secuencia discreta x(n) se define la Transformada Z como:

$$X(z) = Z\{x[n]\} = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$

donde z es una variable compleja

Un sistema LTI se puede caracterizar en el dominio del tiempo mediante su respuesta al impulso h[n]. La salida y[n] debida a la entrada x[n], se pueden calcular mediante la convolución:

$$y[n] = \sum_{n=-\infty}^{\infty} x[k]h[n-k]$$

La transformada Z de la salida de un sistema LTI, se relaciona con la transformada Z de la entrada, y la transformada Z de la respuesta al impulso [3]:

$$Y(z) = H(z)X(z)$$

H(z) se le conoce como la función de transferencia. Cualquier sistema LTI queda completamente caracterizado por su función de transferencia suponiendo convergencia [3].

En esta práctica trabajaremos con H(z), calculando numéricamente el diagrama de polos y ceros, la respuesta frecuencial, la respuesta al impulso, y su transformada inversa.

Equipos y materiales

- Computador personal.
- Paquete de software Matlab.

Sigue en la página siguiente.

Procedimiento: Calcule la transformada Z de las secuencias: [3, 5, 4, 3]

- 1. Reescribir la función de transferencia $H(z)=\frac{z+1,7}{(z+0,3)(z-0,5)}$. en términos de la variable compleja z^{-1} quedando la siguiente función: $H(z)=\frac{z^{-1}+1,7z^{-2}}{1-0,2z^{-1}-0,15z^{-2}}$
- 2. Ejecutar el software para desarrollo Matlab.
- 3. Escribir la función de transferencia H(z) en dos vectores:

$$num = [0 \ 1 \ 1,7].$$

$$den = \begin{bmatrix} 1 & -0.2 & -0.15 \end{bmatrix}$$

- 4. Dibujar el diagrama de polos y ceros utilizando el comando: zplane(num, den)
- 5. Dibujar la respuesta frecuencial de H(z):

freqz(num, den)

6. Calcular el residuo, los polos y el cociente de H(z)

[RPQ] = residuez(num, den)

Ejemplo:

- R =
- 5.5000
- 5.8333
- P =
- 0.5000
- -0.3000
- Q =
- -11.3333
- 7. Con el resultado del paso 6 expresar H(z) en fracciones parciales:

$$H(z) = -11,3333 + \frac{5,5}{1-0.50z^{-1}} + \frac{5,8333}{1+0.30z^{-1}}$$

- 8. Dibujar la respuesta al impulso de H(z):
- impz(num, den)
- 9. Represente H(z) en forma simbólica:

syms H h z

$$H = (z+1.7)/(z^2-0.2*z-0.15)$$

10. Calcular la transformada inversa de H(z)

h = iztrans(H)

$$h = (11 * (1/2)^n)/2 + (35 * (-3/10)^n)/6 - (34 * kroneckerDelta(n, 0))/3$$

- 11. Evaluar de forma numérica h(n)
- $h1 = filter(num, den, [1 \ zeros(1, 9)])$
- 12. Repetir los pasos 1 a 11 para las siguientes funciones de transferencia:

$$H(z) = \frac{8z^3 + 2z^2 - 5z}{z^3 - 1,75z + 0,75}$$

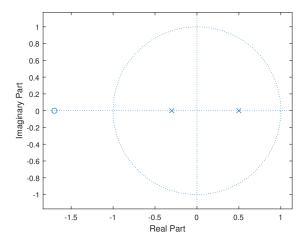
$$H(z) = \frac{z^3 + 1}{z^3 - z^2 - z - 2}$$

$$H(z) = \frac{z^2 - \cos(0.4) z}{z^2 - 2\cos(0.4) z + 1}$$

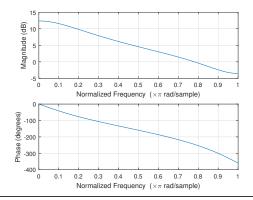
$$H(z) = \frac{1}{1 - 0.5z^{-1}}$$

Resultados:

Capturas de pantalla de los resultados obtenidos en los pasos 3 a 12 de la sección de Procedimiento. Ejemplo: Diagrama de polos y ceros de la función de transferencia H(z)



Respuesta frecuencial de H(z)



Anexos:

Referencias:

- 1 Fundamentos de señales y sistemas usando la web y Matlab, E.Kamen,2008.
- 2 Tratamiento digital de señales, Proakis, 2007.
- 3 Tratamiento de señales en tiempo discreto, Oppenheim, 2011.

Fecha de revisión y aprobación: 1 de abril de 2025

PhD. Carlos Peñafiel Director de Carrera PhD. Daniel Santillán Docente de la Materia

Ing. Daniel García MSc. **Técnico de Laboratorio**