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conductor are not perturbed by the sidewalls. We then have a closed finite region in which
the potential 
(x, y) satisfies Laplace’s equation,

∇2
t 
(x, y) = 0 for |x | ≤ a/2, 0 ≤ y ≤ b, (3.182)

with the boundary conditions


(x, y) = 0, at x = ±a/2, (3.183a)


(x, y) = 0, at y = 0, b. (3.183b)

Laplace’s equation can be solved by the method of separation of variables. Because
the center conductor at y = b/2 will contain a surface charge density, the potential 
(x, y)

will have a slope discontinuity there because D̄ = −ε0εr∇t
 is discontinuous at y = b/2.
Therefore, separate solutions for 
(x, y) must be found for 0 < y < b/2 and b/2 < y < b.
The general solutions for 
(x, y) in these two regions can be written as


(x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∞∑
n=1
odd

An cos
nπx

a
sinh

nπy

a
for 0 ≤ y ≤ b/2

∞∑
n=1
odd

Bn cos
nπx

a
sinh

nπ

a
(b − y) for b/2 ≤ y ≤ b.

(3.184)

Only the odd-n terms are needed in (3.184) because the solution is an even function of x .
The reader can verify by substitution that (3.184) satisfies Laplace’s equation in the two
regions and satisfies the boundary conditions of (3.183).

The potential must be continuous at y = b/2, which from (3.184) leads to

An = Bn . (3.185)

The remaining set of unknown coefficients, An , can be found by solving for the charge
density on the center strip. Because Ey = −∂
/∂y, we have

Ey =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−
∞∑

n=1
odd

An

(nπ

a

)
cos

nπx

a
cosh

nπy

a
for 0 ≤ y ≤ b/2

∞∑
n=1
odd

An

(nπ

a

)
cos

nπx

a
cosh

nπ

a
(b − y) for b/2 ≤ y ≤ b.

(3.186)

The surface charge density on the strip at y = b/2 is

ρs = Dy(x, y = b/2+) − Dy(x, y = b/2−)

= ε0εr [Ey(x, y = b/2+) − Ey(x, y = b/2−)]

= 2ε0εr

∞∑
n=1
odd

An

(nπ

a

)
cos

nπx

a
cosh

nπb

2a
, (3.187)

which is seen to be a Fourier series in x for the surface charge density, ρs , on the strip at
y = b/2. If we know the surface charge density we could easily find the unknown con-
stants, An , and then the capacitance. We do not know the exact surface charge density, but
we can make a good guess by approximating it as a constant over the width of the strip,

ρs(x) =
{ 1 for |x | < W/2

0 for |x | > W/2.
(3.188)
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Equating this to (3.187) and using the orthogonality properties of the cos(nπx /a) functions
gives the constants An as

An = 2a sin(nπW /2a)

(nπ)2ε0εr cosh(nπb/2a)
. (3.189)

The voltage of the strip conductor relative to the bottom conductor can be found by inte-
grating the vertical electric field from y = 0 to b/2. Because the solution is approximate,
this voltage is not constant over the width of the strip but varies with position, x . Rather
than choosing the voltage at an arbitrary position, we can obtain an improved result by
averaging the voltage over the width of the strip:

Vavg = 1

W

W/2∫

−W/2

∫ b/2

0
Ey(x, y) dy dx =

∞∑
n=1
odd

An

(
2a

nπW

)
sin

nπW

2a
sinh

nπb

2a
. (3.190)

The total charge per unit length on the center conductor is

Q =
∫ W/2

−W/2
ρs(x) dx = W Coul/m, (3.191)

so the capacitance per unit length of the stripline is

C = Q

Vavg
= W

∞∑
n=1
odd

An

(
2a

nπW

)
sin

nπW

2a
sinh

nπb

2a

F/m. (3.192)

Finally, the characteristic impedance is given by

Z0 =
√

L

C
=

√
LC

C
= 1

vpC
=

√
εr

cC
,

where c = 3 × 108 m/sec.

EXAMPLE 3.6 NUMERICAL CALCULATION OF STRIPLINE IMPEDANCE

Evaluate the above expressions for a stripline having εr = 2.55 and a = 100b to
find the characteristic impedance for W /b = 0.25 to 5.0. Compare with the results
from (3.179).

Solution
A computer program was written to evaluate (3.192). The series was truncated
after 500 terms, and the results for Z0 are as follows.

Z0, �

Numerical, Formula, Commercial

W /b Eq. (3.192) Eq. (3.179) CAD

0.25 90.9 86.6 85.3

0.50 66.4 62.7 61.7

1.0 43.6 41.0 40.2

2.0 25.5 24.2 24.4

5.0 11.1 10.8 11.9
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We see that the results are in reasonable agreement with the closed-form equa-
tions of (3.179) and the results from a commercial CAD package, particularly for
wider strips where the charge density is closer to uniform. Better results could be
obtained if more sophisticated estimates were used for the charge density. ■

3.8 MICROSTRIP LINE

Microstrip line is one of the most popular types of planar transmission lines primarily
because it can be fabricated by photolithographic processes and is easily miniaturized and
integrated with both passive and active microwave devices. The geometry of a microstrip
line is shown in Figure 3.25a. A conductor of width W is printed on a thin, grounded
dielectric substrate of thickness d and relative permittivity εr ; a sketch of the field lines is
shown in Figure 3.25b.

If the dielectric substrate were not present (εr = 1), we would have a two-wire line
consisting of a flat strip conductor over a ground plane, embedded in a homogeneous
medium (air). This would constitute a simple TEM transmission line with phase veloc-
ity vp = c and propagation constant β = k0.

The presence of the dielectric, particularly the fact that the dielectric does not fill the
region above the strip (y > d), complicates the behavior and analysis of microstrip line.
Unlike stripline, where all the fields are contained within a homogeneous dielectric region,
microstrip has some (usually most) of its field lines in the dielectric region between the strip
conductor and the ground plane and some fraction in the air region above the substrate. For
this reason microstrip line cannot support a pure TEM wave since the phase velocity of
TEM fields in the dielectric region would be c/

√
εr , while the phase velocity of TEM fields

in the air region would be c, so a phase-matching condition at the dielectric–air interface
would be impossible to enforce.

In actuality, the exact fields of a microstrip line constitute a hybrid TM-TE wave and
require more advanced analysis techniques than we are prepared to deal with here. In most
practical applications, however, the dielectric substrate is electrically very thin (d � λ),
and so the fields are quasi-TEM. In other words, the fields are essentially the same as those
of the static (DC) case. Thus, good approximations for the phase velocity, propagation con-
stant, and characteristic impedance can be obtained from static, or quasi-static, solutions.
Then the phase velocity and propagation constant can be expressed as

vp = c√
εe

, (3.193)

β = k0
√

εe, (3.194)

y
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FIGURE 3.25 Microstrip transmission line. (a) Geometry. (b) Electric and magnetic field lines.
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where εe is the effective dielectric constant of the microstrip line. Because some of the
field lines are in the dielectric region and some are in air, the effective dielectric constant
satisfies the relation

1 < εe < εr

and depends on the substrate dielectric constant, the substrate thickness, the conductor
width, and the frequency.

We will present approximate design formulas for the effective dielectric constant, charac-
teristic impedance, and attenuation of microstrip line; these results are curve-fit approximations
to rigorous quasi-static solutions [8, 9]. Then we will discuss additional aspects of microstrip
lines, including frequency-dependent effects, higher order modes, and parasitic effects.

Formulas for Effective Dielectric Constant, Characteristic
Impedance, and Attenuation

The effective dielectric constant of a microstrip line is given approximately by

εe = εr + 1

2
+ εr − 1

2

1√
1 + 12d/W

. (3.195)

The effective dielectric constant can be interpreted as the dielectric constant of a homo-
geneous medium that equivalently replaces the air and dielectric regions of the microstrip
line, as shown in Figure 3.26. The phase velocity and propagation constant are then given
by (3.193) and (3.194).

Given the dimensions of the microstrip line, the characteristic impedance can be cal-
culated as

Z0 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

60√
εe

ln

(
8d

W
+ W

4d

)
for W/d ≤ 1

120π√
εe [W/d + 1.393 + 0.667 ln (W/d + 1.444)]

for W/d ≥ 1.

(3.196)

For a given characteristic impedance Z0 and dielectric constant εr , the W /d ratio can be
found as

W

d
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

8eA

e2A − 2
for W/d < 2

2

π

[
B − 1 − ln(2B − 1) + εr − 1

2εr

{
ln(B − 1) + 0.39 − 0.61

εr

}]
for W/d > 2,

(3.197)

�r

W

d

W
�e

d

(a) (b)

FIGURE 3.26 Equivalent geometry of a quasi-TEM microstrip line. (a) Original geometry.
(b) Equivalent geometry, where the dielectric substrate of relative permittivity εr
is replaced with a homogeneous medium of effective relative permittivity εe.
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where

A = Z0

60

√
εr + 1

2
+ εr − 1

εr + 1

(
0.23 + 0.11

εr

)

B = 377π

2Z0
√

εr
.

Considering a microstrip line as a quasi-TEM line, we can determine the attenuation
due to dielectric loss as

αd = k0εr (εe − 1) tan δ

2
√

εe(εr − 1)
Np/m, (3.198)

where tan δ is the loss tangent of the dielectric. This result is derived from (3.30) by multi-
plying by a “filling factor,”

εr (εe − 1)

εe(εr − 1)
,

which accounts for the fact that the fields around the microstrip line are partly in air (loss-
less) and partly in the dielectric (lossy). The attenuation due to conductor loss is given
approximately by [8]

αc = Rs

Z0W
Np/m, (3.199)

where Rs = √
ωµ0/2σ is the surface resistivity of the conductor. For most microstrip sub-

strates, conductor loss is more significant than dielectric loss; exceptions may occur, how-
ever, with some semiconductor substrates.

EXAMPLE 3.7 MICROSTRIP LINE DESIGN

Design a microstrip line on a 0.5 mm alumina substrate (εr = 9.9, tan δ = 0.001)
for a 50 � characteristic impedance. Find the length of this line required
to produce a phase delay of 270◦ at 10 GHz, and compute the total loss on this
line, assuming copper conductors. Compare the results obtained from the approx-
imate formulas of (3.195)–(3.199) with those from a microwave CAD package.

Solution
First find W/d for Z0 = 50 �, and initially guess that W/d < 2. From (3.197),

A = 2.142, W/d = 0.9654.

So the condition that W/d < 2 is satisfied; otherwise we would use the expression
for W/d > 2. Then the required line width is W = 0.9654d = 0.483 mm. From
(3.195) the effective dielectric constant is εe = 6.665. The line length, �, for a
270◦ phase shift is found as

φ = 270◦ = β� = √
εek0�,

k0 = 2π f

c
= 209.4 m−1,

� = 270◦(π/180◦)√
εek0

= 8.72 mm.
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Attenuation due to dielectric loss is found from (3.198) as αd = 0.255 Np/m =
0.022 dB/cm. The surface resistivity for copper at 10 GHz is 0.026 �, and the
attenuation due to conductor loss is, from (3.199), αc = 0.0108 Np/cm = 0.094
dB/cm. The total loss on the line is then 0.101 dB.

A commercial microwave CAD package gives the following results: W =
0.478 mm, εe = 6.83, � = 8.61 mm, αd = 0.022 dB/cm, and αc = 0.054 dB/cm.
The approximate formulas give results that are within a few percent of the CAD
data for linewidth, effective dielectric constant, line length, and dielectric attenu-
ation. The greatest discrepancy occurs for the attenuation constant for conductor
loss. ■

Frequency-Dependent Effects and Higher Order Modes

The results for the parameters of microstrip line presented in the previous section were
based on the quasi-static approximation and are strictly valid only at DC (or very low
frequencies). At higher frequencies a number of effects can occur that lead to variations
from the quasi-static results for effective dielectric constant, characteristic impedance, and
attenuation of microstrip line. In addition, new effects can arise, such as higher order modes
and parasitic reactances.

Because microstrip line is not a true TEM line, its propagation constant is not a linear
function of frequency, meaning that the effective dielectric constant varies with frequency.
The electromagnetic field that exists on microstrip line involves a hybrid coupling of TM
and TE modes, complicated by the boundary condition imposed by the air and dielectric
substrate interface. In addition, the current on the strip conductor is not uniform across
the width of the strip, and this distribution varies with frequency. The thickness of the strip
conductor also has an effect on the current distribution and hence affects the line parameters
(especially the conductor loss).

The variation with frequency of the parameters of a transmission line is important for
several reasons. First, if the variation is significant it becomes important to know and use
the parameters at the particular frequency of interest to avoid errors in design or analysis.
Typically, for microstrip line, the frequency variation of the effective dielectric constant is
more significant than the variation of characteristic impedance, both in terms of relative
change and the relative effect on performance. A change in the effective dielectric con-
stant may have a substantial effect on the phase delay through a long section of line, while
a small change in characteristic impedance has the primary effect of introducing a small
impedance mismatch. Second, a variation in line parameters with frequency means that
different frequency components of a broadband signal will propagate differently. A varia-
tion in phase velocity, for example, means that different frequency components will arrive
at the output of the line at different times, leading to signal dispersion and distortion of
the input signal. Third, because of the complexity of modeling these effects, approximate
formulas are generally useful only for a limited range of frequency and line parameters,
and numerical computer models are usually more accurate and useful.

There are a number of approximate formulas, developed from numerical computer
solutions and/or experimental data, that have been suggested for predicting the frequency
variation of microstrip line parameters [8, 9]. A popular frequency-dependent model for
the effective dielectric constant has a form similar to the following formula [8]:

εe( f ) = εr − εr − εe(0)

1 + G( f )
, (3.200)

where εe( f ) represents the frequency-dependent effective dielectric constant, εr is the rel-
ative permittivity of the substrate, and εe(0) is the effective dielectric constant of the line at
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DC, as given by (3.195). The function G( f ) can take various forms, but one suggested in
reference [8] is that G( f ) = g

(
f/ f p

)2, with g = 0.6 + 0.009 Z0 and f p = Z0/8πd (Z0 is
in ohms, f is in GHz, and d is in cm). It can be seen from the form of (3.200) that εe( f )

reduces to the DC value εe(0) when f = 0 and increases toward εr as frequency increases.
Approximate formulas like the above were primarily developed in the years before

computer-aided design tools for RF and microwave engineering became commonly avail-
able (see the Point of Interest on computer-aided design in Chapter 4). Such tools usually
give accurate results for a wide range of line parameters and today are usually preferred
over closed-form approximations.

Another potential difficulty with microstrip line is that it may support several types of
higher order modes, particularly at higher frequencies. Some of these are directly related
to the TM and TE surface waves modes that were discussed in Section 3.6, while others
are related to waveguide-type modes in the cross section of the line.

The TM0 surface wave mode for a grounded dielectric substrate has a zero cutoff
frequency, as we know from (3.167). Because some of the field lines of this mode are
aligned with the field lines of the quasi-TEM mode of a microstrip line, it is possible for
coupling to occur from the desired microstrip mode to a surface wave, leading to excess
power loss and possibly undesired coupling to adjacent microstrip elements. Because the
fields of the TM0 surface wave are zero at DC, there is little coupling to the quasi-TEM
microstrip mode until a critical frequency is reached. Studies have shown that this threshold
frequency is greater than zero and less than the cutoff frequency of theTM1 surface wave
mode. A commonly used approximation is [8]

fT 1 � c

2πd

√
2

εr − 1
tan−1 εr . (3.201)

For εr ranging from 1 to 10, (3.201) gives a frequency that is 35% to 66% of fc1, the cutoff
frequency of the TM1 surface wave mode.

When a microstrip circuit has transverse discontinuities (such as bends, junctions, or
even step changes in width), the transverse currents on the conductors that are generated
may allow coupling to TE surface wave modes. Most practical microstrip circuits involve
such discontinuities, so this type of coupling is often important. The minimum threshold
frequency where such coupling becomes important is given by the cutoff of the TE1 surface
wave, from (3.174):

fT 2 � c

4d
√

εr − 1
. (3.202)

For wide microstrip lines, it is possible to excite a transverse resonance along the x axis
of the microstrip line below the strip in the dielectric region because the sides below the
strip conductor appear approximately as magnetic walls. This condition occurs when the
width is about λ/2 in the dielectric, but because of field fringing the effective width of the
strip is somewhat larger than the physical width. A rough approximation for the effective
width is W + d/2, so the approximate threshold frequency for transverse resonance is

fT 3 � c√
εr (2W + d)

. (3.203)

It is rare that a microstrip line is wide enough to approach this limit in practice.
Finally, a parallel plate–type waveguide mode may propagate when the vertical spac-

ing between the strip conductor and ground plane approaches λ/2 in the dielectric. Thus, an
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approximation for the threshold frequency for this mode (valid for wide microstrip lines)
can be given as

fT 4 � c

2d
√

εr
. (3.204)

Thinner microstrip lines will have more fringing field that effectively lengthens the path
between the strip and ground plane, thus reducing the threshold frequency by as much as
50%.

The net effect of the threshold frequencies given in (3.201)–(3.204) is to impose an
upper frequency limit of operation for a given microstrip geometry. This limit is a function
of the substrate thickness, dielectric constant, and strip width.

EXAMPLE 3.8 FREQUENCY DEPENDENCE OF EFFECTIVE
DIELECTRIC CONSTANT

Use the approximate formula of (3.200) to plot the change in effective dielectric
constant over frequency for a 25 � microstrip line on a substrate having a rela-
tive permittivity of 10.0 and a thickness of 0.65 mm. Compare the approximate
data with results from a CAD model for frequencies up to 20 GHz. Compare the
calculated phase delay at 10 GHz through a 1.093 cm length of line when using
εe(0) versus εe(10 GHz).

Solution
The required linewidth for a 25 � impedance is w = 2.00 mm. The effective
dielectric constant for this line at low frequencies can be found from (3.195) to
be εe(0) = 7.53. A short computer program was used to calculate the effective
dielectric constant as a function of frequency using (3.200), and the result is
shown in Figure 3.27. Comparison with a commercial microwave CAD package
shows that the approximate model is reasonably accurate up to about 10 GHz but
gives an overestimate at higher frequencies.
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FIGURE 3.27 Effective dielectric constant versus frequency for the microstrip line of Example
3.8, comparing the approximate model of (3.200) with data from a computer-aided
design package.
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Using an effective dielectric constant of εe(0) = 7.53, we find the phase
delay through a 1.093 cm length of line to be φ0 = √

εe(0)k0� = 360◦. The
effective dielectric constant at 10 GHz is 8.120 (CAD), with a corresponding
phase delay of φ10 = √

εe(10 GHz)k0� = 374◦—an error of about 14◦. ■

3.9 THE TRANSVERSE RESONANCE TECHNIQUE

According to the general solutions of Maxwell’s equations for TE or TM waves given in
Section 3.1, a uniform waveguide structure always has a propagation constant of the form

β =
√

k2 − k2
c =

√
k2 − k2

x − k2
y, (3.205)

where kc =
√

k2
x + k2

y is the cutoff wave number of the guide and, for a given mode, is a

fixed function of the cross-sectional geometry of the guide. Thus, if we know kc we can
determine the propagation constant of the guide. In previous sections we determined kc

by solving the wave equation in the guide, subject to the appropriate boundary conditions.
Although this technique is very powerful and general, it can be complicated for complex
waveguides, especially if dielectric layers are present. In addition, the wave equation solu-
tion gives a complete field description inside the waveguide, which is often more informa-
tion than we really need if we are only interested in the propagation constant of the guide.
The transverse resonance technique employs a transmission line model of the transverse
cross section of the waveguide and gives a much simpler and more direct solution for the
cutoff frequency. This is another example where circuit and transmission line theory offers
a simplified alternative to a field theory solution.

The transverse resonance procedure is based on the fact that in a waveguide at cutoff,
the fields form standing waves in the transverse plane of the guide, as can be inferred from
the “bouncing plane wave” interpretation of waveguide modes discussed in Section 3.2.
This situation can be modeled with an equivalent transmission line circuit operating at
resonance. One of the conditions of such a resonant line is the fact that, at any point on the
line, the sum of the input impedances seen looking to either side must be zero. That is,

Zr
in(x) + Z�

in(x) = 0 for all x, (3.206)

where Zr
in(x) and Z�

in(x) are the input impedances seen looking to the right and left,
respectively, at any point x on the resonant line.

The transverse resonance technique only gives results for the cutoff frequency of the
guide. If fields or attenuation due to conductor loss are needed, the complete field theory
solution will be required. The procedure will now be illustrated with an example.

TE0n Modes of a Partially Loaded Rectangular Waveguide

The transverse resonance technique is particularly useful when the guide contains dielec-
tric layers because the boundary conditions at the dielectric interfaces, which require the
solution of simultaneous algebraic equations in the field theory approach, can be easily
handled as junctions of different transmission lines. As an example, consider a rectangu-
lar waveguide partially filled with dielectric, as shown in Figure 3.28. To find the cutoff
frequencies for the TE0n modes, the equivalent transverse resonance circuit shown in the
figure can be used. The line for 0 < y < t represents the dielectric-filled part of the guide
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FIGURE 3.28 A rectangular waveguide partially filled with dielectric and the transverse reso-
nance equivalent circuit.

and has a transverse propagation constant kyd and a characteristic impedance for TE modes
given by

Zd = kη

kyd
= k0η0

kyd
, (3.207a)

where k0 = ω
√

µ0ε0 and η0 = √
µ0/ε0. For t < y < b, the guide is air filled and has a

transverse propagation constant kya and an equivalent characteristic impedance given by

Za = k0η0

kya
. (3.207b)

Applying condition (3.206) yields

kya tan kyd t + kyd tan kya(b − t) = 0. (3.208)

This equation contains two unknowns, kya and kyd . An additional equation is obtained from
the fact that the longitudinal propagation constant, β, must be the same in both regions for
phase matching of the tangential fields at the dielectric interface. Thus, with kx = 0,

β =
√

εr k2
0 − k2

yd =
√

k2
0 − k2

ya,

or

εr k2
0 − k2

yd = k2
0 − k2

ya . (3.209)

Equations (3.208) and (3.209) can be solved (numerically or graphically) to obtain kyd

and kya . There will be an infinite number of solutions, corresponding to the n dependence
(number of variations in y) of the TE0n mode.

3.10 WAVE VELOCITIES AND DISPERSION

We have so far encountered two types of velocities related to the propagation of electro-
magnetic waves:

� The speed of light in a medium (1/
√

µε )
� The phase velocity (vp = ω/β)

The speed of light in a medium is the velocity at which a plane wave would propagate in
that medium, while the phase velocity is the speed at which a constant phase point travels.
For a TEM plane wave, these two velocities are identical, but for other types of guided
wave propagation the phase velocity may be greater or less than the speed of light.
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If the phase velocity and attenuation of a line or guide are constants that do not change
with frequency, then the phase of a signal that contains more than one frequency component
will not be distorted. If the phase velocity is different for different frequencies, then the
individual frequency components will not maintain their original phase relationships as
they propagate down the transmission line or waveguide, and signal distortion will occur.
Such an effect is called dispersion since different phase velocities allow the “faster” waves
to lead in phase relative to the “slower” waves, and the original phase relationships will
gradually be dispersed as the signal propagates down the line. In such a case, there is
no single phase velocity that can be attributed to the signal as a whole. However, if the
bandwidth of the signal is relatively small or if the dispersion is not too severe, a group
velocity can be defined in a meaningful way. This velocity can be used to describe the
speed at which the signal propagates.

Group Velocity

As discussed earlier, the physical interpretation of group velocity is the velocity at which a
narrowband signal propagates. We will derive the relation of group velocity to the propa-
gation constant by considering a signal f (t) in the time domain. The Fourier transform of
this signal is defined as

F(ω) =
∫ ∞

−∞
f (t)e− jωt dt, (3.210a)

and the inverse transform is

f (t) = 1

2π

∫ ∞

−∞
F(ω)e jωt dω. (3.210b)

Now consider the transmission line or waveguide on which the signal f (t) is propa-
gating as a linear system, with a transfer function Z(ω) that relates the output, Fo(ω), of
the line to the input, F(ω), of the line, as shown in Figure 3.29. Thus,

Fo(ω) = Z(ω)F(ω). (3.211)

For a lossless matched transmission line or waveguide, the transfer function Z(ω) can be
expressed as

Z(ω) = Ae− jβz = |Z(ω)|e− jψ, (3.212)

where A is a constant and β is the propagation constant of the line or guide.
The time domain representation of the output signal, fo(t), can then be written as

fo(t) = 1

2π

∫ ∞

−∞
F(ω)|Z(ω)|e j (ωt−ψ)dω. (3.213)

F(�) Z (�) Fo(�)

Fo(�) = Z (�)F(�)

FIGURE 3.29 A transmission line or waveguide represented as a linear system with transfer
function Z(ω).
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If | Z(ω)| = A is a constant and the phase ψ of Z(ω) is a linear function of ω, say ψ = aω,
the output can be expressed as

fo(t) = 1

2π

∫ ∞

−∞
AF(ω)e jω(t−a)dω = A f (t − a), (3.214)

which is seen to be a replica of f (t), except for an amplitude factorA and time shift a. Thus,
a transfer function of the form Z(ω) = Ae− jωa does not distort the input signal. A lossless
TEM wave has a propagation constant β = ω/c, which is of this form, so a TEM line is
dispersionless and does not lead to signal distortion. If the TEM line is lossy, however, the
attenuation may be a function of frequency, which could lead to signal distortion.

Now consider a narrowband input signal of the form

s(t) = f (t) cos ω0t = Re
{

f (t)e jωot
}

, (3.215)

which represents an amplitude-modulated carrier wave of frequency ωo. Assume that the
highest frequency component of f (t) is ωm , where ωm � ωo. The Fourier transform, S(ω),
of s(t), is

S(ω) =
∫ ∞

−∞
f (t)e− jωot e jωt dt = F(ω − ωo), (3.216)

where we have used the complex form of the input signal as expressed in (3.215). We will
need to take the real part of the output inverse transform to obtain the time domain output
signal. The spectra of F(ω) and S(ω) are depicted in Figure 3.30.

The output signal spectrum is

So(ω) = AF(ω − ωo)e
− jβz, (3.217)

and in the time domain,

so(t) = 1

2π
Re

∫ ∞

−∞
So(ω)e jωt dω

= 1

2π
Re

∫ ωo+ωm

ωo−ωm

AF(ω − ωo)e
j (ωt−βz)dω.

(3.218)

In general, the propagation constant β may be a complicated function of ω. However,
if F(ω) is narrowband (ωm � ωo), then β can often be linearized by using a Taylor series
expansion about ωo:

β(ω) = β(ωo) + dβ

dω

∣∣∣∣
ω=ωo

(ω − ωo) + 1

2

d2β

dω2

∣∣∣∣
ω=ωo

(ω − ωo)
2 + · · · . (3.219)

–�m �m �0

F(�)

(a)

–�o �o �0

S(�)

(b)

FIGURE 3.30 Fourier spectra of the signals (a) f (t) and (b) s(t).
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Retaining the first two terms gives

β(ω) � βo + β ′
o(ω − ωo), (3.220)

where

βo = β(ωo),

β ′
o = dβ

dω

∣∣∣∣
ω=ωo

.

After a change of variables to y = ω − ωo, the expression for so(t) becomes

so(t) = A

2π
Re

{
e j (ωot−βoz)

∫ ωm

−ωm

F(y)e j (t−β ′
oz)y dy

}

= A Re
{

f (t − β ′
oz)e j (ωot−βoz)

}

= A f (t − β ′
oz) cos(ωot − βoz), (3.221)

which is a time-shifted replica of the original modulation envelope, f (t), of (3.215). The
velocity of this envelope is the group velocity, vg:

vg = 1

β ′
o

=
(

dβ

dω

)−1 ∣∣∣∣
ω=ωo

. (3.222)

EXAMPLE 3.9 WAVEGUIDE WAVE VELOCITIES

Calculate the group velocity for a waveguide mode propagating in an air-filled
guide. Compare this velocity to the phase velocity and speed of light.

Solution
The propagation constant for a mode in an air-filled waveguide is

β =
√

k2
0 − k2

c =
√

(ω/c)2 − k2
c .

Taking the derivative with respect to frequency gives

dβ

dω
= ω/c2√

(ω/c)2 − k2
c

= ko

cβ
,

so from (3.234) the group velocity is

vg =
(

dβ

dω

)−1

= cβ

k0
.

The phase velocity is vp = ω/β = ck0/β. Since β < k0, we have that vg <

c < vp, which indicates that the phase velocity of a waveguide mode may be
greater than the speed of light, but the group velocity (the velocity of a narrow-
band signal) will be less than the speed of light. ■

3.11 SUMMARY OF TRANSMISSION LINES AND WAVEGUIDES

We have discussed a variety of transmission lines and waveguides in this chapter, and here
we will summarize some of the basic properties of these transmission media and their
relative advantages in a broader context.
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TABLE 3.6 Comparison of Common Transmission Lines and Waveguides

Characteristic Coax Waveguide Stripline Microstrip

Modes: Preferred TEM TE10 TEM Quasi-TEM

Other TM,TE TM,TE TM,TE Hybrid TM,TE

Dispersion None Medium None Low

Bandwidth High Low High High

Loss Medium Low High High

Power capacity Medium High Low Low

Physical size Large Large Medium Small

Ease of fabrication Medium Medium Easy Easy

Integration with Hard Hard Fair Easy

We made a distinction between TEM, TM, and TE waves and saw that transmission
lines and waveguides can be categorized according to which type of waves they can sup-
port. We saw that TEM waves are nondispersive, with no cutoff frequency, while TM and
TE waves exhibit dispersion and generally have nonzero cutoff frequencies. Other electri-
cal considerations include bandwidth, attenuation, and power-handling capacity. Mechan-
ical factors are also very important, however, and include such considerations as physical
size (volume and weight), ease of fabrication (cost), and the ability to be integrated with
other devices (active or passive). Table 3.6 compares several types of transmission media
with regard to these considerations; this table only gives general guidelines, as specific
cases may give better or worse results than those indicated.

Other Types of Lines and Guides

Although we have discussed the most common types of waveguides and transmission lines,
there are many other guides and lines (and many variations) that we are not able to present
in detail. A few of the more popular types are briefly mentioned here.

Ridge waveguide: The practical bandwidth of rectangular waveguide is slightly less than
an octave (a 2:1 frequency range). This is because the TE20 mode begins to propagate at
a frequency equal to twice the cutoff frequency of the TE10 mode. The ridge waveguide,
shown in Figure 3.31, consists of a rectangular waveguide loaded with conducting ridges
on the top and/or bottom walls. This loading tends to lower the cutoff frequency of the
dominant mode, leading to increased bandwidth and better (more constant) impedance
characteristics. Ridge waveguides are often used for impedance matching purposes, where

FIGURE 3.31 Cross section of a ridge waveguide.
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�r1

�r2

FIGURE 3.32 Dielectric waveguide geometry.

the ridge may be tapered along the length of the guide. The presence of the ridge, however,
reduces the power-handling capacity of the waveguide.

Dielectric waveguide: As we have seen from our study of surface waves, metallic con-
ductors are not necessary to confine and support a propagating electromagnetic field. The
dielectric waveguide shown in Figure 3.32 is another example of such a guide, where εr2,
the dielectric constant of the ridge, is usually greater than εr1, the dielectric constant of
the substrate. The fields are thus mostly confined to the ridge and the surrounding area.
This type of guide supports TM and TE modes, and is convenient for miniaturization and
integration with active devices. Its small size makes it useful for millimeter wave to optical
frequencies, although it can be very lossy at bends or junctions in the ridge line. Many
variations in this basic geometry are possible.

Slotline: Slotline is another one of the many possible types of planar transmission lines.
The geometry of a slotline is shown in Figure 3.33. It consists of a thin slot in the ground
plane on one side of a dielectric substrate. Thus, like microstrip line, the two conductors of
slotline lead to a quasi-TEM type of mode. The width of the slot controls the characteristic
impedance of the line.

Coplanar waveguide: The coplanar waveguide, shown in Figure 3.34, is similar to the slot-
line, and can be viewed as a slotline with a third conductor centered in the slot region.
Because of the presence of this additional conductor, this type of line can support even
or odd quasi-TEM modes, depending on whether the electric fields in the two slots are in
the opposite direction or the same direction. Coplanar waveguides are particularly useful
for fabricating active circuitry due to the presence of the center conductor and the close
proximity of the ground planes.

Covered microstrip: Many variations of the basic microstrip line geometry are possible,
but one of the more common is the covered microstrip, shown in Figure 3.35. The metallic
cover plate is often used for electrical shielding and physical protection of the microstrip
circuitry and is usually situated several substrate thicknesses away from the circuit. Its
presence, however, can perturb the operation of the circuit enough so that its effect must
be taken into account during design.

�r

FIGURE 3.33 Geometry of a printed slotline.
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�r

FIGURE 3.34 Coplanar waveguide geometry.

POINT OF INTEREST: Power Capacity of Transmission Lines

The power-handling capacity of an air-filled transmission line or waveguide is usually limited
by voltage breakdown, which occurs at a field strength of about Ed = 3 × 106 V/m for room
temperature air at sea level pressure. Thermal effects may also serve to limit the power capacity
of some types of lines.

In an air-filled coaxial line the electric field varies as Eρ = Vo/(ρ ln b/a), which has a
maximum at ρ = a (at the inner conductor). Thus the maximum voltage before breakdown is

Vmax = Ed a ln
b

a
(peak-to-peak),

and the maximum power capacity is then

Pmax = V 2
max

2Z0
= πa2 E2

d
η0

ln
b

a
.

As might be expected, this result shows that power capacity can be increased by using a larger
coaxial cable (larger a, b with fixed b/a for the same characteristic impedance). However, prop-
agation of higher order modes limits the maximum operating frequency for a given cable size.
Thus, there is an upper limit on the power capacity of a coaxial line for a given maximum
operating frequency, fmax, which can be shown to be given by

Pmax = 0.025

η0

(
cEd

fmax

)2
= 5.8 × 1012

(
Ed

fmax

)2
.

As an example, at 10 GHz the maximum peak power capacity of any coaxial line with no higher
order modes is about 520 kW.

In an air-filled rectangular waveguide the electric field varies as Ey = Eo sin(πx /a), which
has a maximum value of Eo at x = a/2 (the middle of the guide). Thus the maximum power
capacity before breakdown is

Pmax = abE2
o

4Zw
= abE2

d
4Zw

,

which shows that power capacity increases with guide size. For most standard waveguides,
b � 2a. To avoid propagation of the TE20 mode we must have a < c/ fmax, where fmax is the

�r

FIGURE 3.35 Covered microstrip line.
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maximum operating frequency. Then the maximum power capacity of the guide can be shown
to be

Pmax = 0.11

η0

(
cEd

fmax

)2
= 2.6 × 1013

(
Ed

fmax

)2
.

As an example, at 10 GHz the maximum peak power capacity of a rectangular waveguide oper-
ating in the TE10 mode is about 2300 kW, which is considerably higher than the power capacity
of a coaxial cable at the same frequency.

Because arcing and voltage breakdown are high-speed transient effects, these voltage and
power limits are peak values; average power capacity is lower. In addition, it is good engineering
practice to provide a safety factor of at least two, so the maximum powers that can be safely
transmitted should be limited to about half of the above values. If there are reflections on the
line or guide, the power capacity is further reduced. In the worst case, a reflection coefficient
magnitude of unity will double the maximum voltage on the line, so the power capacity will be
reduced by a factor of four.

The power capacity of a line can be increased by pressurizing the line with air or an inert
gas or by using a dielectric. The dielectric strength (Ed ) of most dielectric materials is greater
than that of air, but the power capacity may be further limited by the heating of the dielectric
due to ohmic loss.

Reference: P. A. Rizzi, Microwave Engineering—Passive Circuits, Prentice-Hall, Englewood Cliffs, N.J., 1988.

REFERENCES

[1] O. Heaviside, Electromagnetic Theory, Vol. 1, 1893. Reprinted by Dover, New York, 1950.
[2] Lord Rayleigh, “On the Passage of Electric Waves through Tubes,” Philosophical Magazine, vol. 43,

pp. 125–132, 1897. Reprinted in Collected Papers, Cambridge University Press, Cambridge, 1903.
[3] K. S. Packard, “The Origin of Waveguides: A Case of Multiple Rediscovery,” IEEE Transactions on

Microwave Theory and Techniques, vol. MTT-32, pp. 961–969, September 1984.
[4] R. M. Barrett, “Microwave Printed Circuits—An Historical Perspective,” IEEE Transactions on

Microwave Theory and Techniques, vol. MTT-32, pp. 983–990, September 1984.
[5] D. D. Grieg and H. F. Englemann, “Microstrip—A New Transmission Technique for the Kilomega-

cycle Range,” Proceedings of the IRE, vol. 40, pp. 1644–1650, December 1952.
[6] H. Howe, Jr., Stripline Circuit Design, Artech House, Dedham, Mass., 1974.
[7] I. J. Bahl and R. Garg, “A Designer’s Guide to Stripline Circuits,” Microwaves, January 1978,

pp. 90–96.
[8] I. J. Bahl and D. K. Trivedi, “A Designer’s Guide to Microstrip Line,” Microwaves, May 1977,

pp. 174–182.
[9] K. C. Gupta, R. Garg, and I. J. Bahl, Microstrip Lines and Slotlines, Artech House, Dedham, Mass.,

1979.

PROBLEMS

3.1 Devise at least two variations of the basic coaxial transmission line geometry of Section 3.5, and
discuss the advantages and disadvantages of your proposed lines in terms of size, loss, cost, higher
order modes, dispersion, or other considerations. Repeat this exercise for the microstrip line geometry
of Section 3.8.

3.2 Derive equations (3.5a)–(3.5d) from equations (3.3) and (3.4).

3.3 Calculate the attenuation due to conductor loss for the TEn mode of a parallel plate waveguide.

3.4 Consider a section of air-filled K-band waveguide. From the dimensions given in Appendix I,
determine the cutoff frequencies of the first two propagating modes. From the recommended
operating range given in Appendix I for this guide, determine the percentage reduction in bandwidth
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that this operating range represents, relative to the theoretical bandwidth for a single propagating
mode.

3.5 A 10 cm length of a K-band copper waveguide is filled with a dielectric material with εr = 2.55 and
tan δ = 0.0015. If the operating frequency is 15 GHz, find the total loss through the guide and the
phase delay from the input to the output of the guide.

3.6 An attenuator can be made using a section of waveguide operating below cutoff, as shown in the
accompanying figure. If a = 2.286 cm and the operating frequency is 12 GHz, determine the required
length of the below-cutoff section of waveguide to achieve an attenuation of 100 dB between the input
and output guides. Ignore the effect of reflections at the step discontinuities.

a

a

l

a/2

Propagating
wave

Propagating
wave

Evanescent
waves

3.7 Find expressions for the electric surface current density on the walls of a rectangular waveguide for
a TE10 mode. Why can a narrow slot be cut along the centerline of the broad wall of a rectangular
waveguide without perturbing the operation of the guide? (Such a slot is often used in a slotted line
for a probe to sample the standing wave field inside the guide.)

3.8 Derive the expression for the attenuation of the TMmn mode of a rectangular waveguide due to
imperfectly conducting walls.

3.9 For the partially loaded rectangular waveguide shown in the accompanying figure, solve (3.109)
with β = 0 to find the cutoff frequency of the TE10 mode. Assume a = 2.286 cm, t = a/2, and
εr = 2.25.

a
2

y

x

b

0
a

�r = 2.25 �r = 1

3.10 Consider the partially filled parallel plate waveguide shown in the accompanying figure. Derive the
solution (fields and cutoff frequency) for the lowest order TE mode of this structure. Assume the
metal plates are infinitely wide. Can a TEM wave propagate on this structure?

x

y

d �0�0 �r�0

W

3.11 Derive equations (3.110a)–(3.110d) for the transverse field components in terms of longitudinal
fields, in cylindrical coordinates.
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3.12 Derive the expression for the attenuation of the TMnm mode in a circular waveguide with finite
conductivity.

3.13 A circular copper waveguide has a radius of 0.4 cm and is filled with a dielectric material having
εr = 1.5 and tan δ = 0.0002. Identify the first four propagating modes and their cutoff frequencies.
For the dominant mode, calculate the total attenuation at 20 GHz.

3.14 Derive the Ē and H̄ fields of a coaxial line from the expression for the potential given in (3.153).
Also find expressions for the voltage and current on the line and the characteristic impedance.

3.15 Derive a transcendental equation for the cutoff frequency of the TM modes of a coaxial waveguide.
Using tables, obtain an approximate value of kca for the TM01 mode if b/a = 2.

3.16 Derive an expression for the attenuation of a TE surface wave on a grounded dielectric substrate
when the ground plane has finite conductivity.

3.17 Consider the grounded magnetic substrate shown in the accompanying figure. Derive a solution for
the TM surface waves that can propagate on this structure.

y

z

x

d �0, �0�r

�0, �0

3.18 Consider the partially filled coaxial line shown in the accompanying figure. Can a TEM wave propa-
gate on this line? Derive the solution for the TM0m (no azimuthal variation) modes of this geometry.

�0
�0�r

y

x
a

b

c

3.19 A copper stripline transmission line is to be designed for a 100 � characteristic impedance. The
ground plane separation is 1.02 mm and the dielectric constant is 2.20, with tan δ = 0.001. At
5 GHz, find the guide wavelength on the line and the total attenuation.

3.20 A copper microstrip transmission line is to be designed for a 100 � characteristic impedance. The
substrate is 0.51 mm thick, with εr = 2.20 and tan δ = 0.001. At 5 GHz, find the guide wavelength
on the line and the total attenuation. Compare these results with those for the similar stripline case of
the preceding problem.

3.21 A 100 � microstrip line is printed on a substrate of thickness 0.0762 cm with a dielectric constant of
2.2. Ignoring losses and fringing fields, find the shortest length of this line that appears at its input as
a capacitor of 5 pF at 2.5 GHz. Repeat for an inductance of 5 nH. Using a microwave CAD package
with a physical model for the microstrip line, compute the actual input impedance seen when losses
are included (assume copper conductors and tan δ = 0.001).

3.22 A microwave antenna feed network operating at 5 GHz requires a 50 � printed transmission line that
is 16 λ long. Possible choices are (1) copper microstrip, with d = 0.16 cm, εr = 2.20, and tan δ =
0.001, or (2) copper stripline, with b = 0.32 cm, εr = 2.20, t = 0.01 mm, and tan δ = 0.001. Which
line should be used if attenuation is to be minimized?
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3.23 Consider the TE modes of an arbitrary uniform waveguiding structure in which the transverse fields
are related to Hz as in (3.19). If Hz is of the form Hz(x, y, z) = hz(x, y)e− jβz , where hz(x, y) is
a real function, compute the Poynting vector and show that real power flow occurs only in the z
direction. Assume that β is real, corresponding to a propagating mode.

3.24 A piece of rectangular waveguide is air filled for z < 0 and dielectric filled for z > 0. Assume that
both regions can support only the dominant TE10 mode and that a TE10 mode is incident on the inter-
face from z < 0. Using a field analysis, write general expressions for the transverse field components
of the incident, reflected, and transmitted waves in the two regions and enforce the boundary con-
ditions at the dielectric interface to find the reflection and transmission coefficients. Compare these
results to those obtained with an impedance approach, using ZTE for each region.

3.25 Use the transverse resonance technique to derive a transcendental equation for the propagation con-
stant of the TM modes of a rectangular waveguide that is air filled for 0 < x < d and dielectric filled
for d < x < a.

3.26 Apply the transverse resonance technique to find the propagation constants for the TE surface waves
that can be supported by the structure of Problem 3.17.

3.27 An X-band waveguide filled with Rexolite is operating at 9.0 GHz. Calculate the speed of light in
this material and the phase and group velocities in the waveguide.

3.28 As discussed in the Point of Interest on the power-handling capacity of transmission lines, the maxi-
mum power capacity of a coaxial line is limited by voltage breakdown and is given by

Pmax = πa2 E2
d

η0
ln

b

a
,

where Ed is the field strength at breakdown. Find the value of b/a that maximizes the maximum
power capacity and show that the corresponding characteristic impedance is about 30 �.

3.29 A microstrip circuit is fabricated on an alumina substrate having a dielectric constant of 9.9, a thick-
ness of 2.0 mm, and a 50 � linewidth of 1.93 mm. Find the threshold frequencies of the four higher
order modes discussed in Section 3.8, and recommend the maximum operating frequency for this
microstrip circuit.
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Microwave Network Analysis

Circuits operating at low frequencies, for which the circuit dimensions are small relative to
the wavelength, can be treated as an interconnection of lumped passive or active components
with unique voltages and currents defined at any point in the circuit. In this situation the circuit
dimensions are small enough such that there is negligible phase delay from one point in the cir-
cuit to another. In addition, the fields can be considered as TEM fields supported by two or more
conductors. This leads to a quasi-static type of solution to Maxwell’s equations and to the well-
known Kirchhoff voltage and current laws and impedance concepts of circuit theory [1]. As the
reader is aware, there is a powerful and useful set of techniques for analyzing low-frequency
circuits. In general, these techniques cannot be directly applied to microwave circuits, but it
is the purpose of the present chapter to show how basic circuit and network concepts can be
extended to handle many microwave analysis and design problems of practical interest.

The main reason for doing this is that it is usually much easier to apply the simple and
intuitive ideas of circuit analysis to a microwave problem than it is to solve Maxwell’s equa-
tions for the same problem. In a way, field analysis gives us much more information about
the particular problem under consideration than we really want or need. That is, because the
solution to Maxwell’s equations for a given problem is complete, it gives the electric and mag-
netic fields at all points in space. However, usually we are only interested in the voltage or
current at a set of terminals, the power flow through a device, or some other type of “terminal”
quantity, as opposed to a minute description of the fields at all points in space. Another reason
for using circuit or network analysis is that it is then very easy to modify the original prob-
lem, or combine several elements together and find the response, without having to reanalyze
in detail the behavior of each element in combination with its neighbors. A field analysis us-
ing Maxwell’s equations for such problems would be hopelessly difficult. There are situations,
however, in which such circuit analysis techniques are an oversimplification and may lead to
erroneous results. In such cases one must resort to a field analysis approach, using Maxwell’s
equations. Fortunately, there are a number of commercially available computer-aided design
packages that can model RF and microwave problems using both field theory analysis and net-
work analysis. It is part of the education of a microwave engineer to be able to determine when
network analysis concepts apply and when they should be cast aside in favor of more rigorous
analysis.

165
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The basic procedure for microwave network analysis is as follows. We first treat a set of
basic, canonical problems rigorously, using field analysis and Maxwell’s equations (as we have
done in Chapters 2 and 3, for a variety of transmission line and waveguide problems). When
so doing, we try to obtain quantities that can be directly related to a circuit or transmission
line parameter. For example, when we treated various transmission lines and waveguides in
Chapter 3 we derived the propagation constant and characteristic impedance of the line. This
allowed the transmission line or waveguide to be treated as an idealized distributed component
characterized by its length, propagation constant, and characteristic impedance. At this point,
we can interconnect various components and use network and/or transmission line theory to
analyze the behavior of the entire system of components, including effects such as multiple
reflections, loss, impedance transformations, and transitions from one type of transmission
medium to another (e.g., coax to microstrip). As we will see, a transition between different
transmission lines, or a discontinuity on a transmission line, generally cannot be treated as a
simple junction between two transmission lines, but typically includes some type of equivalent
circuit to account for reactances associated with the transition or discontinuity.

Microwave network theory was originally developed in the service of radar system and
component development at the MIT Radiation Lab in the 1940s. This work was continued at
the Polytechnic Institute of Brooklyn and other locations by researchers such as E. Weber,
N. Marcuvitz, A. A. Oliner, L. B. Felsen, A. Hessel, and many others [2].

4.1 IMPEDANCE AND EQUIVALENT VOLTAGES AND CURRENTS

Equivalent Voltages and Currents

At microwave frequencies the measurement of voltage or current is difficult (or impossi-
ble), unless a clearly defined terminal pair is available. Such a terminal pair may be present
in the case of TEM-type lines (such as coaxial cable, microstrip line, or stripline), but does
not strictly exist for non-TEM lines (such as rectangular, circular, or surface waveguides).

Figure 4.1 shows the electric and magnetic field lines for an arbitrary two-conductor
TEM transmission line. As in Chapter 3, the voltage, V , of the + conductor relative to the
− conductor can be found as

V =
∫ −

+
Ē · d �̄, (4.1)

where the integration path begins on the + conductor and ends on the − conductor. It is
important to realize that, because of the electrostatic nature of the transverse fields between
the two conductors, the voltage defined in (4.1) is unique and does not depend on the shape
of the integration path. The total current flowing on the + conductor can be determined
from an application of Ampere’s law as

I =
∮

C+
H̄ · d �̄, (4.2)
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H

FIGURE 4.1 Electric and magnetic field lines for an arbitrary two-conductor TEM line.

where the integration contour is any closed path enclosing the + conductor (but not the
− conductor). A characteristic impedance Z0 can then be defined for traveling waves as

Z0 = V

I
. (4.3)

At this point, after having defined and determined a voltage, current, and characteristic
impedance (and assuming we know the propagation constant for the line), we can proceed
to apply the circuit theory for transmission lines developed in Chapter 2 to characterize this
line as a circuit element.

The situation is more difficult for waveguides. To see why, we will look at the case
of a rectangular waveguide, as shown in Figure 4.2. For the dominant TE10 mode, the
transverse fields can be written, from Table 3.2, as

Ey(x, y, z) = jωµa

π
A sin

πx

a
e− jβz = Aey(x, y)e− jβz, (4.4a)

Hx (x, y, z) = jβa

π
A sin

πx

a
e− jβz = Ahx (x, y)e− jβz . (4.4b)

b

y

xa0

FIGURE 4.2 Electric field lines for the TE10 mode of a rectangular waveguide.
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Applying (4.1) to the electric field of (4.4a) gives

V = − jωµa

π
A sin

πx

a
e− jβz

∫
y

dy. (4.5)

Thus it is seen that this voltage depends on the position, x , as well as the length of the
integration contour along the y direction. For example, integrating from y = 0 to b for
x = a/2 gives a voltage that is quite different from that obtained by integrating from y = 0
to b for x = 0. What, then, is the correct voltage? The answer is that there is no “correct”
voltage in the sense of being unique or pertinent for all applications. A similar problem
arises with current, and also impedance. We will now show how we can define equivalent
voltages, currents, and impedances that can be useful for non-TEM lines.

There are many ways to define equivalent voltage, current, and impedance for wave-
guides since these quantities are not unique for non-TEM lines, but the following consid-
erations usually lead to the most useful results [1, 3, 4]:

� Voltage and current are defined only for a particular waveguide mode, and are
defined so that the voltage is proportional to the transverse electric field and the
current is proportional to the transverse magnetic field.

� In order to be useful in a manner similar to voltages and currents of circuit theory,
the equivalent voltages and currents should be defined so that their product gives
the power flow of the waveguide mode.

� The ratio of the voltage to the current for a single traveling wave should be equal to
the characteristic impedance of the line. This impedance may be chosen arbitrarily,
but is usually selected as equal to the wave impedance of the line, or else normalized
to unity.

For an arbitrary waveguide mode with both positively and negatively traveling waves,
the transverse fields can be written as

Ēt (x, y, z) = ē(x, y)(A+e− jβz + A−e jβz) = ē(x, y)

C1

(
V +e− jβz + V −e jβz), (4.6a)

H̄t (x, y, z) = h̄(x, y)
(

A+e− jβz − A−e jβz) = h̄(x, y)

C2

(
I +e− jβz − I −e jβz), (4.6b)

where ē and h̄ are the transverse field variations of the mode, and A+, A− are the field
amplitudes of the traveling waves. Because Ēt and H̄t are related by the wave impedance,
Zw, according to (3.22) or (3.26), we also have that

h̄(x, y) = ẑ × ē(x, y)

Zw

. (4.7)

Equation (4.6) also defines equivalent voltage and current waves as

V (z) = V +e− jβz + V −e jβz, (4.8a)

I (z) = I +e− jβz − I −e jβz, (4.8b)

with V +/I + = V −/I − = Z0. This definition embodies the idea of making the equivalent
voltage and current proportional to the transverse electric and magnetic fields, respectively.
The proportionality constants for this relationship are C1 = V +/A+ = V −/A− and C2 =
I +/A+ = I −/A−, and can be determined from the remaining two conditions for power
and impedance.
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The complex power flow for the incident wave is given by

P+ = 1

2
|A+|2

∫

S

ē × h̄∗ · ẑds = V + I +∗

2C1C∗
2

∫

S

ē × h̄∗ · ẑds. (4.9)

Because we want this power to be equal to (1/2)V + I +∗, we have the result that

C1C∗
2 =

∫

S

ē × h̄∗ · ẑds, (4.10)

where the surface integration is over the cross section of the waveguide. The characteristic
impedance is

Z0 = V +

I + = V −

I − = C1

C2
, (4.11)

since V + = C1 A and I + = C2 A, from (4.6a) and (4.6b). If it is desired to have Z0 = Zw,
the wave impedance (ZTE or ZTM) of the mode, then

C1

C2
= Zw (ZTE or ZTM). (4.12a)

Alternatively, it may be desirable to normalize the characteristic impedance to unity
(Z0 = 1), in which case we have

C1

C2
= 1. (4.12b)

For a given waveguide mode, (4.10) and (4.12) can be solved for the constants C1 and
C2, and equivalent voltages and currents defined. Higher order modes can be treated in the
same way, so that a general field in a waveguide can be expressed in the following form:

Ēt (x, y, z) =
N∑

n=1

(
V +

n

C1n
e− jβn z + V −

n

C1n
e jβn z

)
ēn(x, y), (4.13a)

H̄t (x, y, z) =
N∑

n=1

(
I +
n

C2n
e− jβn z − I −

n

C2n
e jβn z

)
h̄n(x, y), (4.13b)

where V ±
n and I ±

n are the equivalent voltages and currents for the nth mode, and C1n and
C2n are the proportionality constants for each mode.

EXAMPLE 4.1 EQUIVALENT VOLTAGE AND CURRENT
FOR A RECTANGULAR WAVEGUIDE

Find the equivalent voltages and currents for a TE10 mode in a rectangular wave-
guide.

Solution
The transverse field components and power flow of the TE10 rectangular wave-
guide mode and the equivalent transmission line model of this mode can be written
as follows:
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Waveguide Fields Transmission Line Model

Ey =
(

A+e− jβz + A−e jβz
)

sin
πx

a
V (z) = V +e− jβz + V −e jβz

Hx = −1

ZTE

(
A+e− jβz − A−e jβz

)
sin

πx

a
I (z) = I+e− jβz − I−e jβz

= 1

Z0

(
V +e− jβz − V −e jβz

)

P+ = −1

2

∫
S

Ey H∗
x dxdy = ab

4ZTE
|A+|2 P+ = 1

2
V + I+∗

We now find the constants C1 = V +/A+ = V −/A− and C2 = I +/A+ = I −/A−
that relate the equivalent voltages V ± and currents I ± to the field amplitudes, A±.
Equating incident powers gives

ab
∣∣A+∣∣2

4ZTE
= 1

2
V + I +∗ = 1

2

∣∣A+∣∣2 C1C∗
2 .

If we choose Z0 = ZTE, then we also have that

V +

I + = C1

C2
= ZTE.

Solving for C1, C2 gives

C1 =
√

ab

2
,

C2 = 1

ZTE

√
ab

2
,

which completes the transmission line equivalence for the TE10 mode. ■

The Concept of Impedance

We have used the idea of impedance in several different ways, so it may be useful at this
point to summarize this important concept. The term impedance was first used by Oliver
Heaviside in the nineteenth century to describe the complex ratio V/I in AC circuits con-
sisting of resistors, inductors, and capacitors; the impedance concept quickly became indis-
pensable in the analysis of AC circuits. It was then applied to transmission lines, in terms
of lumped-element equivalent circuits and the distributed series impedance and shunt ad-
mittance of the line. In the 1930s, S. A. Schelkunoff recognized that the impedance concept
could be extended to electromagnetic fields in a systematic way, and noted that impedance
should be regarded as characteristic of the type of field, as well as of the medium [2].
In addition, in relation to the analogy between transmission lines and plane wave propa-
gation, impedance may even be dependent on direction. The concept of impedance, then,
forms an important link between field theory and transmission line or circuit theory.



c04MicrowaveNetworkAnalysis Pozar July 30, 2011 12:0

4.1 Impedance and Equivalent Voltages and Currents 171

We summarize the various types of impedance we have used so far, and their notation:

� η = √
µ/ε = intrinsic impedance of the medium. This impedance is dependent only

on the material parameters of the medium, and is equal to the wave impedance for
plane waves.

� Zw = Et/Ht = 1/Yw = wave impedance. This impedance is a characteristic of
the particular type of wave. TEM, TM, and TE waves each have different wave
impedances (ZTEM, ZTM, ZTE), which may depend on the type of line or guide,
the material, and the operating frequency.

� Z0 = 1/Y0 = V +/I + = characteristic impedance. Characteristic impedance is the
ratio of voltage to current for a traveling wave on a transmission line. Because volt-
age and current are uniquely defined for TEM waves, the characteristic impedance
of a TEM wave is unique. TE and TM waves, however, do not have a uniquely
defined voltage and current, so the characteristic impedance for such waves may
be defined in different ways.

EXAMPLE 4.2 APPLICATION OF WAVEGUIDE IMPEDANCE

Consider a rectangular waveguide with a = 2.286 cm and b = 1.016 cm (X-band
guide), air filled for z < 0 and Rexolite filled (εr = 2.54) for z > 0, as shown in
Figure 4.3. If the operating frequency is 10 GHz, use an equivalent transmission
line model to compute the reflection coefficient of a TE10 wave incident on the
interface from z < 0.

Solution
The waveguide propagation constants in the air (z < 0) and the dielectric (z > 0)
regions are

βa =
√

k2
0 −

(π

a

)2 = 158.0 m−1,

βd =
√

εr k2
0 −

(π

a

)2 = 304.1 m−1,

where k0 = 209.4 m−1.
The reader may verify that the TE10 mode is the only propagating mode in ei-

ther waveguide region. We can set up an equivalent transmission line for the TE10
mode in each waveguide, and treat the problem as the reflection of an incident
voltage wave at the junction of two infinite transmission lines.

z = 0

z

z
Γ

�0�r�0

TE10

Z0a Z0d

FIGURE 4.3 Geometry of a partially filled waveguide and its transmission line equivalent for
Example 4.2.
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By Example 4.1 and Table 3.2, the equivalent characteristic impedances for
the two lines are

Z0a = k0η0

βa
= (209.4)(377)

158.0
= 500.0 �,

Z0d = kη

βd
= k0η0

βd
= (209.4)(377)

304.1
= 259.6 �.

The reflection coefficient seen looking into the dielectric filled region is then

� = Z0d − Z0a

Z0d + Z0a

= −0.316.

With this result, expressions for the incident, reflected, and transmitted waves can
be written in terms of fields, or in terms of equivalent voltages and currents. ■

We now consider the arbitrary one-port network shown in Figure 4.4 and derive a
general relation between its impedance properties and electromagnetic energy stored in,
and the power dissipated by, the network. The complex power delivered to this network is
given by (1.91):

P = 1

2

∮
S

Ē × H̄∗ · ds̄ = P� + 2 jω(Wm − We), (4.14)

where P� is real and represents the average power dissipated by the network, and Wm

and We represent the stored magnetic and electric energy, respectively. Note that the unit
normal vector in Figure 4.4 is pointing into the volume.

If we define real transverse modal fields ē and h̄ over the terminal plane of the network
such that

Ēt (x, y, z) = V (z)ē(x, y)e− jβz, (4.15a)

H̄t (x, y, z) = I (z)h̄(x, y)e− jβz, (4.15b)

with a normalization such that ∫
S

ē × h̄ · ds̄ = 1,

then we can express (4.14) in terms of the terminal voltage and current:

P = 1

2

∫
S

VI∗ē × h̄ · ds̄ = 1

2
VI∗. (4.16)

Zin

I

E, H

n

S
V

+

–

One-port
network

ˆ

FIGURE 4.4 An arbitrary one-port network.
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Then the input impedance is

Z in = R + j X = V

I
= VI∗

|I |2 = P
1
2 |I |2 = P� + 2 jω(Wm − We)

1
2 |I |2 . (4.17)

Thus we see that the real part, R, of the input impedance is related to the dissipated power,
while the imaginary part, X , is related to the net energy stored in the network. If the net-
work is lossless, then P� = 0 and R = 0. Then Zin is purely imaginary, with a reactance

X = 4ω(Wm − We)

|I |2 , (4.18)

which is positive for an inductive load (Wm > We), and negative for a capacitive load
(Wm < We).

Even and Odd Properties of Z(ω) and �(ω)

Consider the driving point impedance, Z(ω), at the input port of an electrical network. The
voltage and current at this port are related as V (ω) = Z(ω)I (ω). For an arbitrary frequency
dependence, we can find the time-domain voltage by taking the inverse Fourier transform
of V (ω):

v(t) = 1

2π

∫ ∞

−∞
V (ω)e jωt dω. (4.19)

Because v(t) must be real, we have that v(t) = v∗(t), or∫ ∞

−∞
V (ω)e jωt dω =

∫ ∞

−∞
V ∗(ω)e− jωt dω =

∫ ∞

−∞
V ∗(−ω)e jωt dω,

where the last term was obtained by a change of variable from ω to −ω. This shows that
V (ω) must satisfy the relation

V (−ω) = V ∗(ω), (4.20)

which means that Re{V (ω)} is even in ω, while Im{V (ω)} is odd in ω. Similar results hold
for I (ω), and for Z(ω) since

V ∗(−ω) = Z∗(−ω)I ∗(−ω) = Z∗(−ω)I (ω) = V (ω) = Z(ω)I (ω).

Thus, if Z(ω) = R(ω) + j X (ω), then R(ω) is even in ω and X (ω) is odd in ω. These
results can also be inferred from (4.17).

Now consider the reflection coefficient at the input port:

�(ω) = Z(ω) − Z0

Z(ω) + Z0
= R(ω) − Z0 + j X (ω)

R(ω) + Z0 + j X (ω)
. (4.21)

Then

�(−ω) = R(ω) − Z0 − j X (ω)

R(ω) + Z0 − j X (ω)
= �∗(ω), (4.22)

which shows that the real and imaginary parts of �(ω) are even and odd, respectively,
in ω. Finally, the magnitude of the reflection coefficient is

|�(ω)|2 = �(ω)�∗(ω) = �(ω)�(−ω) = |�(−ω)|2, (4.23)

which shows that |�(ω)|2 and |�(ω)| are even functions of ω. This result implies that only
even series of the form a + bω2 + cω4 + · · · can be used to represent |�(ω)| or |�(ω)|2.



c04MicrowaveNetworkAnalysis Pozar July 30, 2011 12:0

174 Chapter 4: Microwave Network Analysis

4.2 IMPEDANCE AND ADMITTANCE MATRICES

In the previous section we have seen how equivalent voltages and currents can be defined
for TEM and non-TEM waves. Once such voltages and currents have been defined at vari-
ous points in a microwave network, we can use the impedance and/or admittance matrices
of circuit theory to relate these terminal or port quantities to each other, and thus to essen-
tially arrive at a matrix description of the network. This type of representation lends itself
to the development of equivalent circuits of arbitrary networks, which will be quite useful
when we discuss the design of passive components such as couplers and filters. (The term
port was introduced by H. A. Wheeler in the 1950s to replace the less descriptive and more
cumbersome phrase “two-terminal pair” [2, 3].)

We begin by considering an arbitrary N -port microwave network, as depicted in
Figure 4.5. The ports in Figure 4.5 may be any type of transmission line or transmission
line equivalent of a single propagating waveguide mode. If one of the physical ports of the
network is a waveguide supporting more than one propagating mode, additional electri-
cal ports can be added to account for these modes. At a specific point on the nth port, a
terminal plane, tn , is defined along with equivalent voltages and currents for the incident
(V +

n , I +
n ) and reflected (V −

n , I −
n ) waves. The terminal planes are important in providing

a phase reference for the voltage and current phasors. Now, at the nth terminal plane, the
total voltage and current are given by

Vn = V +
n + V −

n , (4.24a )

In = I +
n − I −

n , (4.24b )

as seen from (4.8) when z = 0.
The impedance matrix [Z ] of the microwave network then relates these voltages and

currents:



V1
V2
...

VN


 =




Z11 Z12 · · · Z1N

Z21
...

...
...

Z N1 · · · · · · Z N N







I1
I2
...

IN


 ,

tN

t4

t3

S

t2

t1

VN, IN
+ + VN, – IN

– –

V4, – I4
– –

V4, I4
+ +

V3, I3
+ +

V3,– I3
– –

V2, – I2
– –

V2, I2
+ +

V1, I1
+ +

V1, – I1
– –

FIGURE 4.5 An arbitrary N -port microwave network.



c04MicrowaveNetworkAnalysis Pozar July 30, 2011 12:0

4.2 Impedance and Admittance Matrices 175

or in matrix form as

[V ] = [Z ][I ]. (4.25)

Similarly, we can define an admittance matrix [Y] as




I1
I2
...

IN


 =




Y11 Y12 · · · Y1N

Y21
...

...
...

YN1 · · · · · · YN N







V1
V2
...

VN


 ,

or in matrix form as

[I ] = [Y ][V ]. (4.26)

Of course, the [Z ] and [Y ] matrices are the inverses of each other:

[Y ] = [Z ]−1. (4.27)

Note that both the [Z ] and [Y ] matrices relate the total port voltages and currents.
From (4.25), we see that Zi j can be found as

Zi j = Vi

I j

∣∣∣∣
Ik=0 for k �= j

. (4.28)

In words, (4.28) states that Zi j can be found by driving port j with the current I j , open-
circuiting all other ports (so Ik = 0 for k �= j), and measuring the open-circuit voltage at
port i . Thus, Zii is the input impedance seen looking into port i when all other ports are
open-circuited, and Zi j is the transfer impedance between ports i and j when all other
ports are open-circuited.

Similarly, from (4.26), Yi j can be found as

Yi j = Ii

Vj

∣∣∣∣
Vk=0 for k �= j

, (4.29)

which states that Yi j can be determined by driving port j with the voltage Vj , short-
circuiting all other ports (so Vk = 0 for k �= j), and measuring the short-circuit current
at port i .

In general, each Zi j or Yi j element may be complex. For an arbitrary N -port network,
the impedance and admittance matrices are N × N in size, so there are 2N 2 independent
quantities or degrees of freedom. In practice, however, many networks are either recipro-
cal or lossless, or both. If the network is reciprocal (not containing any active devices or
nonreciprocal media, such as ferrites or plasmas), we will show that the impedance and
admittance matrices are symmetric, so that Zi j = Z ji , and Yi j = Y ji . If the network is
lossless, we can show that all the Zi j or Yi j elements are purely imaginary. Either of these
special cases serves to reduce the number of independent quantities or degrees of freedom
that an N -port network may have. We now derive the above characteristics for reciprocal
and lossless networks.

Reciprocal Networks

Consider the arbitrary network of Figure 4.5 to be reciprocal (no active devices, ferrites, or
plasmas), with short circuits placed at all terminal planes except those of ports 1 and 2. Let
Ēa, H̄a and Ēb, H̄b be the fields anywhere in the network due to two independent sources,
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a and b, located somewhere in the network. Then the reciprocity theorem of (1.156) states
that ∮

S
Ēa × H̄b · ds̄ =

∮
S

Ēb × H̄a · ds̄, (4.30)

where S is the closed surface along the boundaries of the network and through the terminal
planes of the ports. If the boundary walls of the network and transmission lines are metal,
then Ētan = 0 on these walls (assuming perfect conductors). If the network or the transmis-
sion lines are open structures, like microstrip line or slotline, the boundaries of the network
can be taken arbitrarily far from the lines so that Ētan is negligible. Then the only nonzero
contribution to the integrals of (4.30) come from the cross-sectional areas of ports 1 and 2.

From Section 4.1, the fields due to sources a and b can be evaluated at the terminal
planes t1 and t2 as

Ē1a = V1aē1, H̄1a = I1ah̄1, (4.31a)

Ē1b = V1bē1, H̄1b = I1bh̄1, (4.31b)

Ē2a = V2aē2, H̄2a = I2ah̄2, (4.31c)

Ē2b = V2bē2, H̄2b = I2bh̄2, (4.31d)

where ē1, h̄1 and ē2, h̄2 are the transverse modal fields of ports 1 and 2, respectively,
and the V s and I s are the equivalent total voltages and currents. (For instance, Ē1b is the
transverse electric field at terminal plane t1 of port 1 due to source b.) Substituting the
fields of (4.31) into (4.30) gives

(V1a I1b − V1b I1a)

∫
S1

ē1 × h̄1 · ds̄ + (V2a I2b − V2b I2a)

∫
S2

ē2 × h̄2 · ds̄ = 0, (4.32)

where S1 and S2 are the cross-sectional areas at the terminal planes of ports 1 and 2.
As in Section 4.1, the equivalent voltages and currents have been defined so that the

power through a given port can be expressed as VI∗/2; then, comparing (4.31) to (4.6)
implies that C1 = C2 = 1 for each port, so that∫

S1

ē1 × h̄1 · ds̄ =
∫

S2

ē2 × h̄2 · ds̄ = 1. (4.33)

This reduces (4.32) to

V1a I1b − V1b I1a + V2a I2b − V2b I2a = 0. (4.34)

Now use the 2 × 2 admittance matrix of the (effectively) two-port network to eliminate the
I s:

I1 = Y11V1 + Y12V2,

I2 = Y21V1 + Y22V2.

Substitution into (4.34) gives

(V1a V2b − V1bV2a)(Y12 − Y21) = 0. (4.35)

Because the sources a and b are independent, the voltages V1a, V1b, V2a , and V2b can take
on arbitrary values. So in order for (4.35) to be satisfied for any choice of sources, we must
have Y12 = Y21, and since the choice of which ports are labeled as 1 and 2 is arbitrary, we
have the general result that

Yi j = Y ji . (4.36)

Then if [Y ] is a symmetric matrix, its inverse, [Z ], is also symmetric.
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Lossless Networks

Now consider a reciprocal lossless N -port junction; we will show that the elements of the
impedance and admittance matrices must be pure imaginary. If the network is lossless, then
the net real power delivered to the network must be zero. Thus, Re{Pavg} = 0, where

Pavg = 1

2
[V ]t [I ]∗ = 1

2
([Z ][I ])t [I ]∗ = 1

2
[I ]t [Z ][I ]∗

= 1

2
(I1 Z11 I ∗

1 + I1 Z12 I ∗
2 + I2 Z21 I ∗

1 + · · ·)

= 1

2

N∑
n=1

N∑
m=1

Im Zmn I ∗
n . (4.37)

We have used the result from matrix algebra that ([A][B])t = [B]t [A]t . Because the In are
independent, we must have the real part of each self term (In Znn I ∗

n ) equal to zero, since
we could set all port currents equal to zero except for the nth current. So,

Re{In Znn I ∗
n } = |In|2 Re{Znn} = 0,

or

Re{Znn} = 0. (4.38)

Now let all port currents be zero except for Im and In . Then (4.37) reduces to

Re
{
(In I ∗

m + Im I ∗
n )Zmn

} = 0,

since Zmn = Znm . However, (In I ∗
m + Im I ∗

n ) is a purely real quantity that is, in general,
nonzero. Thus we must have that

Re {Zmn} = 0. (4.39)

Then (4.38) and (4.39) imply that Re {Zmn} = 0 for any m, n. The reader can verify that
this also leads to an imaginary [Y ] matrix.

EXAMPLE 4.3 EVALUATION OF IMPEDANCE PARAMETERS

Find the Z parameters of the two-port T-network shown in Figure 4.6.

Solution
From (4.28), Z11 can be found as the input impedance of port 1 when port 2 is
open-circuited:

Z11 = V1

I1

∣∣∣∣
I2=0

= Z A + ZC .

+

–

+

–

Port
1

Port
2

V1 V2

ZA

ZC

ZB

FIGURE 4.6 A two-port T-network.
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The transfer impedance Z12 can be found measuring the open-circuit voltage at
port 1 when a current I2 is applied at port 2. By voltage division,

Z12 = V1

I2

∣∣∣∣
I1=0

= V2

I2

ZC

Z B + ZC
= ZC .

The reader can verify that Z21 = Z12, indicating that the circuit is reciprocal.
Finally, Z22 is found as

Z22 = V2

I2

∣∣∣∣
I1=0

= Z B + ZC .
■

4.3 THE SCATTERING MATRIX

We have already discussed the difficulty in defining voltages and currents for non-TEM
lines. In addition, a practical problem exists when trying to measure voltages and currents
at microwave frequencies because direct measurements usually involve the magnitude
(inferred from power) and phase of a wave traveling in a given direction or of a standing
wave. Thus, equivalent voltages and currents, and the related impedance and admittance
matrices, become somewhat of an abstraction when dealing with high-frequency networks.
A representation more in accord with direct measurements, and with the ideas of incident,
reflected, and transmitted waves, is given by the scattering matrix.

Like the impedance or admittance matrix for an N -port network, the scattering matrix
provides a complete description of the network as seen at its N ports. While the impedance
and admittance matrices relate the total voltages and currents at the ports, the scattering
matrix relates the voltage waves incident on the ports to those reflected from the ports.
For some components and circuits, the scattering parameters can be calculated using net-
work analysis techniques. Otherwise, the scattering parameters can be measured directly
with a vector network analyzer; a photograph of a modern network analyzer is shown in
Figure 4.7. Once the scattering parameters of the network are known, conversion to other
matrix parameters can be performed, if needed.

Consider the N -port network shown in Figure 4.5, where V +
n is the amplitude of the

voltage wave incident on port n and V −
n is the amplitude of the voltage wave reflected

from port n. The scattering matrix, or [S] matrix, is defined in relation to these incident
and reflected voltage waves as




V −
1

V −
2

...

V −
N




=




S11 S12 · · · S1N

S21
...

SN1 · · · SN N

...







V +
1

V +
2

...

V +
N




,

or

[V −] = [S][V +]. (4.40)

A specific element of the scattering matrix can be determined as

Si j = V −
i

V +
j

∣∣∣∣∣
V +

k =0 for k �= j

. (4.41)

In words, (4.41) says that Si j is found by driving port j with an incident wave of voltage
V +

j and measuring the reflected wave amplitude V −
i coming out of port i . The incident
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FIGURE 4.7 Photograph of the Agilent N5247A Programmable Network Analyzer. This instru-
ment is used to measure the scattering parameters of RF and microwave networks
from 10 MHz to 67 GHz. The instrument is programmable, performs error correc-
tion, and has a wide variety of display formats and data conversions.

Courtesy of Agilent Technologies.

waves on all ports except the j th port are set to zero, which means that all ports should
be terminated in matched loads to avoid reflections. Thus, Sii is the reflection coefficient
seen looking into port i when all other ports are terminated in matched loads, and Si j is
the transmission coefficient from port j to port i when all other ports are terminated in
matched loads.

EXAMPLE 4.4 EVALUATION OF SCATTERING PARAMETERS

Find the scattering parameters of the 3 dB attenuator circuit shown in Figure 4.8.

Solution
From (4.41), S11 can be found as the reflection coefficient seen at port 1 when
port 2 is terminated in a matched load (Z0 = 50 �):

S11 = V −
1

V +
1

∣∣∣∣∣
V +

2 =0

= �(1)|V +
2 =0 = Z (1)

in − Z0

Z (1)
in + Z0

∣∣∣∣∣
Z0 on port 2

,

8.56 Ω 8.56 Ω

141.8 Ω Port
2

Port
1

FIGURE 4.8 A matched 3 dB attenuator with a 50 � characteristic impedance (Example 4.4).
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but Z (1)
in = 8.56 + [141.8(8.56 + 50)]/(141.8 + 8.56 + 50) = 50 �, so S11 = 0.

Because of the symmetry of the circuit, S22 = 0.
We can find S21 by applying an incident wave at port 1, V +

1 , and measuring
the outcoming wave at port 2, V −

2 . This is equivalent to the transmission coeffi-
cient from port 1 to port 2:

S21 = V −
2

V +
1

∣∣∣∣∣
V +

2 =0

.

From the fact that S11 = S22 = 0, we know that V −
1 = 0 when port 2 is terminated

in Z0 = 50 �, and that V +
2 = 0. In this case we have that V +

1 = V1 and V −
2 =

V2. By applying a voltage V1 at port 1 and using voltage division twice we find
V −

2 = V2 as the voltage across the 50 � load resistor at port 2:

V −
2 = V2 = V1

(
41.44

41.44 + 8.56

)(
50

50 + 8.56

)
= 0.707V1,

where 41.44 = 141.8(58.56)/(141.8 + 58.56) is the resistance of the parallel com-
bination of the 50 � load and the 8.56 � resistor with the 141.8 � resistor. Thus,
S12 = S21 = 0.707.

If the input power is |V +
1 |2/2Z0, then the output power is |V −

2 |2/2Z0 =
|S21V +

1 |2/2Z0 = |S21|2/2Z0|V +
1 |2 = |V +

1 |2/4Z0, which is one-half (−3 dB) of
the input power. ■

We now show how the scattering matrix can be determined from the [Z ] (or [Y ])
matrix and vice versa. First, we must assume that the characteristic impedances, Z0n , of
all the ports are identical. (This restriction will be removed when we discuss generalized
scattering parameters.) Then, for convenience, we can set Z0n = 1. From (4.24) the total
voltage and current at the nth port can be written as

Vn = V +
n + V −

n , (4.42a)

In = I +
n − I −

n = V +
n − V −

n . (4.42b)

Using the definition of [Z ] from (4.25) with (4.42) gives

[Z ][I ] = [Z ][V +] − [Z ][V −] = [V ] = [V +] + [V −],

which can be rewritten as

([Z ] + [U ]) [V −] = ([Z ] − [U ]) [V +], (4.43)

where [U ] is the unit, or identity, matrix defined as

[U ] =




1 0 · · · 0

0 1
...

...
. . .

0 · · · 1


 .
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Comparing (4.43) to (4.40) suggests that

[S] = ([Z ] + [U ])−1 ([Z ] − [U ]) , (4.44)

giving the scattering matrix in terms of the impedance matrix. Note that for a one-port
network (4.44) reduces to

S11 = z11 − 1

z11 + 1
,

in agreement with the result for the reflection coefficient seen looking into a load with a
normalized input impedance of z11.

To find [Z ] in terms of [S], rewrite (4.44) as [Z ][S] + [U ][S] = [Z ] − [U ], and solve
for [Z ] to give

[Z ] = ([U ] + [S]) ([U ] − [S])−1 . (4.45)

Reciprocal Networks and Lossless Networks

As we discussed in Section 4.2, the impedance and admittance matrices are symmetric
for reciprocal networks, and are purely imaginary for lossless networks. The scattering
matrices for these particular types of networks also have special properties. We will show
that the scattering matrix for a reciprocal network is symmetric, and that the scattering
matrix for a lossless network is unitary.

By adding (4.42a) and (4.42b) we obtain

V +
n = 1

2
(Vn + In),

or

[V +] = 1

2
([Z ] + [U ])[I ]. (4.46a)

By subtracting (4.42a) and (4.42b) we obtain

V −
n = 1

2
(Vn − In),

or

[V −] = 1

2
([Z ] − [U ])[I ]. (4.46b)

Eliminating [I ] from (4.46a) and (4.46b) gives

[V −] = ([Z ] − [U ])([Z ] + [U ])−1[V +],
so that

[S] = ([Z ] − [U ])([Z ] + [U ])−1. (4.47)

Taking the transpose of (4.47) gives

[S]t = {([Z ] + [U ])−1}t ([Z ] − [U ])t .

Now [U ] is diagonal, so [U ]t = [U ], and if the network is reciprocal, [Z ] is symmetric. so
that [Z ]t = [Z ]. The above equation then reduces to

[S]t = ([Z ] + [U ])−1([Z ] − [U ]),
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which is equivalent to (4.44). We have thus shown that

[S] = [S]t , (4.48)

so the scattering matrix is symmetric for reciprocal networks.
If the network is lossless, no real power can be delivered to the network. Thus, if the

characteristic impedances of all the ports are identical and assumed to be unity, the average
power delivered to the network is

Pavg = 1

2
Re{[V ]t [I ]∗} = 1

2
Re{([V +]t + [V −]t )([V +]∗ − [V −]∗)}

= 1

2
Re{[V +]t [V +]∗ − [V +]t [V −]∗ + [V −]t [V +]∗ − [V −]t [V −]∗}

= 1

2
[V +]t [V +]∗ − 1

2
[V −]t [V −]∗ = 0, (4.49)

since the terms −[V +]t [V −]∗ + [V −]t [V +]∗ are of the form A − A∗, and so are purely
imaginary. Of the remaining terms in (4.49), (1/2)[V +]t [V +]∗ represents the total inci-
dent power, while (1/2)[V −]t [V −]∗ represents the total reflected power. So, for a lossless
junction, we have the intuitive result that the incident and reflected powers are equal:

[V +]t [V +]∗ = [V −]t [V −]∗. (4.50)

Using [V −] = [S][V +] in (4.50) gives

[V +]t [V +]∗ = [V +]t [S]t [S]∗[V +]∗,
so that, for nonzero [V +],

[S]t [S]∗ = [U ], (4.51)

or [S]∗ = {[S]t }−1.

A matrix that satisfies the condition of (4.51) is called a unitary matrix.
The matrix equation of (4.51) can be written in summation form as

N∑
k=1

Ski S∗
k j = δi j , for all i, j, (4.52)

where δi j = 1 if i = j , and δi j = 0 if i �= j , is the Kronecker delta symbol. Thus, if i = j ,
(4.52) reduces to

N∑
k=1

Ski S∗
ki = 1, (4.53a)

while if i �= j , (4.52) reduces to

N∑
k=1

Ski S∗
k j = 0, for i �= j. (4.53b)

In words, (4.53a) states that the dot product of any column of [S] with the conjugate of that
same column gives unity, while (4.53b) states that the dot product of any column with the



c04MicrowaveNetworkAnalysis Pozar July 30, 2011 12:0

4.3 The Scattering Matrix 183

conjugate of a different column gives zero (the columns are orthonormal). From (4.51) we
also have that

[S] [S]∗t = [U ] ,

so the same statements can be made about the rows of the scattering matrix.

EXAMPLE 4.5 APPLICATION OF SCATTERING PARAMETERS

A two-port network is known to have the following scattering matrix:

[S] =
[

0.15� 0◦ 0.85� −45◦
0.85� 45◦ 0.2� 0◦

]

Determine if the network is reciprocal and lossless. If port 2 is terminated with a
matched load, what is the return loss seen at port 1? If port 2 is terminated with a
short circuit, what is the return loss seen at port 1?

Solution
Because [S] is not symmetric, the network is not reciprocal. To be lossless, the
scattering parameters must satisfy (4.53). Taking the first column [i = 1 in (4.53a)]
gives

|S11|2 + |S21|2 = (0.15)2 + (0.85)2 = 0.745 �= 1,

so the network is not lossless.
When port 2 is terminated with a matched load, the reflection coefficient seen

at port 1 is � = S11 = 0.15. So the return loss is

RL = −20 log |�| = −20 log(0.15) = 16.5 dB.

When port 2 is terminated with a short circuit, the reflection coefficient seen at
port 1 can be found as follows. From the definition of the scattering matrix and
the fact that V +

2 = −V −
2 (for a short circuit at port 2), we can write

V −
1 = S11V +

1 + S12V +
2 = S11V +

1 − S12V −
2 ,

V −
2 = S21V +

1 + S22V +
2 = S21V +

1 − S22V −
2 .

The second equation gives

V −
2 = S21

1 + S22
V +

1 .

Dividing the first equation by V +
1 and using the above result gives the reflection

coefficient seen at port 1 as

� = V −
1

V +
1

= S11 − S12
V −

2

V +
1

= S11 − S12S21

1 + S22

= 0.15 − (0.85� −45◦)(0.85� 45◦)
1 + 0.2

= −0.452.

So the return loss is RL = −20 log |�| = −20 log(0.452) = 6.9 dB. ■

An important point to understand about scattering parameters is that the reflection
coefficient looking into port n is not equal to Snn unless all other ports are matched (this
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is illustrated in the above example). Similarly, the transmission coefficient from port m to
port n is not equal to Snm unless all other ports are matched. The scattering parameters
of a network are properties only of the network itself (assuming the network is linear),
and are defined under the condition that all ports are matched. Changing the terminations
or excitations of a network does not change its scattering parameters, but may change the
reflection coefficient seen at a given port, or the transmission coefficient between two ports.

A Shift in Reference Planes

Because scattering parameters relate amplitudes (magnitude and phase) of traveling waves
incident on and reflected from a microwave network, phase reference planes must be speci-
fied for each port of the network. We now show how scattering parameters are transformed
when the reference planes are moved from their original locations.

Consider the N -port microwave network shown in Figure 4.9, where the original ter-
minal planes are assumed to be located at zn = 0 for the nth port, where zn is an arbitrary
coordinate measured along the transmission line feeding the nth port. The scattering matrix
for the network with this set of terminal planes is denoted by [S]. Now consider a new set
of reference planes defined at zn = �n for the nth port, and let the new scattering matrix be
denoted as [S′]. Then in terms of the incident and reflected port voltages we have that

[V −] = [S][V +], (4.54a)

[V ′−] = [S′][V ′+], (4.54b)

where the unprimed quantities are referenced to the original terminal planes at zn = 0, and
the primed quantities are referenced to the new terminal planes at zn = �n .

From the theory of traveling waves on lossless transmission lines we can relate the
new wave amplitudes to the original ones as

V ′+
n = V +

n e jθn , (4.55a)

V ′−
n = V −

n e− jθn , (4.55b)

zn = ln zn = 0

z1 = l1 z1 = 0

V'n
–

V'n
+

V'1
–

V'1
+

V n
–

V n
+

V 1
–

V 1
+

Port 1

N-port
network

[S ], [S ']

Port n

FIGURE 4.9 Shifting reference planes for an N -port network.
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where θn = βn�n is the electrical length of the outward shift of the reference plane of
port n. Writing (4.55) in matrix form and substituting into (4.54a) gives




e jθ1 0
e jθ2

. . .

0 e jθN


 [V ′−] = [S]




e− jθ1 0
e− jθ2

. . .

0 e− jθN


 [V ′+].

Multiplying by the inverse of the first matrix on the left gives

[V ′−] =




e− jθ1 0
e− jθ2

. . .

0 e− jθN


 [S]




e− jθ1 0
e− jθ2

. . .

0 e− jθN


 [V ′+].

Comparing with (4.54b) shows that

[S′] =




e− jθ1 0
e− jθ2

. . .

0 e− jθN


 [S]




e− jθ1 0
e− jθ2

. . .

0 e− jθN


 , (4.56)

which is the desired result. Note that S′
nn = e−2 jθn Snn , meaning that the phase of Snn is

shifted by twice the electrical length of the shift in terminal plane n because the wave
travels twice over this length upon incidence and reflection. This result is consistent with
(2.42), which gives the change in the reflection coefficient on a transmission line due to a
shift in the reference plane.

Power Waves and Generalized Scattering Parameters

We previously expressed the total voltage and current on a transmission line in terms of the
incident and reflected voltage wave amplitudes, as in (2.34) or (4.42):

V = V +
0 + V −

0 , (4.57a)

I = 1

Z0

(
V +

0 − V −
0

)
, (4.57b)

with Z0 being the characteristic impedance of the line. Inverting (4.57) gives the incident
and reflected voltage wave amplitudes in terms of the total voltage and current:

V +
0 = V + Z0 I

2
, (4.58a)

V −
0 = V − Z0 I

2
. (4.58b)

The average power delivered to a load can be expressed as

PL = 1

2
Re

{
V I ∗} = 1

2Z0
Re

{∣∣V +
0

∣∣2 − V +
0 V −∗

0 + V +∗
0 V −

0 − ∣∣V −
0

∣∣2}

= 1

2Z0

(∣∣V +
0

∣∣2 − ∣∣V −
0

∣∣2) , (4.59)

where the last step follows because the quantity V +∗
0 V −

0 − V +
0 V −∗

0 is pure imaginary. This
is a physically satisfying result since it expresses the net power delivered to the load as the
difference between the incident and reflected powers. Unfortunately, this result is only
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Zg

ZLV0

I

V

+

–

FIGURE 4.10 A generator with impedance Zg connected to a load impedance ZL .

valid when the characteristic impedance is real; it does not apply when Z0 is complex, as
in the case of a lossy line. In addition, these results are not useful when no transmission
line is present between the generator and load, as in the circuit shown in Figure 4.10.

In the circuit of Figure 4.10 there is no defined characteristic impedance, nor is there a
voltage reflection coefficient, or incident and reflected voltage or current waves. It is possi-
ble, however, to define a new set of waves, called power waves, which have useful proper-
ties when dealing with power transfer between a generator and a load, and can be applied to
circuits like that of Figure 4.10, as well as to problems with lossless or lossy transmission
lines. We will also see how power waves lead to a generalization of scattering parameters.

The incident and reflected power wave amplitudes a and b are defined as the following
linear transformations of the total voltage and current:

a = V + Z R I

2
√

RR
, (4.60a)

b = V − Z∗
R I

2
√

RR
, (4.60b)

where Z R = RR + j X R is known as the reference impedance, and may be complex. Note
that the power wave amplitudes of (4.60) are similar in form to the voltage waves of (4.58),
but do not have units of power, voltage, or current.

Inverting (4.60) gives the total voltage and current in terms of the power wave ampli-
tudes:

V = Z∗
Ra + Z Rb√

RR
, (4.61a)

I = a − b√
RR

. (4.61b)

Then the power delivered to the load can be expressed as

PL = 1

2
Re

{
V I ∗} = 1

2RR
Re

{
Z∗

R |a|2 − Z∗
Rab∗ + Z Ra∗b − Z R |b|2

}

= 1

2
|a|2 − 1

2
|b|2 , (4.62)

since the quantity Z Ra∗b − Z∗
Rab∗is pure imaginary. Once again we have the satisfying

result that the load power is the difference between the powers of the incident and reflected
power waves. It is important to note that this result is valid for any reference impedance Z R .

The reflection coefficient, �p, for the reflected power wave can be found by using
(4.60) and the fact that V = ZL I at the load:

�p = b

a
= V − Z∗

R I

V + Z R I
= ZL − Z∗

R

ZL + Z R
. (4.63)

Observe that this reflection coefficient reduces to our usual voltage reflection coefficient
of (2.35) when Z R = Z0 is a real characteristic impedance. Equation (4.63) suggests that
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choosing the reference impedance as the conjugate of the load impedance [5],

Z R = Z∗
L , (4.64)

will have the useful effect of making the reflected power wave amplitude go to zero.1

From basic circuit theory, the voltage, current, and load power for the circuit of
Figure 4.10 are

V = V0
ZL

ZL + Zg
, I = V0

ZL + Zg
, PL = V 2

0

2

RL∣∣ZL + Zg
∣∣2 , (4.65a, b, c)

where ZL = RL + j X L . Then the power wave amplitudes can be found from (4.60), with
Z R = Z∗

L , as

a = V + Z R I

2
√

RR
= V0

ZL

ZL + Zg
+ Z∗

L

ZL + Zg

2
√

RR
= V0

√
RL

ZL + Zg
, (4.66a)

b = V − Z∗
R I

2
√

RR
= V0

ZL

ZL + Zg
− ZL

ZL + Zg

2
√

RR
= 0. (4.66b)

From (4.62) the power delivered to the load is

PL = 1

2
|a|2 = V 2

0

2

RL∣∣ZL + Zg
∣∣2 ,

in agreement with (4.65c).
When the load is conjugately matched to the generator, so that Zg = Z∗

L , we have
PL = V 2

0 /8RL . Note that selecting the reference impedance as Z R = Z∗
L results in the

condition that b = 0 (and �p = 0), but this does not necessarily mean that the load is
conjugately matched to the generator, nor that maximum power is delivered to the load.
The incident power wave amplitude of (4.66a) depends on ZL and Zg , and is maximum
only when Zg = Z∗

L .
To define the scattering matrix for power waves for an N -port network, we assume

the reference impedance for port i is Z Ri . Then, analogous to (4.60), we define the power
wave amplitude vectors in terms of the total voltage and current vectors:

[a] = [F] ([V ] + [Z R] [I ]) , (4.67a)

[b] = [F]
(
[V ] − [Z R]∗ [I ]

)
, (4.67b)

where [F] is a diagonal matrix with elements 1/2
√

Re {Z Ri } and [Z R] is a diagonal matrix
with elements Z Ri . By the impedance matrix relation that [V ] = [Z ] [I ], (4.67) can be
written as

[b] = [F]
(
[Z ] − [Z R]∗

)
([Z ] + [Z R])−1 [F]−1 [a].

Because the scattering matrix for power waves,
[
Sp
]
, should relate [b] to [a], we have

[
Sp
] = [F]

(
[Z ] − [Z R]∗

)
([Z ] + [Z R])−1 [F]−1 . (4.68)

1 Some authors choose the reference impedance equal to the generator impedance. This has the same effect as
(4.64) when the generator and load are conjugately matched, but the choice of (4.64) leads to a zero reflected
wave even when the conjugate matching condition is not satisfied, and so can be more useful in general.
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The ordinary scattering matrix for a network can first be converted to an impedance matrix,
using a relation similar to (4.45), then converted to the generalized power wave scattering
matrix using (4.68). The generalized scattering matrix has the useful property that the
diagonal elements can be made to be zero by proper selection of the reference impedances.

POINT OF INTEREST: The Vector Network Analyzer

The scattering parameters of passive and active networks can be measured with a vector network
analyzer, which is a two-channel (or four-channel) microwave receiver designed to process the
magnitude and phase of the transmitted and reflected waves from the network. A simplified
block diagram of a network analyzer is shown in the accompanying figure. In operation, the RF
source is usually set to sweep over a specified bandwidth. A four-port reflectometer samples the
incident, reflected, and transmitted RF waves; a switch allows the network to be driven from
either port 1 or port 2. Four dual-conversion channels convert these signals to 100-kHz IF fre-
quencies, which are then detected and converted to digital form. An internal computer is used to
calculate and display the magnitude and phase of the scattering parameters or other quantities
that can be derived from these data, such as SWR, return loss, group delay, impedance, etc. An
important feature of the network analyzer is the substantial improvement in accuracy made pos-
sible with error-correcting software. Errors caused by directional coupler mismatch, imperfect
directivity, loss, and variations in the frequency response of the analyzer system are accounted
for by using a 12-term error model and a calibration procedure. Another useful feature is the
ability to determine the time-domain response of the network by calculating the inverse Fourier
transform of the frequency-domain data.
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4.4 THE TRANSMISSION (ABCD) MATRIX

The Z , Y , and S parameter representations can be used to characterize a microwave net-
work with an arbitrary number of ports, but in practice many microwave networks consist
of a cascade connection of two or more two-port networks. In this case it is convenient
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FIGURE 4.11 (a) A two-port network; (b) a cascade connection of two-port networks.

to define a 2 × 2 transmission, or ABCD, matrix, for each two-port network. We will see
that the ABCD matrix of the cascade connection of two or more two-port networks can be
easily found by multiplying the ABCD matrices of the individual two-ports.

The ABCD matrix is defined for a two-port network in terms of the total voltages and
currents as shown in Figure 4.11a and the following:

V1 = AV2 + B I2,

I1 = CV2 + DI2,

or in matrix form as [
V1
I1

]
=
[

A B
C D

] [
V2
I2

]
. (4.69)

It is important to note from Figure 4.11a that a change in the sign convention of I2
has been made from our previous definitions, which had I2 as the current flowing into
port 2. The convention that I2 flows out of port 2 will be used when dealing with ABCD
matrices so that in a cascade network I2 will be the same current that flows into the adjacent
network, as shown in Figure 4.11b. Then the left-hand side of (4.69) represents the voltage
and current at port 1 of the network, while the column on the right-hand side of (4.69)
represents the voltage and current at port 2.

In the cascade connection of two two-port networks shown in Figure 4.11b we have
that [

V1
I1

]
=
[

A1 B1
C1 D1

] [
V2
I2

]
,

(4.70ab)[
V2
I2

]
=
[

A2 B2
C2 D2

] [
V3
I3

]
.

Substituting (4.70b) into (4.70a) gives
[

V1
I1

]
=
[

A1 B1
C1 C1

] [
A2 B2
C2 D2

] [
V3
I3

]
, (4.71)

which shows that the ABCD matrix of the cascade connection of the two networks is equal
to the product of the ABCD matrices representing the individual two-ports. Note that the
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TABLE 4.1 ABCD Parameters of Some Useful Two-Port Circuits

Circuit ABCD Parameters

Z A = 1

C = 0

B = Z

D = 1

Y
A = 1

C = Y

B = 0

D = 1

Z0, 

l

A = cos β�

C = jY0 sin β�

B = j Z0 sin β�

D = cos β�

N : 1

A = N

C = 0

B = 0

D = 1

N

Y1 Y2

Y3 A = 1 + Y2

Y3

C = Y1 + Y2 + Y1Y2

Y3

B = 1

Y3

D = 1 + Y1

Y3

Z1 Z2

Z3

A = 1 + Z1

Z3

C = 1

Z3

B = Z1 + Z2 + Z1 Z2

Z3

D = 1 + Z2

Z3

order of multiplication of the matrix must be the same as the order in which the networks
are arranged since matrix multiplication is not, in general, commutative.

The usefulness of the ABCD matrix representation lies in the fact that a library of
ABCD matrices for elementary two-port networks can be built up, and applied in building-
block fashion to more complicated microwave networks that consist of cascades of these
simpler two-ports. Table 4.1 lists a number of useful two-port networks and their ABCD
matrices.

EXAMPLE 4.6 EVALUATION OF ABCD PARAMETERS

Find the ABCD parameters of a two-port network consisting of a series impedance
Z between ports 1 and 2 (the first entry in Table 4.1).

Solution
From the defining relations of (4.69), we have that

A = V1

V2

∣∣∣∣
I2=0

,
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which indicates that A is found by applying a voltage V1 at port 1, and measuring
the open-circuit voltage V2 at port 2. Thus, A = 1. Similarly,

B = V1

I2

∣∣∣∣
V2=0

= V1

V1/Z
= Z ,

C = I1

V2

∣∣∣∣
I2=0

= 0,

D = I1

I2

∣∣∣∣
V2=0

= I1

I1
= 1.

■

Relation to Impedance Matrix

The impedance parameters of a network can be easily converted to ABCD parameters.
Thus, from the definition of the ABCD parameters in (4.69), and from the defining relations
for the Z parameters of (4.25) for a two-port network with I2 to be consistent with the sign
convention used with ABCD parameters,

V1 = I1 Z11 − I2 Z12, (4.72a)

V2 = I1 Z21 − I2 Z22, (4.72b)

we have that

A = V1

V2

∣∣∣∣
I2=0

= I1 Z11

I1 Z21
= Z11/Z21, (4.73a)

B = V1

I2

∣∣∣∣
V2=0

= I1 Z11 − I2 Z12

I2

∣∣∣∣
V2=0

= Z11
I1

I2

∣∣∣∣
V2=0

− Z12

= Z11
I1 Z22

I1 Z21
− Z12 = Z11 Z22 − Z12 Z21

Z21
, (4.73b)

C = I1

V2

∣∣∣∣
I2=0

= I1

I1 Z21
= 1/Z21, (4.73c)

D = I1

I2

∣∣∣∣
V2=0

= I2 Z22/Z21

I2
= Z22/Z21. (4.73d)

If the network is reciprocal, then Z12 = Z21 and (4.73) can be used to show that AD −
BC = 1.

Equivalent Circuits for Two-Port Networks

The special case of a two-port microwave network occurs so frequently in practice that it
deserves further attention. Here we will discuss the use of equivalent circuits to represent
an arbitrary two-port network. Useful conversions between two-port network parameters
are given in Table 4.2.

Figure 4.12a shows a transition between a coaxial line and a microstrip line, and is
an example of a two-port network. Terminal planes can be defined at arbitrary points on
the two transmission lines; a convenient choice might be as shown in the figure. However,
because of the physical discontinuity in the transition from a coaxial line to a microstrip
line, electric and/or magnetic energy can be stored in the vicinity of the junction, leading
to reactive effects. Characterization of such effects can be obtained by measurement or
by numerical analysis (such analysis may be quite complicated), and represented by the



c04MicrowaveNetworkAnalysis Pozar July 30, 2011 12:0

192 Chapter 4: Microwave Network Analysis
T

A
B

L
E

4.
2

C
on

ve
rs

io
ns

B
et

w
ee

n
T

w
o-

P
or

t
N

et
w

or
k

P
ar

am
et

er
s

S
Z

Y
A

B
C

D

S 1
1

S 1
1

(
Z

11
−

Z
0
)(

Z
22

+
Z

0
)
−

Z
12

Z
21

�
Z

(Y
0

−
Y

11
)(

Y
0

+
Y

22
)
+

Y
12

Y
21

�
Y

A
+

B
/

Z
0

−
C

Z
0

−
D

A
+

B
/

Z
0

+
C

Z
0

+
D

S 1
2

S 1
2

2
Z

12
Z

0
�

Z

−2
Y

12
Y

0
�

Y

2(
A

D
−

B
C

)

A
+

B
/

Z
0

+
C

Z
0

+
D

S 2
1

S 2
1

2
Z

21
Z

0
�

Z

−2
Y

21
Y

0
�

Y

2

A
+

B
/

Z
0

+
C

Z
0

+
D

S 2
2

S 2
2

(
Z

11
+

Z
0
)(

Z
22

−
Z

0
)
−

Z
12

Z
21

�
Z

(Y
0

+
Y

11
)(

Y
0

−
Y

22
)
+

Y
12

Y
21

�
Y

−A
+

B
/

Z
0

−
C

Z
0

+
D

A
+

B
/

Z
0

+
C

Z
0

+
D

Z
11

Z
0

(1
+

S 1
1
)(

1
−

S 2
2
)
+

S 1
2

S 2
1

(1
−

S 1
1
)(

1
−

S 2
2
)
−

S 1
2

S 2
1

Z
11

Y
22 |Y
|

A C

Z
12

Z
0

2S
12

(1
−

S 1
1
)(

1
−

S 2
2
)
−

S 1
2

S 2
1

Z
12

−Y
12 |Y
|

A
D

−
B

C

C

Z
21

Z
0

2S
21

(1
−

S 1
1
)(

1
−

S 2
2
)
−

S 1
2

S 2
1

Z
21

−Y
21 |Y
|

1 C

Z
22

Z
0

(1
−

S 1
1
)(

1
+

S 2
2
)
+

S 1
2

S 2
1

(1
−

S 1
1
)(

1
−

S 2
2
)
−

S 1
2

S 2
1

Z
22

Y
11 |Y
|

D C

Y
11

Y
0

(1
−

S 1
1
)(

1
+

S 2
2
)
+

S 1
2

S 2
1

(1
+

S 1
1
)(

1
+

S 2
2
)
−

S 1
2

S 2
1

Z
22 |Z
|

Y
11

D B

Y
12

Y
0

−2
S 1

2
(1

+
S 1

1
)(

1
+

S 2
2
)
−

S 1
2

S 2
1

−Z
12 |Z
|

Y
12

B
C

−
A

D

B

Y
21

Y
0

−2
S 2

1
(1

+
S 1

1
)(

1
+

S 2
2
)
−

S 1
2

S 2
1

−Z
21 |Z
|

Y
21

−1 B

Y
22

Y
0

(1
+

S 1
1
)(

1
−

S 2
2
)
+

S 1
2

S 2
1

(1
+

S 1
1
)(

1
+

S 2
2
)
−

S 1
2

S 2
1

Z
11 |Z
|

Y
22

A B

A
(1

+
S 1

1
)(

1
−

S 2
2
)
+

S 1
2

S 2
1

2S
21

Z
11

Z
21

−Y
22

Y
21

A

B
Z

0
(1

+
S 1

1
)(

1
+

S 2
2
)
−

S 1
2

S 2
1

2S
21

|Z
|

Z
21

−1 Y
21

B

C
1 Z
0

(1
−

S 1
1
)(

1
−

S 2
2
)
−

S 1
2

S 2
1

2S
21

1 Z
21

−|
Y

|
Y

21
C

D
(1

−
S 1

1
)(

1
+

S 2
2
)
+

S 1
2

S 2
1

2S
21

Z
22

Z
21

−Y
11

Y
21

D

|Z
|=

Z
11

Z
22

−
Z

12
Z

21
;

|Y
|=

Y
11

Y
22

−
Y

12
Y

21
;

�
Y

=
(Y

11
+

Y
0
)(

Y
22

+
Y

0
)
−

Y
12

Y
21

;
�

Z
=

(
Z

11
+

Z
0
)(

Z
22

+
Z

0
)
−

Z
12

Z
21

;
Y

0
=

1/
Z

0
.



c04MicrowaveNetworkAnalysis Pozar July 30, 2011 12:0

4.4 The Transmission (ABCD) Matrix 193

Z0c Z0m[S]

Microstrip
line

Coaxial
line

Z0m

Z0c

t2

t1

Microstrip
line

Coaxial
line

�r

(a)

(b)

(c)

C2C1Z0c Z0m

L

FIGURE 4.12 A coax-to-microstrip transition and equivalent circuit representations. (a) Geom-
etry of the transition. (b) Representation of the transition by a “black box.”
(c) A possible equivalent circuit for the transition [6].

two-port “black box” shown in Figure 4.12b. The properties of the transition can then be
expressed in terms of the network parameters (Z , Y , S, or ABCD) of the two-port network.
This type of treatment can be applied to a variety of two-port junctions, such as transitions
from one type of transmission line to another, transmission line discontinuities such as
step changes in width or bends, etc. When modeling a microwave junction in this way, it
is often useful to replace the two-port “black box” with an equivalent circuit containing
a few idealized components, as shown in Figure 4.12c. This is particularly useful if the
component values can be related to some physical features of the actual junction. There
is an unlimited number of ways in which such equivalent circuits can be defined; we will
discuss some of the most common and useful types below.

As we have seen, an arbitrary two-port network can be described in terms of impedance
parameters as

V1 = Z11 I1 + Z12 I2,

V2 = Z21 I1 + Z22 I2,
(4.74a)

or in terms of admittance parameters as

I1 = Y11V1 + Y12V2,

I2 = Y21V1 + Y22V2.
(4.74b)

If the network is reciprocal, then Z12 = Z21 and Y12 = Y21. These representations lead
naturally to the T and π equivalent circuits shown in Figures 4.13a and 4.13b. The relations
in Table 4.2 can be used to relate the component values to other network parameters.

Other equivalent circuits can also be used to represent a two-port network. If the
network is reciprocal, there are six degrees of freedom (the real and imaginary parts of
three matrix elements), so the equivalent circuit should have six independent parameters.
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FIGURE 4.13 Equivalent circuits for a reciprocal two-port network. (a) T equivalent. (b) π equi-
valent.

A nonreciprocal network cannot be represented by a passive equivalent circuit using recip-
rocal elements.

If the network is lossless, which is a good approximation for many practical two-
port junctions, some simplifications can be made in the equivalent circuit. As was shown
in Section 4.2, the impedance or admittance matrix elements are purely imaginary for a
lossless network. This reduces the degrees of freedom for such a network to three, and
implies that the T and π equivalent circuits of Figure 4.13 can be constructed from purely
reactive elements.

4.5 SIGNAL FLOW GRAPHS

We have seen how transmitted and reflected waves can be represented by scattering
parameters, and how the interconnection of sources, networks, and loads can be treated
with various matrix representations. In this section we discuss the signal flow graph, which
is an additional technique that is very useful for the analysis of microwave networks in
terms of transmitted and reflected waves. We first discuss the features and the construction
of the flow graph itself, and then present a technique for the reduction, or solution, of the
flow graph.

The primary components of a signal flow graph are nodes and branches:

� Nodes: Each port i of a microwave network has two nodes, ai and bi. Node ai

is identified with a wave entering port i, while node bi is identified with a wave
reflected from port i. The voltage at a node is equal to the sum of all signals entering
that node.

� Branches: A branch is a directed path between two nodes representing signal flow
from one node to another. Every branch has an associated scattering parameter or
reflection coefficient.

At this point it is useful to consider the flow graph of an arbitrary two-port network, as
shown in Figure 4.14. Figure 4.14a shows a two-port network with incident and reflected
waves at each port, and Figure 4.14b shows the corresponding signal flow graph represen-
tation. The flow graph gives an intuitive graphical illustration of the network behavior.

For example, a wave of amplitude a1 incident at port 1 is split, with part going through
S11 and out port 1 as a reflected wave, and part transmitted through S21 to node b2.
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FIGURE 4.14 The signal flow graph representation of a two-port network. (a) Definition of inci-
dent and reflected waves. (b) Signal flow graph.

At node b2, the wave goes out port 2; if a load with nonzero reflection coefficient is con-
nected at port 2, this wave will be at least partly reflected and reenter the two-port network
at node a2. Part of this wave can be reflected back out port 2 via S22, and part can be
transmitted out port 1 through S12.

Two other special networks—a one-port network and a voltage source—are shown in
Figure 4.15, along with their signal flow graph representations. Once a microwave network
has been represented in signal flow graph form, it is a relatively easy matter to solve for the
ratio of any combination of wave amplitudes. We will discuss how this can be done using
four basic decomposition rules, but the same results can also be obtained using Mason’s
rule from control system theory.

Decomposition of Signal Flow Graphs

A signal flow graph can be reduced to a single branch between two nodes using the fol-
lowing four basic decomposition rules to obtain any desired wave amplitude ratio.

� Rule 1 (Series Rule). Two branches, whose common node has only one incoming
and one outgoing wave (branches in series), may be combined to form a single
branch whose coefficient is the product of the coefficients of the original branches.

(a)

(b)

Vi

Vs ΓsΓs

Γl Γl

a

b

b

b

a

a

b

a

Zs

FIGURE 4.15 The signal flow graph representations of a one-port network and a source. (a) A
one-port network and its flow graph. (b) A source and its flow graph.
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FIGURE 4.16 Decomposition rules. (a) Series rule. (b) Parallel rule. (c) Self-loop rule. (d) Split-
ting rule.

Figure 4.16a shows the flow graphs for this rule. Its derivation follows from the
basic relation

V3 = S32V2 = S32S21V1. (4.75)

� Rule 2 (Parallel Rule). Two branches from one common node to another common
node (branches in parallel) may be combined into a single branch whose coefficient
is the sum of the coefficients of the original branches. Figure 4.16b shows the flow
graphs for this rule. The derivation follows from the obvious relation

V2 = Sa V1 + SbV1 = (Sa + Sb)V1. (4.76)

� Rule 3 (Self-Loop Rule). When a node has a self-loop (a branch that begins and ends
on the same node) of coefficient S, the self-loop can be eliminated by multiplying
coefficients of the branches feeding that node by 1/(1 − S). Figure 4.16c shows the
flow graphs for this rule, which can be derived as follows. From the original network
we have

V2 = S21V1 + S22V2, (4.77a)

V3 = S32V2. (4.77b)

Eliminating V2 gives

V3 = S32S21

1 − S22
V1, (4.78)

which is seen to be the transfer function for the reduced graph of Figure 4.16c.
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FIGURE 4.17 A terminated two-port network.

� Rule 4 (Splitting Rule). A node may be split into two separate nodes as long as the
resulting flow graph contains, once and only once, each combination of separate
(not self-loops) input and output branches that connect to the original node. This
rule is illustrated in Figure 4.16d and follows from the observation that

V4 = S42V2 = S21S42V1 (4.79)

in both the original flow graph and the flow graph with the split node.

We now illustrate the use of each of these rules with an example.

EXAMPLE 4.7 APPLICATION OF SIGNAL FLOW GRAPH

Use signal flow graphs to derive expressions for �in and �out for the microwave
network shown in Figure 4.17.

Solution
The signal flow graph for the circuit of Figure 4.17 is shown in Figure 4.18. In
terms of node voltages, �in is given by the ratio b1/a1. The first two steps of the
required decomposition of the flow graph are shown in Figures 4.19a and 4.19b,
from which the desired result follows by inspection:

�in = b1

a1
= S11 + S12S21��

1 − S22��

.

Next, �out is given by the ratio b2/a2. The first two steps for this decomposition
are shown in Figures 4.19c and 4.19d. The desired result is

�out = b2

a2
= S22 + S12S21�s

1 − S11�s ■

Application to Thru-Reflect-Lin Network Analyzer Calibration

As a further application of signal flow graphs we consider the calibration of a network
analyzer using the Thru-Reflect-Line (TRL) technique [7]. The general problem is shown in
Figure 4.20, where it is intended to measure the scattering parameters of a two-port device

Vs

S11 S22

S12

S21

b1 a2

a1 b2

Γ�

Γs

1

FIGURE 4.18 Signal flow graph for the two-port network with general source and load impe-
dances of Figure 4.17.
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FIGURE 4.19 Decompositions of the flow graph of Figure 4.18 to find �in = b1/a1 and �out =
b2/a2. (a) Using Rule 4 on node a2. (b) Using Rule 3 for the self-loop at node b2.
(c) Using Rule 4 on node b1. (d) Using Rule 3 for the self-loop at node a1.

at the indicated reference planes. As discussed in the previous Point of Interest, a network
analyzer measures scattering parameters as ratios of complex voltage amplitudes. The pri-
mary reference plane for such measurements is generally at some point within the analyzer
itself, so the measurement will include losses and phase delays caused by the effects of the
connectors, cables, and transitions that must be used to connect the device under test (DUT)
to the analyzer. In the block diagram of Figure 4.20 these effects are lumped together in a
two-port error box placed at each port between the actual measurement reference plane and
the desired reference plane for the two-port DUT. A calibration procedure is used to char-
acterize the error boxes before measurement of the DUT; then the actual error-corrected
scattering parameters of the DUT can be calculated from the measured data. Measurement
of a one-port network can be considered as a reduced version of the two-port case.

The simplest way to calibrate a network analyzer is to use three or more known loads,
such as shorts, opens, and matched loads. The problem with this approach is that such
standards are always imperfect to some degree, and therefore introduce errors into the
measurement. These errors become increasingly significant at higher frequencies and as
the quality of the measurement system improves. The TRL calibration scheme does not

FIGURE 4.20 Block diagram of a network analyzer measurement of a two-port device.
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rely on known standard loads, but uses three simple connections to allow the error boxes
to be characterized completely. These three connections are shown in Figure 4.21. The
Thru connection is made by directly connecting port 1 to port 2 at the desired reference
planes. The Reflect connection uses a load having a large reflection coefficient, �L , such
as a nominal open or short. It is not necessary to know the exact value of �L , as this will
be determined by the TRL calibration procedure. The Line connection involves connecting
ports 1 and 3 together through a length of matched transmission line. It is not necessary to
know the length of the line, and it is not required that the line be lossless; these parameters
will be determined by the TRL procedure.

We can use signal flow graphs to derive the set of equations necessary to find the scat-
tering parameters for the error boxes in the TRL calibration procedure. With reference to
Figure 4.20, we will apply the Thru, Reflect, and Line connections at the reference plane for
the DUT, and measure the scattering parameters for these three cases at the measurement
planes. For simplicity, we assume the same characteristic impedance for ports 1 and 2, and
that the error boxes are reciprocal and identical for both ports. The error boxes are charac-
terized by a scattering matrix [S] and, alternatively, by an ABCD matrix. Thus S21 = S12
for both error boxes. Also note that ports 1 and 2 of the error boxes are in opposite posi-
tions since they are symmetrically connected, as shown in the figure. To avoid confusion in
notation we will denote the measured scattering parameters for the Thru, Reflect, and Line
connections as the [T ], [R], and [L] matrices, respectively.

Figure 4.21a shows the arrangement for the Thru connection and the corresponding
signal flow graph. Observe that we have made use of the fact that S21 = S12 and that the
error boxes are identical and symmetrically arranged. The signal flow graph can be easily
reduced using the decomposition rules to give the measured scattering parameters at the
measurement planes in terms of the scattering parameters of the error boxes as

T11 = b1

a1

∣∣∣∣
a2=0

= S11 + S22S2
12

1 − S2
22

(4.80a)

T12 = b1

a2

∣∣∣∣
a1=0

= S2
12

1 − S2
22

(4.80b )

By symmetry we have T22 = T11, and by reciprocity we have T21 = T12.

FIGURE 4.21a Block diagram and signal flow graph for the Thru connection.
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FIGURE 4.21b Block diagram and signal flow graph for the Reflect connection.

The Reflect connection is shown in Figure 4.21b, with the corresponding signal flow
graph. Note that this arrangement effectively decouples the two measurement ports, so
R12 = R21 = 0. The signal flow graph can be easily reduced to show that

R11 = b1

a1

∣∣∣∣
a2=0

= S11 + S2
12�L

1 − S22�L
. (4.81)

By symmetry we have R22 = R11.
The Line connection is shown in Figure 4.21c, with its corresponding signal flow

graph. A reduction similar to that used for the Thru case gives

L11 = b1

a1

∣∣∣∣
a2=0

= S11 + S22S2
12e−2γ �

1 − S2
22e−2γ �

, (4.82a)

L12 = b1

a2

∣∣∣∣
a1=0

= S2
12e−γ �

1 − S2
22e−2γ �

. (4.82b)
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FIGURE 4.21c Block diagram and signal flow graph for the Line connection.
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By symmetry and reciprocity we have L22 = L11 and L21 = L12.
We now have five equations (4.80)–(4.82) for the five unknowns S11, S12, S22, �L ,

and eγ �; the solution is straightforward but lengthy. Because (4.81) is the only equation
that contains �L , we can first solve the four equations in (4.80) and (4.82) for the other
four unknowns. Equation (4.80b) can be used to eliminate S12 from (4.80a) and (4.82),
and then S11 can be eliminated from (4.80a) and (4.82a). This leaves two equations for S22
and eγ �:

L12e2γ � − L12S2
22 = T12eγ � − T12S2

22eγ �, (4.83a)

e2γ � (T11 − S22T12) − T11S2
22 = L11

(
e2γ � − S2

22

)− S22T12. (4.83b)

Equation (4.83a) can be solved for S22 and substituted into (4.83b) to give a quadratic
equation for eγ �. Application of the quadratic formula then gives the solution for eγ � in
terms of the measured TRL scattering parameters as

eγ � = L2
12 + T 2

12 − (T11 − L11)
2 ±

√[
L2

12 + T 2
12 − (T11 − L11)2

]2 − 4L2
12T 2

12

2L12T12
. (4.84)

The choice of sign can be determined by the requirement that the real and imaginary parts
of γ be positive, or by knowing the phase of �L [as determined from (4.83)] to within
180◦.

Now multiply (4.80b) by S22 and subtract from (4.80a) to get

T11 = S11 + S22T12, (4.85a)

and similarly multiply (4.82b) by S22e−γ � and subtract from (4.82a) to get

L11 = S11 + S22L12e−γ �. (4.85b)

Eliminating S11 from these two equations gives S22 in terms of e−γ � as

S22 = T11 − L11

T12 − L12e−γ �
. (4.86)

Solving (4.85a) for S11 gives

S11 = T11 − S22T12, (4.87)

and solving (4.80b) for S12 gives

S2
12 = T12(1 − S2

22). (4.88)

Finally, (4.81) can be solved for �L to give

�L = R11 − S11

S2
12 + S22 (R11 − S11)

. (4.89)

Equations (4.84) and (4.86)–(4.89) give the scattering parameters for the error boxes, as
well as the unknown reflection coefficient �L (to within the sign), and the propagation
factor e−γ �. This completes the calibration procedure for the TRL method.

The scattering parameters of the DUT can now be measured at the measurement refer-
ence planes shown in Figure 4.20, and corrected using the above TRL error box parameters
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to give the scattering parameters at the reference planes of the DUT. Because we are work-
ing with a cascade of three two-port networks, it is convenient to use ABCD parameters.
Thus, we convert the error box scattering parameters to the corresponding ABCD param-
eters, and convert the measured scattering parameters of the cascade to the corresponding
Am BmCm Dm parameters. If we use A′B ′C ′ D′ to denote the parameters for the DUT, then
we have

[
Am Bm

Cm Dm

]
=
[

A B
C D

] [
A′ B ′
C ′ D′

] [
D B
C A

]
,

where the change in the elements of the last matrix account for the reversal of ports for
the error box at port 2 of the DUT (see Problem 4.25). Then the ABCD parameters for the
DUT can be determined as

[
A′ B ′
C ′ D′

]
=
[

A B
C D

]−1 [
Am Bm

Cm Dm

] [
D B
C A

]−1

. (4.90)

POINT OF INTEREST: Computer-Aided Design for Microwave Circuits

Computer-aided design (CAD) software packages have become essential tools for the analysis,
design, and optimization of RF and microwave circuits and systems. Several microwave CAD
products are commercially available, including Microwave Office (Applied Wave Research),
ADS (Agilent Technologies), Microwave Studio (CST), Designer (Ansoft), and many others.
RF and microwave CAD packages can be divided into two types: those that use “physics-based”
solutions, where Maxwell’s equations are numerically solved for physical geometries such as
printed circuit geometries or waveguides, and “circuit-based” solutions, which use equivalent
circuits for various elements, including distributed elements, discontinuities, coupled lines, and
active devices. Some packages combine these two approaches. Both linear and nonlinear mod-
eling, as well as circuit optimization, are generally possible. Although such computer programs
can be fast, powerful, and accurate, they cannot serve as a substitute for engineering experience
and a good understanding of microwave principles.

A typical design process usually begins with specifications or design goals for the circuit or
system. Based on previous designs and his or her experience, an engineer can develop an initial
design, including specific components and a circuit layout. CAD can then be used to model and
analyze the design, using data for each of the components and including effects such as loss and
discontinuities. The software can be used to optimize the design by adjusting some of the circuit
parameters to achieve the best performance. If the specifications are not met, the design may
have to be revised. CAD tools can also be used to study the effects of component tolerances and
errors to improve circuit reliability and robustness. When the design meets the specifications, an
engineering prototype can be built and tested. If the measured results satisfy the specifications,
the design process is completed. Otherwise the design will need to be revised and the procedure
repeated.

Without CAD tools the design process would require the construction and measurement
of laboratory prototypes at each iteration, which is expensive and time consuming. Thus, CAD
can greatly decrease the time and cost of a design while enhancing its quality. The simulation
and optimization process is especially important for monolithic microwave integrated circuits
because these circuits cannot easily be tuned or trimmed after fabrication.

CAD techniques are not without limitations, however. Of primary importance is the fact
that any computer model is only an approximation to a “real-world” physical circuit and cannot
completely account for the inevitable differences due to component and fabrication tolerances,
surface roughness, spurious coupling, higher order modes, junction discontinuities, thermal
effects, and a number of other practical issues that can occur with a physical circuit or device.
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4.6 DISCONTINUITIES AND MODAL ANALYSIS

By either necessity or design, microwave circuits and networks often consist of transmis-
sion lines with various types of discontinuities. In some cases discontinuities are an un-
avoidable result of mechanical or electrical transitions from one medium to another (e.g.,
a junction between two waveguides, or a coax-to-microstrip transition), and the discon-
tinuity effect is unwanted but may be significant enough to warrant characterization. In
other cases discontinuities may be deliberately introduced into the circuit to perform a cer-
tain electrical function (e.g., reactive diaphragms in waveguide, or stubs on a microstrip
line for matching or filter circuits). In any event, a transmission line discontinuity can
be represented as an equivalent circuit at some point on the transmission line. Depend-
ing on the type of discontinuity, the equivalent circuit may be a simple shunt or series
element across the line or, in the more general case, a T- or π -equivalent circuit may be
required. The component values of an equivalent circuit depend on the parameters of the
line and the discontinuity, as well as on the frequency of operation. In some cases the
equivalent circuit involves a shift in the phase reference planes on the transmission lines.
Once the equivalent circuit of a given discontinuity is known, its effect can be incorporated
into the analysis or design of the network using the theory developed previously in this
chapter.

The purpose of the present section is to discuss how equivalent circuits are obtained
for transmission line discontinuities; we will see that one approach is to start with a field
theory solution to a canonical discontinuity problem and develop a circuit model with
component values. This is thus another example of our objective of replacing complicated
field analyses with circuit concepts. In other cases, it may be easier to measure the network
parameters of an isolated discontinuity.

Figures 4.22 and 4.23 show some common transmission line discontinuities and their
equivalent circuits. As shown in Figures 4.22a–4.22c, thin metallic diaphragms (or “irises”)
can be placed in the cross section of a waveguide to yield equivalent shunt inductance,
capacitance, or a resonant combination. Similar effects occur with step changes in the
height or width of the waveguide, as shown in Figures 4.22d and 4.22e. Similar disconti-
nuities can also be made in circular waveguide. The classic reference for waveguide dis-
continuities and their equivalent circuits is the Waveguide Handbook [8].

Some typical microstrip discontinuities and transitions are shown in Figure 4.23; sim-
ilar geometries exist for stripline and other printed transmission lines such as slotline, cov-
ered microstrip, coplanar waveguide, etc. Although approximate equivalent circuits have
been developed for some printed transmission line discontinuities [9], many do not lend
themselves to easy or accurate modeling, and must be treated by numerical analysis. Mod-
ern CAD tools are usually capable of accurately modeling such problems.

Modal Analysis of an H-Plane Step in Rectangular Waveguide

The field analysis of most transmission line discontinuity problems is difficult, and beyond
the scope of this book. The technique of waveguide modal analysis, however, is relatively
straightforward and similar in principle to the reflection/transmission problems that were
discussed in Chapters 1 and 2. In addition, modal analysis is a rigorous and versatile tech-
nique that can be applied to a number of waveguide and coax discontinuity problems, and
lends itself well to computer implementation. We will illustrate the technique by applying
it to the problem of finding the equivalent circuit of an H -plane step (change in width) in
a rectangular waveguide.
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FIGURE 4.22 Rectangular waveguide discontinuities.

The geometry of the H -plane waveguide step is shown in Figure 4.24. It is assumed
that only the dominant TE10 mode is propagating in guide 1 (z < 0) and is incident on the
junction from z < 0. It is also assumed that no modes are propagating in guide 2, although
the analysis to follow is still valid if propagation can occur in guide 2. From Section 3.3,
the transverse components of the incident TE10 mode can be written, for z < 0, as

Ei
y = sin

πx

a
e− jβa

1 z, (4.91a)

Hi
x = −1

Za
1

sin
πx

a
e− jβa

1 z, (4.91b)

where

βa
n =

√
k2

0 −
(nπ

a

)2
(4.92)
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FIGURE 4.23 Some common microstrip discontinuities. (a) Open-ended microstrip. (b) Gap in
microstrip. (c) Change in width. (d) T-junction. (e) Coax-to-microstrip junction.

is the propagation constant of the TEn0 mode in guide 1 (of width a), and

Za
n = k0η0

βa
n

(4.93)

is the wave impedance of the TEn0 mode in guide 1. Because of the discontinuity at z = 0
there will be reflected and transmitted waves in both guides, consisting of infinite sets of
TEn0 modes in guides 1 and 2. Only the TE10 mode will propagate in guide 1, but higher
order modes are also important in this problem because they account for stored energy,
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FIGURE 4.24 Geometry of an H -plane step (change in width) in a rectangular waveguide.

localized near z = 0. Because there is no y variation introduced by this discontinuity, TEnm

modes for m �= 0 are not excited, nor are any TM modes. A more general discontinuity,
however, may excite such modes.

The reflected modes in guide 1 may be written, for z < 0, as

Er
y =

∞∑
n=1

An sin
nπx

a
e jβa

n z, (4.94a)

Hr
x =

∞∑
n=1

An

Za
n

sin
nπx

a
e jβa

n z, (4.94b)

where An is the unknown amplitude coefficient of the reflected TEn0 mode in guide 1.
The reflection coefficient of the incident TE10 mode is then A1. Similarly, the transmitted
modes into guide 2 can be written, for z > 0, as

Et
y =

∞∑
n=1

Bn sin
nπx

c
e− jβc

n z, (4.95a)

Ht
x = −

∞∑
n=1

Bn

Zc
n

sin
nπx

c
e− jβc

n z, (4.95b)

where the propagation constant in guide 2 is

βc
n =

√
k2

0 −
(nπ

c

)2
, (4.96)

and the wave impedance in guide 2 is

Zc
n = k0η0

βc
n

. (4.97)
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At z = 0, the transverse fields (Ey, Hx ) must be continuous for 0 < x < c ; in addi-
tion, Ey must be zero for c < x < a because of the step. Enforcing these boundary condi-
tions leads to the following equations:

Ey = sin
πx

a
+

∞∑
n=1

An sin
nπx

a
=




∞∑
n=1

Bn sin
nπx

c
for 0 < x < c,

0 for c < x < a,

(4.98a)

Hx = −1

Za
1

sin
πx

a
+

∞∑
n=1

An

Za
n

sin
nπx

a
= −

∞∑
n=1

Bn

Zc
n

sin
nπx

c
for 0 < x < c. (4.98b)

Equations (4.98a) and (4.98b) constitute a doubly infinite set of linear equations for the
modal coefficients An and Bn . We will first eliminate the Bn and then truncate the resulting
equation to a finite number of terms and solve for the An .

Multiplying (4.98a) by sin(mπx/a), integrating from x = 0 to a, and using the or-
thogonality relations from Appendix D yields

a

2
δm1 + a

2
Am =

∞∑
n=1

Bn Imn =
∞∑

k=1

Bk Imk, (4.99)

where

Imn =
∫ c

x=0
sin

mπx

a
sin

nπx

c
dx (4.100)

is an integral that can be easily evaluated, and

δmn =
{

1 if m = n
0 if m �= n

(4.101)

is the Kronecker delta symbol. Now solve (4.98b) for Bk by multiplying (4.98b) by
sin(kπx/c) and integrating from x = 0 to c. After using orthogonality relations, we ob-
tain

−1

Za
1

Ik1 +
∞∑

n=1

An

Za
n

Ikn = −cBk

2Zc
k

. (4.102)

Substituting Bk from (4.102) into (4.99) gives an infinite set of linear equations for the An ,
where m = 1, 2, . . . ,

a

2
Am +

∞∑
n=1

∞∑
k=1

2Zc
k Imk Ikn An

cZa
n

=
∞∑

k=1

2Zc
k Imk Ik1

cZa
1

− a

2
δm1. (4.103)

For numerical calculation we can truncate these summations to N terms, which will result
in N linear equations for the first N coefficients, An . For example, let N = 1. Then (4.103)
reduces to

a

2
A1 + 2Zc

1 I 2
11

cZa
1

A1 = 2Zc
1 I 2

11

cZa
1

− a

2
. (4.104)

Solving for A1 (the reflection coefficient of the incident TE10 mode) gives

A1 = Z� − Za
1

Z� + Za
1

for N = 1, (4.105)
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where Z� = 4Zc
1 I 2

11/ac, which looks like an effective load impedance to guide 1. Accuracy
is improved by using larger values of N and leads to a set of equations that can be written
in matrix form as

[Q][A] = [P], (4.106)

where [Q] is a square N × N matrix of coefficients,

Qmn = a

2
δmn +

N∑
k=1

2Zc
k Imk Ikn

cZa
n

, (4.107)

[P] is an N × 1 column vector of coefficients given by

Pm =
N∑

k=1

2Zc
k Imk Ik1

cZa
1

− a

2
δm1, (4.108)

and [A] is an N × 1 column vector of the coefficients An . After the An are found, the Bn

can be calculated from (4.102), if desired. Equations (4.106)–(4.108) lend themselves well
to computer implementation, and Figure 4.25 shows the results of such a calculation for
various matrix sizes.

If the width c of guide 2 is such that all modes are cut off (evanescent), then no real
power can be transmitted into guide 2, and all the incident power is reflected back into
guide 1. The evanescent fields on both sides of the discontinuity store reactive power,
however, which implies that the step discontinuity and guide 2 beyond the discontinuity
look like a reactance (in this case an inductive reactance) to an incident TE10 mode in
guide 1. Thus the equivalent circuit of the H-plane step looks like a shunt inductor at the
z = 0 plane of guide 1, as shown in Figure 4.22e. The equivalent reactance can be found
from the reflection coefficient A1 [after solving (4.106)] as

X = − j Za
1

1 + A1

1 − A1
. (4.109)

Figure 4.25 shows the normalized equivalent inductance versus the ratio of the guide
widths c/a for a free-space wavelength λ = 1.4a and for N = 1, 2, and 10 equations. The
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FIGURE 4.25 Equivalent inductance of an H-plane asymmetric step.
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modal analysis results are compared to data from reference [8]. Note that the solution con-
verges very quickly (because of the fast exponential decay of the higher order evanescent
modes), and that the result using just two modes is very close to the data of reference [8].

The fact that the H-plane step appears inductive is a result of the actual value of the
reflection coefficient, A1, but we can verify the inductive nature of the discontinuity by
computing the complex power flow into the evanescent modes on either side of the discon-
tinuity. For example, the complex power flow into guide 2 can be found as

P =
∫ c

x=0

∫ b

y=0
Ē × H̄∗

∣∣∣∣
z=0+

· ẑdxdy

= −b
∫ c

x=0
Ey H∗

x dx

= −b
∫ c

x=0

[ ∞∑
n=1

Bn sin
nπx

c

][
−

∞∑
m=1

B∗
m

Zc∗
m

sin
mπx

c

]
dx

= bc

2

∞∑
n=1

|Bn|2
Zc∗

n

= jbc

2k0η0

∞∑
n=1

|Bn|2|βc
n |, (4.110)

where the orthogonality property of the sine functions was used, as well as (4.95)–(4.97).
Equation (4.110) shows that the complex power flow into guide 2 is positive imaginary,
implying stored magnetic energy and an inductive reactance. A similar result can be de-
rived for the evanescent modes in guide 1; this is left as a problem.

POINT OF INTEREST: Microstrip Discontinuity Compensation

Because a microstrip circuit is easy to fabricate and allows the convenient integration of pas-
sive and active components, many types of microwave circuits and subsystems are made in
microstrip form. One problem with microstrip circuits (and other planar circuits) is that the
inevitable discontinuities at bends, step changes in widths, and junctions can cause degrada-
tion in circuit performance. This is because such discontinuities introduce parasitic reactances
that can lead to phase and amplitude errors, input and output mismatch, and possibly spurious
coupling or radiation. One approach for eliminating such effects is to construct an equivalent
circuit for the discontinuity (perhaps by measurement), including it in the design of the circuit,
and compensating for its effect by adjusting other circuit parameters (such as line lengths and
characteristic impedances, or tuning stubs). Another approach is to minimize the effect of a
discontinuity by compensating the discontinuity directly, often by chamfering or mitering the
conductor.

Consider the case of a bend in a microstrip line. The straightforward right-angle bend
shown below has a parasitic discontinuity capacitance caused by the increased conductor area
at the corner of the bend. This effect could be eliminated by making a smooth, “swept” bend
with a radius r ≥ 3W , but this takes up more space. Alternatively, the right-angle bend can be
compensated by mitering the corner, which has the effect of reducing the excess capacitance at
the bend. As shown later, this technique can be applied to bends of arbitrary angle. The optimum
value of the miter length, a, depends on the characteristic impedance and the bend angle, but
a value of a = 1.8W is often used in practice. The technique of mitering can also be used to
compensate step and T-junction discontinuities, as shown on the next page.
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Reference: T. C. Edwards, Foundations for Microwave Circuit Design, John Wiley & Sons, New York, 1981.

4.7 EXCITATION OF WAVEGUIDES—ELECTRIC
AND MAGNETIC CURRENTS

So far we have considered the propagation, reflection, and transmission of guided waves in
the absence of sources, but obviously the waveguide or transmission line must be coupled
to a generator or some other source of power. For TEM or quasi-TEM lines, there is usually
only one propagating mode that can be excited by a given source, although there may be
reactance (stored energy) associated with a given feed. In the waveguide case, it may be
possible for several propagating modes to be excited, along with evanescent modes that
store energy. In this section we will develop a formalism for determining the excitation
of a given waveguide mode due to an arbitrary electric or magnetic current source. This
theory can then be used to find the excitation and input impedance of probe and loop feeds
and, in the next section, to determine the excitation of waveguides by apertures.

Current Sheets That Excite Only One Waveguide Mode

Consider an infinitely long rectangular waveguide with a transverse sheet of electric surface
current density at z = 0, as shown in Figure 4.26. First assume that this current has x̂ and
ŷ components given as

J̄ TE
s (x, y) = −x̂

2A+
mnnπ

b
cos

mπx

a
sin

nπy

b
+ ŷ

2A+
mnmπ

a
sin

mπx

a
cos

nπy

b
. (4.111)

We will show that such a current excites a single TEmn waveguide mode traveling away
from the current source in both the +z and −z directions.
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FIGURE 4.26 An infinitely long rectangular waveguide with surface current densities at z = 0.
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From Table 3.2, the transverse fields for positive and negative traveling TEmn wave-
guide modes can be written as

E±
x = ZTE

(nπ

b

)
A±

mn cos
mπx

a
sin

nπy

b
e∓ jβz, (4.112a)

E±
y = −ZTE

(mπ

a

)
A±

mn sin
mπx

a
cos

nπy

b
e∓ jβz, (4.112b)

H±
x = ±

(mπ

a

)
A±

mn sin
mπx

a
cos

nπy

b
e∓ jβz, (4.112c)

H±
y = ±

(nπ

b

)
A±

mn cos
mπx

a
sin

nπy

b
e∓ jβz, (4.112d)

where the ± notation refers to waves traveling in the +z direction or −z direction with
amplitude coefficients A+

mn and A−
mn , respectively.

From (1.36) and (1.37), the following boundary conditions must be satisfied at z = 0:

(Ē+ − Ē−) × ẑ = 0, (4.113a)

ẑ × (H̄+ − H̄−) = J̄s . (4.113b)

Equation (4.112a) states that the transverse components of the electric field must be con-
tinuous at z = 0, which when applied to (4.112a) and (4.112b), gives

A+
mn = A−

mn . (4.114)

Equation (4.113b) states that the discontinuity in the transverse magnetic field is equal to
the electric surface current density. Thus, the surface current density at z = 0 must be

J̄s = ŷ
(
H+

x − H−
x

)− x̂
(
H+

y − H−
y

)

= −x̂
2A+

mnnπ

b
cos

mπx

a
sin

nπy

b
+ ŷ

2A+
mnmπ

a
sin

mπx

a
cos

nπy

b
, (4.115)

where (4.114) was used. This current is seen to be the same as the current of (4.111), which
shows, by the uniqueness theorem, that such a current will excite only the TEmn mode
propagating in each direction, since Maxwell’s equations and all boundary conditions are
satisfied.

The analogous electric current that excites only the TMmn mode can be shown to be

J̄ TM
s (x, y) = x̂

2B+
mnmπ

a
cos

mπx

a
sin

nπy

b
+ ŷ

2B+
mnnπ

b
sin

mπx

a
cos

nπy

b
. (4.116)

It is left as a problem to verify that this current excites TMmn modes that satisfy the appro-
priate boundary conditions.

Similar results can be derived for magnetic surface current sheets. From (1.36) and
(1.37) the appropriate boundary conditions are

(Ē+ − Ē−) × ẑ = M̄s, (4.117a)

ẑ × (H̄+ − H̄−) = 0. (4.117b)

For a magnetic current sheet at z = 0, the TEmn waveguide mode fields of (4.112) must
now have continuous Hx and Hy field components, due to (4.117b). This results in the
condition that

A+
mn = −A−

mn . (4.118)
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Then applying (4.117a) gives the source current as

M̄TE
s = −x̂2ZTE A+

mnmπ

a
sin

mπx

a
cos

nπy

b
− ŷ

2ZTE A+
mnnπ

b
cos

mπx

a
sin

nπy

b
.

(4.119)

The corresponding magnetic surface current that excites only the TMmn mode can be
shown to be

M̄TM
s = −x̂2B+

mnnπ

b
sin

mπx

a
cos

nπy

b
+ ŷ2B+

mnmπ

a
cos

mπx

a
sin

nπy

b
. (4.120)

These results show that a single waveguide mode can be selectively excited, to the exclu-
sion of all other modes, by either an electric or magnetic current sheet of the appropriate
form. In practice, however, such currents are difficult to generate and are usually only
approximated with one or two probes or loops. In this case many modes may be excited,
but usually most of these modes are evanescent.

Mode Excitation from an Arbitrary Electric
or Magnetic Current Source

We now consider the excitation of waveguide modes by an arbitrary electric or magnetic
current source [4]. With reference to Figure 4.27, first consider an electric current source
J̄ located between two transverse planes at z1 and z2, which generates the fields Ē+, H̄+
traveling in the +z direction, and the fields Ē−, H̄− traveling in the −z direction. These
fields can be expressed in terms of the waveguide modes as follows:

Ē+ =
∑

n

A+
n Ē+

n =
∑

n

A+
n (ēn + ẑezn)e− jβn z, z > z2, (4.121a)

H̄+ =
∑

n

A+
n H̄+

n =
∑

n

A+
n (h̄n + ẑhzn)e

− jβn z, z > z2, (4.121b)

Ē− =
∑

n

A−
n Ē−

n =
∑

n

A−
n (ēn − ẑezn)e jβn z, z < z1, (4.121c)

H̄− =
∑

n

A−
n H̄−

n =
∑

n

A−
n (−h̄n + ẑhzn)e jβn z, z < z1, (4.121d)

where the single index n is used to represent any possible TE or TM mode. For a given
current J̄ , we can determine the unknown amplitude A+

n by using the Lorentz reciprocity
theorem of (1.155) with M̄1 = M̄2 = 0 (since here we are only considering an electric
current source),

∮
S
(Ē1 × H̄2 − Ē2 × H̄1) · ds̄ =

∫
V
(Ē2 · J̄1 − Ē1 · J̄2)dv,

E–, H– E+, H+
J or M

z1 z2

V
z

FIGURE 4.27 An arbitrary electric or magnetic current source in an infinitely long waveguide.
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where S is a closed surface enclosing the volume V, and Ēi , H̄i are the fields due to the
current source J̄i (for i = 1 or 2).

To apply the reciprocity theorem to the present problem we let the volume V be the
region between the waveguide walls and the transverse cross-section planes at z1 and z2.
Then let Ē1 = Ē± and H̄1 = H̄±, depending on whether z ≥ z2 or z ≤ z1, and let Ē2, H̄2
be the nth waveguide mode traveling in the negative z direction:

Ē2 = Ē−
n = (ēn − ẑezn)e jβn z,

H̄2 = H̄−
n = (−h̄n + ẑhzn)e

jβn z .

Substitution into the above form of the reciprocity theorem gives, with J̄1 = J̄ and J̄2 = 0,∮
S
(Ē± × H̄−

n − Ē−
n × H̄±) · ds̄ =

∫
V

Ē−
n · J̄ dv. (4.122)

The portion of the surface integral over the waveguide walls vanishes because the tan-
gential electric field is zero there; that is, Ē × H̄ · ẑ = H̄ · (ẑ × Ē) = 0 on the waveguide
walls. This reduces the integration to the guide cross section, S0, at the planes z1 and z2. In
addition, the waveguide modes are orthogonal over the guide cross section:∫

S0

Ē±
m × H̄±

n · ds̄ =
∫

S0

(ēm ± ẑezn) × (±h̄n + ẑhzn) · ẑds

= ±
∫

S0

ēm × h̄n · ẑds = 0, for m �= n. (4.123)

Using (4.121) and (4.123) then reduces (4.122) to

A+
n

∫
z2

(Ē+
n × H̄−

n − Ē−
n × H̄+

n ) · ds̄ + A−
n

∫
z1

(Ē−
n × H̄−

n − Ē−
n × H̄−

n ) · ds̄

=
∫

V
Ē−

n · J̄ dv.

Because the second integral vanishes, this further reduces to

A+
n

∫
z2

[(ēn + ẑezn) × (−h̄n + ẑhzn) − (ēn − ẑezn) × (h̄n + ẑhzn)] · ẑds

= −2A+
n

∫
z2

ēn × h̄n · ẑds =
∫

V
Ē−

n · J̄ dv,

or

A+
n = −1

Pn

∫
V

Ē−
n · J̄ dv = −1

Pn

∫
V
(ēn − ẑezn) · J̄ e jβn zdv, (4.124)

where

Pn = 2
∫

S0

ēn × h̄n · ẑds (4.125)

is a normalization constant proportional to the power flow of the nth mode.
By repeating the above procedure with Ē2 = Ē+

n and H̄2 = H̄+
n , we can derive the

amplitude of the negatively traveling waves as

A−
n = −1

Pn

∫
V

Ē+
n · J̄ dv = −1

Pn

∫
V
(ēn + ẑezn) · J̄ e− jβn zdv. (4.126)
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These results are quite general, being applicable to any type of waveguide (includ-
ing planar lines such as stripline and microstrip), where modal fields can be defined. Ex-
ample 4.8 applies this theory to the problem of a probe-fed rectangular waveguide.

EXAMPLE 4.8 PROBE-FED RECTANGULAR WAVEGUIDE

For the probe-fed rectangular waveguide shown in Figure 4.28, determine the
amplitudes of the forward and backward traveling TE10 modes, and the input
resistance seen by the probe. Assume that the TE10 mode is the only propagating
mode.

Solution
If the current probe is assumed to have an infinitesimal diameter, the source vol-
ume current density J̄ can be written as

J̄ (x, y, z) = I0δ
(

x − a

2

)
δ(z)ŷ for 0 ≤ y ≤ b.

From Chapter 3 the TE10 modal fields can be written as

ē1 = ŷ sin
πx

a
,

h̄1 = −x̂

Z1
sin

πx

a
,

where Z1 = k0η0/β1 is the TE10 wave impedance. From (4.125) the normaliza-
tion constant P1 is

P1 = 2

Z1

∫ a

x=0

∫ b

y=0
sin2 πx

a
dxdy = ab

Z1
.

Then from (4.124) the amplitude A+
1 is

A+
1 = −1

P1

∫
V

sin
πx

a
e jβ1z I0δ

(
x − a

2

)
δ(z)dxdydz = −I0b

P1
= −Z1 I0

a
.

Similarly,

A−
1 = −Z1 I0

a
.

I0

xa

b

y

FIGURE 4.28 A uniform current probe in a rectangular waveguide.
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If the TE10 mode is the only propagating mode in the waveguide, then this mode
carries all of the average power, which can be calculated for real Z1 as

P = 1

2

∫
S0

Ē+ × H̄+∗ · ds̄ + 1

2

∫
S0

Ē− × H̄−∗ · ds̄

=
∫

S0

Ē+ × H̄+∗ · ds̄

=
∫ a

x=0

∫ b

y=0

|A+
1 |2

Z1
sin2 πx

a
dxdy

= ab|A+
1 |2

2Z1
.

If the input resistance seen looking into the probe is Rin, and the terminal current
is I0, then P = I 2

0 Rin/2, so that the input resistance is

Rin = 2P

I 2
0

= ab|A+
1 |2

I 2
0 Z1

= bZ1

a
,

which is real for real Z1 (corresponding to a propagating TE10 mode). ■

A similar derivation can be carried out for a magnetic current source M̄ (e.g., a small
loop). This source will also generate positively and negatively traveling waves, which can
be expressed as a superposition of waveguide modes, as in (4.121). For J̄1 = J̄2 = 0, the
reciprocity theorem of (1.155) reduces to

∮
S
(Ē1 × H̄2 − Ē2 × H̄1) · ds̄ =

∫
V
(H̄1 · M̄2 − H̄2 · M̄1)dv. (4.127)

By following the same procedure as for the electric current case, we can derive the excita-
tion coefficients of the nth waveguide mode as

A+
n = 1

Pn

∫
V

H̄−
n · M̄dv = 1

Pn

∫
V
(−h̄n + ẑhzn) · M̄e jβn zdv, (4.128)

A−
n = 1

Pn

∫
V

H̄+
n · M̄dv = 1

Pn

∫
V
(h̄n + ẑhzn) · M̄e− jβn zdv, (4.129)

where Pn is defined in (4.125).

4.8 EXCITATION OF WAVEGUIDES—APERTURE COUPLING

Besides the probe and loop feeds of the previous section, waveguides and other transmis-
sion lines can also be coupled through small apertures. One common application of such
coupling is in directional couplers and power dividers, where power from one guide is
coupled to another guide through small apertures in a common wall. Figure 4.29 shows
a variety of waveguide and other transmission line configurations in which aperture cou-
pling can be employed. We will first develop an intuitive explanation for the fact that a
small aperture can be represented as an infinitesimal electric and/or magnetic dipole, then
we will use the results of Section 4.7 to find the fields generated by these equivalent cur-
rents. Our analysis will be somewhat phenomenological [4, 10]; a more advanced theory
of aperture coupling based on the equivalence theorem can be found in reference [11].
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Coupling aperture

Coupling
aperture Ground

plane

Waveguide

Stripline

Microstrip
1

Microstrip 2

Waveguide
1

Feed
waveguide

Cavity

Waveguide
2

(a) (b)

(d)(c)

�r

�r
�r

FIGURE 4.29 Various waveguide and other transmission line configurations using aperture cou-
pling. (a) Coupling between two waveguides via an aperture in the common broad
wall. (b) Coupling to a waveguide cavity via an aperture in a transverse wall.
(c) Coupling between two microstrip lines via an aperture in the common ground
plane. (d) Coupling from a waveguide to a stripline via an aperture.

Consider Figure 4.30a, which shows the normal electric field lines near a conducting
wall (the tangential electric field is zero near the wall). If a small aperture is cut into the
conductor, the electric field lines will fringe through and around the aperture as shown
in Figure 4.30b. Now consider Figure 4.30c, which shows the fringing field lines around
two infinitesimal electric polarization currents, P̄e, normal to a conducting wall (without

(a)

(d)

H

n

(c)(b)

E Pe

Pm

(e) (f)

n

ˆ

ˆ

FIGURE 4.30 Illustrating the development of equivalent electric and magnetic polarization cur-
rents at an aperture in a conducting wall. (a) Normal electric field at a conducting
wall. (b) Electric field lines around an aperture in a conducting wall. (c) Elec-
tric field lines around electric polarization currents normal to a conducting wall.
(d) Magnetic field lines near a conducting wall. (e) Magnetic field lines near an
aperture in a conducting wall. (f) Magnetic field lines near magnetic polarization
currents parallel to a conducting wall.
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an aperture). The similarity of the field lines of Figures 4.30c and 4.30b suggests that an
aperture excited by a normal electric field can be represented by two oppositely directed
infinitesimal electric polarization currents, P̄e, normal to the closed conducting wall. The
strength of this polarization current is proportional to the normal electric field; thus,

P̄e = ε0αen̂Enδ(x − x0)δ(y − y0)δ(z − z0), (4.130)

where the proportionality constant αe is defined as the electric polarizability of the aper-
ture, and (x0, y0, z0) are the coordinates of the center of the aperture.

Similarly, Figure 4.30e shows the fringing of tangential magnetic field lines (the nor-
mal magnetic field is zero at the conductor) near a small aperture. Because these field lines
are similar to those produced by two magnetic polarization currents located parallel to
the conducting wall (as shown in Figure 4.30f), we can conclude that the aperture can be
replaced by two oppositely directed infinitesimal polarization currents, P̄m , where

P̄m = −αm H̄tδ(x − x0)δ(y − y0)δ(z − z0). (4.131)

In (4.131), αm is defined as the magnetic polarizability of the aperture.
The electric and magnetic polarizabilities are constants that depend on the size and

shape of the aperture and have been derived for a variety of simple shapes [3, 10, 11].
The polarizabilities for circular and rectangular apertures, which are probably the most
commonly used shapes, are given in Table 4.3.

We now show that the electric and magnetic polarization currents, P̄e and P̄m , can be
related to electric and magnetic current sources, J̄ and M̄ , respectively. From Maxwell’s
equations (1.27a) and (1.27b) we have


 × Ē = − jωµH̄ − M̄, (4.132a)


 × H̄ = jωε Ē + J̄. (4.132b )

Then using (1.15) and (1.23), which define P̄e and P̄m , we obtain


 × Ē = − jωµ0 H̄ − jωµ0 P̄m − M̄, (4.133a)


 × H̄ = jωε0 Ē + jω P̄e + J̄. (4.133b)

Thus, since M̄ has the same role in these equations as jωµ0 P̄m , and J̄ has the same role
as jω P̄e, we can define equivalent currents as

J̄ = jω P̄e, (4.134a)

M̄ = jωµ0 P̄m . (4.134b)

These results allow us to use the formulas of (4.124), (4.126), (4.128), and (4.129) to
compute the fields from these currents.

TABLE 4.3 Electric and Magnetic Polarizations

Aperture Shape αe αm

Round hole
2r3

0
3

4r3
0

3

Rectangular slot
π�d2

16

π�d2

16
(H̄ across slot)
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The above theory is approximate because of various assumptions involved in the evaluation
of the polarizabilities, but generally it gives reasonable results for apertures that are small (where
the term small implies small relative to an electrical wavelength), and not located too close to
edges or corners of the guide. In addition, it is important to realize that the equivalent dipoles
given by (4.130) and (4.131) radiate in the presence of the conducting wall to give the fields
transmitted through the aperture. The fields on the input side of the conducting wall are also
affected by the presence of the aperture, and this effect is accounted for by the equivalent dipoles
on the incident side of the conductor (which are the negative of those on the output side). In this
way, continuity of tangential fields is preserved across the aperture. In both cases, the presence
of the (closed) conducting wall can be accounted for by using image theory to remove the wall
and double the strength of the dipoles. These details will be clarified by applying this theory to
apertures in transverse and broad walls of waveguides.

Coupling Through an Aperture in a Transverse Waveguide Wall

Consider a small circular aperture centered in the transverse wall of a waveguide, as shown
in Figure 4.31a. Assume that only the TE10 mode propagates in the guide, and is incident
on the transverse wall from z < 0. Then, if the aperture is assumed to be closed, as in
Figure 4.31b, the standing wave fields in the region z < 0 can be written as

Ey = A
(
e− jβz − e jβz) sin

πx

a
, (4.135a)

Hx = −A

Z10

(
e− jβz + e jβz) sin

πx

a
, (4.135b)

where β and Z10 are the propagation constant and wave impedance of the TE10 mode. From
(4.130) and (4.131) we can determine the equivalent electric and magnetic polarization
currents from the above fields as

P̄e = ẑε0αe Ezδ
(

x − a

2

)
δ

(
y − b

2

)
δ(z) = 0, (4.136a)

P̄m = −x̂αm Hxδ
(

x − a

2

)
δ

(
y − b

2

)
δ(z)

= x̂
2Aαm

Z10
δ
(

x − a

2

)
δ

(
y − b

2

)
δ(z), (4.136b)

since Ez = 0 for a TE mode. Now, by (4.134b), the magnetic polarization current P̄m is
equivalent to the magnetic current density

M̄ = jωµ0 P̄m = x̂
2 jωµ0 Aαm

Z10
δ
(

x − a

2

)
δ

(
y − b

2

)
δ(z). (4.137)

As shown in Figure 4.31d, the fields scattered by the aperture are considered as being
produced by the equivalent currents P̄m and −P̄m on either side of the closed wall. The
presence of the conducting wall is easily accounted for using image theory, which has
the effect of doubling the dipole strengths and removing the wall, as depicted in Figure
4.31e (for z < 0) and Figure 4.31f (for z > 0). Thus the coefficients of the transmitted and
reflected waves caused by the equivalent aperture currents can be found by using (4.137)
in (4.128) and (4.129) to give

A+
10 = −1

P10

∫
h̄10 · (2 jωµ0 P̄m)dv = 4 j Aωµ0αm

abZ10
= 4 j Aβαm

ab
, (4.138a)

A−
10 = −1

P10

∫
h̄10 · (−2 jωµ0 P̄m)dv = 4 j Aωµ0αm

abZ10
= 4 j Aβαm

ab
, (4.138b)
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(e)

(d)

(c)

(b)

(a)

–2Pm

(f)

y

y

2Pm

Pm–Pm

y

z z

z

E–, H–

E–

H–

E+, H+

E+, H+

y

z

z

z xa

y
b

b/2

a/20

E + E–

H + H–

E, H

E+, H+

y

y

2r0

FIGURE 4.31 Applying small-hole coupling theory and image theory to the problem of an aper-
ture in the transverse wall of a waveguide. (a) Geometry of a circular aperture in
the transverse wall of a waveguide. (b) Fields with aperture closed. (c) Fields with
aperture open. (d) Fields with aperture closed and replaced with equivalent dipoles.
(e) Fields radiated by equivalent dipoles for z < 0; wall removed by image theory.
(f) Fields radiated by equivalent dipoles for z > 0; wall removed by image theory.

since h̄10 = (−x̂/Z10) sin(πx/a), and P10 = ab/Z10. The magnetic polarizability αm is
given in Table 4.3. The complete fields can now be written as

Ey = [
Ae− jβz + (A−

10 − A)e jβz] sin
πx

a
, for z < 0, (4.139a)

Hx = 1

Z10
[−Ae− jβz + (A−

10 − A)e jβz] sin
πx

a
, for z < 0, (4.139b)

and

Ey = A+
10e− jβz sin

πx

a
, for z > 0, (4.140a)

Hx = −A+
10

Z10
e− jβz sin

πx

a
, for z > 0. (4.140b)
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jB Z10Z10

z = 0 z

FIGURE 4.32 Equivalent circuit of the aperture in a transverse waveguide wall.

Then the reflection and transmission coefficients can be found as

� = A−
10 − A

A
= 4 jβαm

ab
− 1, (4.141a)

T = A+
10

A
= 4 jβαm

ab
, (4.141b )

since Z10 = k0η0/β. Note that |�| > 1; this physically unrealizable result (for a passive
network) is an artifact of the approximations used in the above theory. An equivalent circuit
for this problem can be obtained by comparing the reflection coefficient of (4.141a) with
that of the transmission line with a normalized shunt susceptance, jB, shown in Figure 4.32.
The reflection coefficient seen looking into this line is

� = 1 − yin

1 + yin
= 1 − (1 + jB)

1 + (1 + jB)
= −jB

2 + jB
.

If the shunt susceptance is very large (low impedance), � can be approximated as

� = −1

1 + (2/jB)
� −1 − j

2

B
.

Comparison with (4.141a) suggests that the aperture is equivalent to a normalized inductive
susceptance,

B = −ab

2βαm
.

Coupling Through an Aperture in the Broad Wall of a Waveguide

Another common configuration for aperture coupling is shown in Figure 4.33, where two
parallel waveguides share a common broad wall and are coupled with a small centered
aperture. We will assume a TE10 mode incident from z < 0 in the lower guide (guide 1),

4 3

21

xz a

zy

b

2b

a/20

FIGURE 4.33 Two parallel waveguides coupled through an aperture in a common broad wall.
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and compute the fields coupled to the upper guide. The incident fields can be written as

Ey = A sin
πx

a
e− jβz, (4.142a)

Hx = −A

Z10
sin

πx

a
e− jβz . (4.142b)

The excitation field at the center of the aperture at (x = a/2, y = b, z = 0) is

Ey = A, (4.143a)

Hx = −A

Z10
. (4.143b)

(If the aperture were not centered at x = a/2, the Hz field would be nonzero and would
have to be included.)

From (4.130), (4.131), and (4.134), the equivalent electric and magnetic dipoles for
coupling to the fields in the upper guide are

Jy = jωε0αe Aδ
(

x − a

2

)
δ(y − b)δ(z), (4.144a)

Mx = jωµ0αm A

Z10
δ
(

x − a

2

)
δ(y − b)δ(z). (4.144b)

Note that in this case we have excited both an electric and a magnetic dipole. Let the fields
in the upper guide be expressed as

E−
y = A− sin

πx

a
e+ jβz for z < 0, (4.145a)

H−
x = A−

Z10
sin

πx

a
e+ jβz for z < 0, (4.145b)

E+
y = A+ sin

πx

a
e− jβz for z > 0, (4.146a)

H+
x = −A+

Z10
sin

πx

a
e− jβz for z > 0, (4.146b)

where A+, A− are the unknown amplitudes of the forward and backward traveling waves
in the upper guide, respectively.

By superposition, the total fields in the upper guide due to the electric and magnetic
currents of (4.144) can be found from (4.124) and (4.128) for the forward wave as

A+ = −1

P10

∫
V

(
E−

y Jy − H−
x Mx

)
dv = − jωA

P10

(
ε0αe − µ0αm

Z2
10

)
, (4.147a)

and from (4.126) and (4.129) for the backward wave as

A− = −1

P10

∫
V

(
E+

y Jy − H+
x Mx

)
dv = − jωA

P10

(
ε0αe + µ0αm

Z2
10

)
, (4.147b)

where P10 = ab/Z10. Note that the electric dipole excites the same fields in both direc-
tions, but the magnetic dipole excites oppositely polarized fields in the forward and back-
ward directions.
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PROBLEMS

4.1 Consider the reflection of a TE10 mode, incident from z < 0, at a step change in the height of a
rectangular waveguide, as shown below. Show that if the method of Example 4.2 is used, the result
� = 0 is obtained. Do you think this is the correct solution? Why? (This problem shows that the
one-mode impedance viewpoint does not always provide a correct analysis.)

y

x

z

a

b

z = 0

b/2

4.2 Consider a series RLC circuit with a current I . Calculate the power lost and the stored electric and
magnetic energies, and show that the input impedance can be expressed as in (4.17).

4.3 Show that the input impedance Z of a parallel RLC circuit satisfies the condition that Z(−ω) =
Z∗(ω).

4.4 A two-port network is driven at both ports such that the port voltages and currents have the following
values (Z0 = 50 �):

V1 = 10� 90◦, I1 = 0.2� 90◦,
V2 = 8� 0◦, I2 = 0.16� −90◦.

Determine the input impedance seen at each port, and find the incident and reflected voltages at each
port.
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4.5 Show that the admittance matrix of a lossless N-port network has purely imaginary elements.

4.6 Does a nonreciprocal lossless network always have a purely imaginary impedance matrix?

4.7 Derive the [Z ] and [Y ] matrices for the two-port networks shown in the figure below.

(a) (b)

Port
1

Port
2

Port
1

Port
2ZA YB

YA YA

ZA

ZB

4.8 Consider a two-port network, and let Z (1)
SC , Z (2)

SC , Z (1)
OC, and Z (2)

OC be the input impedance seen
when port 2 is short-circuited, when port 1 is short-circuited, when port 2 is open-circuited, and
when port 1 is open-circuited, respectively. Show that the impedance matrix elements are given by

Z11 = Z (1)
OC, Z22 = Z (2)

OC, Z2
12 = Z2

21 =
(

Z (1)
OC − Z (1)

SC

)
Z (2)

OC.

4.9 Find the impedance parameters of a section of transmission line with length �, characteristic
impedance Z0, and propagation constant β.

4.10 Show that the admittance matrix of the two parallel-connected two-port π networks shown below
can be found by adding the admittance matrices of the individual two-ports. Apply this result to
find the admittance matrix of the bridged-T circuit shown. What is the corresponding result for the
impedance matrix of two series-connected T-networks?

4.11 Find the scattering parameters for the series and shunt loads shown below. Show that S12 = 1 − S11
for the series case, and that S12 = 1 + S11 for the shunt case. Assume a characteristic impedance
Z0.

Port
1

Port
2

Z
Port

1
Port

2Z

4.12 Consider two two-port networks with individual scattering matrices [S A] and [SB ]. Show that the
overall S21 parameter of the cascade of these networks is given by

S21 = S A
21SB

21

1 − S A
22SB

11

.

4.13 Consider a lossless two-port network. (a) If the network is reciprocal, show that |S21|2 = 1 − |S11|2.
(b) If the network is nonreciprocal, show that it is impossible to have unidirectional transmission,
where S12 = 0 and S21 �= 0.
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4.14 A four-port network has the scattering matrix shown as follows. (a) Is this network lossless? (b) Is
this network reciprocal? (c) What is the return loss at port 1 when all other ports are terminated with
matched loads? (d) What is the insertion loss and phase delay between ports 2 and 4 when all other
ports are terminated with matched loads? (e) What is the reflection coefficient seen at port 1 if a short
circuit is placed at the terminal plane of port 3 and all other ports are terminated with matched loads?

[S] =




0.178� 90◦ 0.6� 45◦ 0.4� 45◦ 0
0.6� 45◦ 0 0 0.3� −45◦
0.4� 45◦ 0 0 0.5� −45◦

0 0.3� −45◦ 0.5� −45◦ 0


.

4.15 Show that it is impossible to construct a three-port network that is lossless, reciprocal, and matched
at all ports. Is it possible to construct a nonreciprocal three-port network that is lossless and matched
at all ports?

4.16 Prove the following decoupling theorem: For any lossless reciprocal three-port network, one port (say
port 3) can be terminated in a reactance so that the other two ports (say ports 1 and 2) are decoupled
(no power flow from port 1 to port 2, or from port 2 to port 1).

4.17 A certain three-port network is lossless and reciprocal, and has S13 = S23 and S11 = S22. Show that
if port 2 is terminated with a matched load, then port 1 can be matched by placing an appropriate
reactance at port 3.

4.18 A four-port network has the scattering matrix shown as follows. If ports 3 and 4 are connected with
a lossless matched transmission line with an electrical length of 45◦, find the resulting insertion loss
and phase delay between ports 1 and 2.

[S] =




0.2� 50◦ 0 0 0.4 � −45◦
0 0.6� 45◦ 0.7� −45◦ 0
0 0.7 � −45◦ 0.6� 45◦ 0

0.4� −45◦ 0 0 0.5� 45◦


.

4.19 When normalized to a single characteristic impedance Z0, a certain two-port network has scatter-
ing parameters Si j . Find the generalized scattering parameters, S p

i j , in terms of the real reference
impedances, R01 and R02, at ports 1 and 2, respectively.

4.20 At reference plane A, for the circuit shown below, choose an appropriate reference impedance, find
the power wave amplitudes, and compute the power delivered to the load. Repeat this procedure for
reference plane B. Assume the transmission line is lossless.

Z0 = 70.7 Ω30 V

A B

100 Ω

100 Ω l = ��4

4.21 The ABCD parameters of the first entry in Table 4.1 were derived in Example 4.6. Verify the ABCD
parameters for the second, third, and fourth entries.

4.22 Derive expressions that give the impedance parameters in terms of the ABCD parameters.

4.23 Find the ABCD matrix for the circuit shown below by direct calculation using the definition of the
ABCD matrix, and compare with the ABCD matrix of the appropriate cascade of canonical circuits
from Table 4.1.
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4.24 Use ABCD matrices to find the voltage VL across the load resistor in the circuit shown below.

VLZ 0 = 50 Ω

50 Ω 90°

3 0° ZL = 25 Ω
�

�

1 : 2

V

4.25 A reciprocal two-port network with its ABCD matrix is shown below at left. Prove that the network
with ports 1 and 2 in reversed positions has the ABCD matrix shown below at right. Choose a simple
asymmetrical network to demonstrate this result.

Port
1

Port
2

D

C

B

A

2 1Port
1

Port
2

A

C

B

D

1 2

4.26 Derive the expressions for S parameters in terms of the ABCD parameters, as given in Table 4.2.

4.27 As shown in the figure below, a variable attenuator can be implemented using a four-port 90◦ hybrid
coupler by terminating ports 2 and 3 with equal but adjustable loads. (a) Using the given scattering
matrix for the coupler, show that the transmission coefficient between the input (port 1) and the
output (port 4) is given as T = j�, where � is the reflection coefficient of the mismatch at ports 2
and 3. Also show that the input port is matched for all values of �. (b) Plot the attenuation, in dB,
from the input to the output as a function of ZL/Z0, for 0 ≤ ZL/Z0 ≤ 10 (let ZL be real).

Port 1

Port 4

Port 2

Port 3

ZL

ZL
Γ

Γ

[S ]

[S ] = �1–
2

90°
Hybrid

In

Out
√–

0
j
1
0

j
0
0
1

1
0
0
j

0
1
j
0

4.28 Use signal flow graphs to find the power ratios P2/P1 and P3/P1 for the mismatched three-port
network shown in the accompanying figure.

Port
2

Port
1

Port
3

P1

P2

P3
Γ3

Γ2

[S ] =
0   S12   0

S12   0   S23
0   S23   0

4.29 The ABCD parameters are useful for treating cascades of two-port networks in terms of the total port
voltages and currents, but it is also possible to use incident and reflected voltages to treat cascades.
One way of doing this is with the transfer, or T-, parameters, defined as follows:

[
a1
b1

]
=
[

T11 T12
T21 T22

] [
b2
a2

]
,
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where a1, b1 and a2, b2 are the incident and reflected voltages at ports 1 and 2, respectively. Derive
the T-parameters in terms of the scattering parameters of a two-port network. Show how the
T-parameters can be used for a cascade of two two-port networks.

4.30 The end of an open-circuited microstrip line has fringing fields that can be modeled as a shunt capac-
itor, Cf , at the end of the line, as shown below. This capacitance can be replaced with an additional
length, �, of microstrip line. Derive an expression for the length extension in terms of the fringing
capacitance. Evaluate the length extension for a 50 � open-circuited microstrip line on a substrate
with d = 0.158 cm and εr = 2.2 (w = 0.487 cm, εe = 1.894), if the fringing capacitance is known to
be Cf = 0.075 pF. Compare your result with the approximation given by Hammerstad and Bekkadal:

� = 0.412d

(
εe + 0.3

εe − 0.258

) (
w + 0.262d

w + 0.813d

)
.

CfZ0 Z0 O.C.

�

4.31 For the H-plane step analysis of Section 4.6, compute the complex power flow in the reflected modes
in guide 1, and show that the reactive power is inductive.

4.32 Derive the modal analysis equations for the symmetric H-plane step shown below. (HINT: Because
of symmetry, only the TEn0 modes for n odd will be excited.)

z

x

y

0

y

b

ac x

4.33 Find the transverse Ē and H̄ fields excited by the current of (4.116) by postulating traveling TMmn
modes on either side of the source at z = 0 and applying the appropriate boundary conditions.

4.34 An infinitely long rectangular waveguide is fed with a probe of length d as shown below. The current
on this probe can be approximated as I (y) = I0 sin k(d − y)/ sin kd . If the TE10 mode is the only
propagating mode in the waveguide, compute the input resistance seen at the probe terminals.

y

b

a

d

a/2

x



c04MicrowaveNetworkAnalysis Pozar July 30, 2011 12:0

Problems 227

4.35 Consider the infinitely long waveguide fed with two probes driven 180◦ out of phase, as shown below.
What are the resulting excitation coefficients for the TE10 and TE20 modes? What other modes can
be excited by this feeding arrangement?

y

b

a

I I

a/4 a/4

x

4.36 Consider a small current loop on the sidewall of a rectangular waveguide, as shown below. Find the
TE10 fields excited by this loop if the loop is of radius r0.

y

b

I0r0

a x

4.37 A rectangular waveguide is shorted at z = 0 and has an electric current sheet, Jsy , located at z = d,
where

Jsy = 2π A

a
sin

πx

a

(see the accompanying figure). Find expressions for the fields generated by this current by assuming
standing wave fields for 0 < z < d, and traveling wave fields for z > d, and applying boundary
conditions at z = 0 and z = d. Now solve the problem using image theory, by placing a current
sheet −Jsy at z = −d, and removing the shorting wall at z = 0. Use the results of Section 4.7 and
superposition to find the fields radiated by these two currents, which should be the same as the first
results for z > 0.

y

0

Jsy

ad z
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C h a p t e r F i v e

Impedance Matching
and Tuning

This chapter marks a turning point, in that we now begin to apply the theory and tech-
niques of previous chapters to practical problems in microwave engineering. We start with the
topic of impedance matching, which is often an important part of a larger design process for
a microwave component or system. The basic idea of impedance matching is illustrated in
Figure 5.1, which shows an impedance matching network placed between a load impedance
and a transmission line. The matching network is ideally lossless, to avoid unnecessary loss of
power, and is usually designed so that the impedance seen looking into the matching network
is Z0. Then reflections will be eliminated on the transmission line to the left of the matching
network, although there will usually be multiple reflections between the matching network and
the load. This procedure is sometimes referred to as tuning. Impedance matching or tuning is
important for the following reasons:

� Maximum power is delivered when the load is matched to the line (assuming the gener-
ator is matched), and power loss in the feed line is minimized.

� Impedance matching sensitive receiver components (antenna, low-noise amplifier, etc.)
may improve the signal-to-noise ratio of the system.

� Impedance matching in a power distribution network (such as an antenna array feed
network) may reduce amplitude and phase errors.

As long as the load impedance, ZL , has a positive real part, a matching network can always
be found. Many choices are available, however, and we will discuss the design and performance
of several types of practical matching networks. Factors that may be important in the selection
of a particular matching network include the following:

� Complexity—As with most engineering solutions, the simplest design that satisfies the
required specifications is generally preferable. A simpler matching network is usually
cheaper, smaller, more reliable, and less lossy than a more complex design.

� Bandwidth—Any type of matching network can ideally give a perfect match (zero
reflection) at a single frequency. In many applications, however, it is desirable to match
a load over a band of frequencies. There are several ways of doing this, with, of course,
a corresponding increase in complexity.

228
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Z0
Matching
network

Load
ZL

FIGURE 5.1 A lossless network matching an arbitrary load impedance to a transmission line.

� Implementation—Depending on the type of transmission line or waveguide being used,
one type of matching network may be preferable to another. For example, tuning
stubs are much easier to implement in waveguide than are multisection quarter-wave
transformers.

� Adjustability—In some applications the matching network may require adjustment to
match a variable load impedance. Some types of matching networks are more amenable
than others in this regard.

5.1 MATCHING WITH LUMPED ELEMENTS (L NETWORKS)

Probably the simplest type of matching network is the L-section, which uses two reac-
tive elements to match an arbitrary load impedance to a transmission line. There are two
possible configurations for this network, as shown in Figure 5.2. If the normalized load
impedance, zL = ZL/Z0, is inside the 1 + j x circle on the Smith chart, then the circuit
of Figure 5.2a should be used. If the normalized load impedance is outside the 1 + j x cir-
cle on the Smith chart, the circuit of Figure 5.2b should be used. The 1 + j x circle is the
resistance circle on the impedance Smith chart for which r = 1.

In either of the configurations of Figure 5.2, the reactive elements may be either induc-
tors or capacitors, depending on the load impedance. Thus, there are eight distinct possibil-
ities for the matching circuit for various load impedances. If the frequency is low enough
and/or the circuit size is small enough, actual lumped-element capacitors and inductors can
be used. This may be feasible for frequencies up to about 1 GHz or so, although modern
microwave integrated circuits may be small enough such that lumped elements can be used
at higher frequencies as well. There is, however, a large range of frequencies and circuit
sizes where lumped elements may not be realizable. This is a limitation of the L-section

Z0

jX

ZL

(a) (b)

jB

jX

ZLjB

FIGURE 5.2 L-section matching networks. (a) Network for zL inside the 1 + j x circle. (b) Net-
work for zL outside the 1 + j x circle.
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matching technique. We will first derive analytic expressions for the matching network
elements of the two cases in Figure 5.2, and then illustrate an alternative design procedure
using the Smith chart.

Analytic Solutions

Although we will discuss a simple graphical solution using the Smith chart, it is also useful
to have simple expressions for the L-section matching network components. These expres-
sions can be used in a computer-aided design program for L-section matching, or when it
is necessary to have more accuracy than the Smith chart can provide.

Consider first the circuit of Figure 5.2a, and let ZL = RL + j X L . We stated that this
circuit would be used when zL = ZL/Z0 is inside the 1 + j x circle on the Smith chart,
which implies that RL > Z0 for this case. The impedance seen looking into the matching
network, followed by the load impedance, must be equal to Z0 for an impedance-matched
condition:

Z0 = j X + 1

j B + 1/(RL + j X L)
. (5.1)

Rearranging and separating into real and imaginary parts gives two equations for the two
unknowns, X and B:

B(X RL − X L Z0) = RL − Z0, (5.2a)

X (1 − B X L) = B Z0 RL − X L . (5.2b)

Solving (5.2a) for X and substituting into (5.2b) gives a quadratic equation for B. The
solution is

B =
X L ± √

RL/Z0

√
R2

L + X2
L − Z0 RL

R2
L + X2

L

. (5.3a)

Note that since RL > Z0, the argument of the second square root is always positive. Then
the series reactance can be found as

X = 1

B
+ X L Z0

RL
− Z0

B RL
. (5.3b)

Equation (5.3a) indicates that two solutions are possible for B and X . Both of these
solutions are physically realizable since both positive and negative values of B and X are
possible (positive X implies an inductor and negative X implies a capacitor, while positive
B implies a capacitor and negative B implies an inductor). One solution, however, may
result in significantly smaller values for the reactive components, or may be the preferred
solution if the bandwidth of the match is better, or if the SWR on the line between the
matching network and the load is smaller.

Next consider the circuit of Figure 5.2b. This circuit is used when zL is outside the
1 + j x circle on the Smith chart, which implies that RL < Z0. The admittance seen look-
ing into the matching network, followed by the load impedance, must be equal to 1/Z0 for
an impedance-matched condition:

1

Z0
= j B + 1

RL + j (X + X L)
. (5.4)
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Rearranging and separating into real and imaginary parts gives two equations for the two
unknowns, X and B:

B Z0(X + X L) = Z0 − RL , (5.5a)

(X + X L) = B Z0 RL . (5.5b)

Solving for X and B gives

X = ±√
RL(Z0 − RL) − X L , (5.6a)

B = ±
√

(Z0 − RL)/RL

Z0
. (5.6b)

Because RL < Z0, the arguments of the square roots are always positive. Again, note that
two solutions are possible.

In order to match an arbitrary complex load to a line of characteristic impedance Z0,
the real part of the input impedance to the matching network must be Z0, while the imag-
inary part must be zero. This implies that a general matching network must have at least
two degrees of freedom; in the L-section matching circuit these two degrees of freedom
are provided by the values of the two reactive components.

Smith Chart Solutions

Instead of the above formulas, the Smith chart can be used to quickly and accurately design
L-section matching networks. The procedure is best illustrated by an example.

EXAMPLE 5.1 L-SECTION IMPEDANCE MATCHING

Design an L-section matching network to match a series RC load with an impedance
ZL = 200 − j100 � to a 100 � line at a frequency of 500 MHz.

Solution
The normalized load impedance is zL = 2 − j1, which is plotted on the Smith
chart of Figure 5.3a. This point is inside the 1 + j x circle, so we use the match-
ing circuit of Figure 5.2a. Because the first element from the load is a shunt sus-
ceptance, it makes sense to convert to admittance by drawing the SWR circle
through the load, and a straight line from the load through the center of the chart,
as shown in Figure 5.3a. After we add the shunt susceptance and convert back
to impedance, we want to be on the 1 + j x circle so that we can add a series
reactance to cancel j x and match the load. This means that the shunt suscep-
tance must move us from yL to the 1 + j x circle on the admittance Smith chart.
Thus, we construct the rotated 1 + j x circle as shown in Figure 5.3a (center at
r = 0.333). (A combined ZY chart may be convenient to use here, if it is not too
confusing.) Then we see that adding a susceptance of jb = j0.3 will move us
along a constant-conductance circle to y = 0.4 + j0.5 (this choice is the short-
est distance from yL to the shifted 1 + j x circle). Converting back to impedance
leaves us at z = 1 − j1.2, indicating that a series reactance of x = j1.2 will bring
us to the center of the chart. For comparison, the formulas (5.3a) and (5.3b) give
the solution as b = 0.29, x = 1.22.
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This matching circuit consists of a shunt capacitor and a series inductor,
as shown in Figure 5.3b. For a matching frequency of 500 MHz, the capacitor
has a value of

C = b

2π f Z0
= 0.92 pF,

and the inductor has a value of

L = x Z0

2π f
= 38.8 nH.

It is also interesting to look at the second solution to this matching problem. If
instead of adding a shunt susceptance of b = 0.3, we use a shunt susceptance of
b = −0.7, we will move to a point on the lower half of the shifted 1 + j x circle,
to y = 0.4 − j0.5. Then converting to impedance and adding a series reactance of
x = −1.2 leads to a match as well. Formulas (5.3a) and (5.3b) give this solution as
b = −0.69, x = −1.22. This matching circuit is also shown in Figure 5.3b, and
is seen to have the positions of the inductor and capacitor reversed from the first
matching network. At a frequency of f = 500 MHz, the capacitor has a value of

C = −1

2π f x Z0
= 2.61 pF,
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FIGURE 5.3 Solution to Example 5.1. (a) Smith chart for the L-section matching networks.
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FIGURE 5.3 Continued. (b) The two possible L-section matching circuits. (c) Reflection coeffi-
cient magnitudes versus frequency for the matching circuits of (b).

while the inductor has a value of

L = −Z0

2π f b
= 46.1 nH.

Figure 5.3c shows the reflection coefficient magnitude versus frequency for these
two matching networks, assuming that the load impedance of ZL = 200 − j100 �

at 500 MHz consists of a 200 � resistor and a 3.18 pF capacitor in series. There
is not a substantial difference in bandwidth for these two solutions. ■

POINT OF INTEREST: Lumped Elements for Microwave Integrated Circuits

Lumped R, L , and C elements can be practically realized at microwave frequencies if the
length, �, of the component is very small relative to the operating wavelength. Over a limited
range of values, such components can be used in hybrid and monolithic microwave integrated
circuits at frequencies up to 60 GHz, or higher, if the condition that � < λ/10 is satisfied.
Usually, however, the characteristics of such an element are far from ideal, requiring that un-
desirable effects such as parasitic capacitance and/or inductance, spurious resonances, fringing
fields, loss, and perturbations caused by a ground plane be incorporated in the design via a CAD
model (see the Point of Interest concerning CAD).
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Lossy film

Lossy film

Planar resistor

Interdigital
gap capacitor

Chip resistor

Dielectric

Metal-insulator-
metal capacitor

Loop inductor Spiral inductor

Chip capacitor

εr εr

Air
bridge

Resistors are fabricated with thin films of lossy material such as nichrome, tantalum nitride,
or doped semiconductor material. In monolithic circuits such films can be deposited or grown,
whereas chip resistors made from a lossy film deposited on a ceramic chip can be bonded or
soldered in a hybrid circuit. Low resistances are hard to obtain.

Small values of inductance can be realized with a short length or loop of transmission
line, and larger values (up to about 10 nH) can be obtained with a spiral inductor, as shown
in the following figures. Larger inductance values generally incur more loss and more shunt
capacitance; this leads to a resonance that limits the maximum operating frequency.

Capacitors can be fabricated in several ways. A short transmission line stub can provide
a shunt capacitance in the range of 0–0.1 pF. A single gap, or an interdigital set of gaps, in
a transmission line can provide a series capacitance up to about 0.5 pF. Greater values (up to
about 25 pF) can be obtained using a metal-insulator-metal sandwich in either monolithic or
chip (hybrid) form.

5.2 SINGLE-STUB TUNING

Another popular matching technique uses a single open-circuited or short-circuited length
of transmission line (a stub) connected either in parallel or in series with the transmission
feed line at a certain distance from the load, as shown in Figure 5.4. Such a single-stub
tuning circuit is often very convenient because the stub can be fabricated as part of the
transmission line media of the circuit, and lumped elements are avoided. Shunt stubs are
preferred for microstrip line or stripline, while series stubs are preferred for slotline or
coplanar waveguide.

In single-stub tuning the two adjustable parameters are the distance, d, from the load
to the stub position, and the value of susceptance or reactance provided by the stub. For
the shunt-stub case, the basic idea is to select d so that the admittance, Y , seen looking
into the line at distance d from the load is of the form Y0 + j B. Then the stub susceptance
is chosen as − j B, resulting in a matched condition. For the series-stub case, the distance
d is selected so that the impedance, Z , seen looking into the line at a distance d from the
load is of the form Z0 + j X . Then the stub reactance is chosen as − j X , resulting in a
matched condition.

As discussed in Chapter 2, the proper length of an open or shorted transmission line
section can provide any desired value of reactance or susceptance. For a given suscep-
tance or reactance, the difference in lengths of an open- or short-circuited stub is λ/4.
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FIGURE 5.4 Single-stub tuning circuits. (a) Shunt stub. (b) Series stub.

For transmission line media such as microstrip or stripline, open-circuited stubs are easier
to fabricate since a via hole through the substrate to the ground plane is not needed. For
lines like coax or waveguide, however, short-circuited stubs are usually preferred because
the cross-sectional area of such an open-circuited line may be large enough (electrically)
to radiate, in which case the stub is no longer purely reactive.

We will discuss both Smith chart and analytic solutions for shunt- and series-stub tun-
ing. The Smith chart solutions are fast, intuitive, and usually accurate enough in practice.
The analytic expressions are more precise, and are useful for computer analysis.

Shunt Stubs

The single-stub shunt tuning circuit is shown in Figure 5.4a. We will first discuss an exam-
ple illustrating the Smith chart solution and then derive formulas for d and �.

EXAMPLE 5.2 SINGLE-STUB SHUNT TUNING

For a load impedance ZL = 60 − j80 �, design two single-stub (short circuit)
shunt tuning networks to match this load to a 50 � line. Assuming that the load is
matched at 2 GHz and that the load consists of a resistor and capacitor in series,
plot the reflection coefficient magnitude from 1 to 3 GHz for each solution.

Solution
The first step is to plot the normalized load impedance zL = 1.2 − j1.6, construct
the appropriate SWR circle, and convert to the load admittance, yL , as shown on
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the Smith chart in Figure 5.5a. For the remaining steps we consider the Smith
chart as an admittance chart. Notice that the SWR circle intersects the 1 + jb
circle at two points, denoted as y1 and y2 in Figure 5.5a. Thus the distance d from
the load to the stub is given by either of these two intersections. Reading the WTG
scale, we obtain

d1 = 0.176 − 0.065 = 0.110λ,

d2 = 0.325 − 0.065 = 0.260λ.

Actually, there is an infinite number of distances d around the SWR circle
that intersect the 1 + jb circle. Usually it is desired to keep the matching stub as
close as possible to the load to improve the bandwidth of the match and to reduce
losses caused by a possibly large standing wave ratio on the line between the stub
and the load.

At the two intersection points, the normalized admittances are

y1 = 1.00 + j1.47,

y2 = 1.00 − j1.47.

y2

yL

zL

d2

d1

y1

(a)

FIGURE 5.5 Solution to Example 5.2. (a) Smith chart for the shunt-stub tuners.
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FIGURE 5.5 Continued. (b) The two shunt-stub tuning solutions. (c) Reflection coefficient mag-
nitudes versus frequency for the tuning circuits of (b).

Thus, the first tuning solution requires a stub with a susceptance of − j1.47. The
length of a short-circuited stub that gives this susceptance can be found on the
Smith chart by starting at y = ∞ (the short circuit) and moving along the outer
edge of the chart (g = 0) toward the generator to the − j1.47 point. The stub
length is then

�1 = 0.095λ.

Similarly, the required short-circuit stub length for the second solution is

�2 = 0.405λ.

This completes the two tuner designs.
To analyze the frequency dependence of these two designs, we need to know

the load impedance as a function of frequency. The series-RC load impedance
is ZL = 60 − j80 � at 2 GHz, so R = 60 � and C = 0.995 pF. The two tun-
ing circuits are shown in Figure 5.5b. Figure 5.5c shows the calculated reflection
coefficient magnitudes for these two solutions. Observe that solution 1 has a sig-
nificantly better bandwidth than solution 2; this is because both d and � are shorter
for solution 1, which reduces the frequency variation of the match. ■
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To derive formulas for d and �, let the load impedance be written as ZL = 1/YL =
RL + j X L . Then the impedance Z down a length d of line from the load is

Z = Z0
(RL + j X L) + j Z0t

Z0 + j (RL + j X L)t
, (5.7)

where t = tan βd . The admittance at this point is

Y = G + j B = 1

Z
,

where

G = RL(1 + t2)

R2
L + (X L + Z0t)2

, (5.8a)

B = R2
L t − (Z0 − X Lt)(X L + Z0t)

Z0
[
R2

L + (X L + Z0t)2
] . (5.8b)

Now d (which implies t) is chosen so that G = Y0 = 1/Z0. From (5.8a), this results in a
quadratic equation for t :

Z0(RL − Z0)t
2 − 2X L Z0t + (

RL Z0 − R2
L − X2

L

) = 0.

Solving for t gives

t =
X L ±

√
RL

[
(Z0 − RL)2 + X2

L

]
/Z0

RL − Z0
for RL �= Z0. (5.9)

If RL = Z0, then t = −X L/2Z0. Thus, the two principal solutions for d are

d

λ
=

⎧⎪⎪⎨
⎪⎪⎩

1

2π
tan−1 t for t ≥ 0

1

2π
(π + tan−1 t) for t < 0.

(5.10)

To find the required stub lengths, first use t in (5.8b) to find the stub susceptance, Bs = −B.
Then, for an open-circuited stub,

�o

λ
= 1

2π
tan−1

(
Bs

Y0

)
= −1

2π
tan−1

(
B

Y0

)
, (5.11a)

and for a short-circuited stub,

�s

λ
= −1

2π
tan−1

(
Y0

Bs

)
= 1

2π
tan−1

(
Y0

B

)
. (5.11b)

If the length given by (5.11a) or (5.11b) is negative, λ/2 can be added to give a positive
result.

Series Stubs

The series-stub tuning circuit is shown in Figure 5.4b. We will illustrate the Smith chart
solution by an example, and then derive expressions for d and �.

EXAMPLE 5.3 SINGLE-STUB SERIES TUNING

Match a load impedance of ZL = 100 + j80 to a 50 � line using a single series
open-circuit stub. Assuming that the load is matched at 2 GHz and that the load
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consists of a resistor and inductor in series, plot the reflection coefficient magni-
tude from 1 to 3 GHz.

Solution
First plot the normalized load impedance, zL = 2 + j1.6, and draw the SWR
circle. For the series-stub design the chart is an impedance chart. Note that the
SWR circle intersects the 1 + j x circle at two points, denoted as z1 and z2 in
Figure 5.6a. The shortest distance, d1, from the load to the stub is, from the WTG
scale,

d1 = 0.328 − 0.208 = 0.120λ,

and the second distance is

d2 = (0.5 − 0.208) + 0.172 = 0.463λ.

As in the shunt-stub case, additional rotations around the SWR circle lead to ad-
ditional solutions, but these are usually not of practical interest.
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FIGURE 5.6 Solution to Example 5.3. (a) Smith chart for the series-stub tuners.
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FIGURE 5.6 Continued. (b) The two series-stub tuning solutions. (c) Reflection coefficient mag-
nitudes versus frequency for the tuning circuits of (b).

The normalized impedances at the two intersection points are

z1 = 1 − j1.33,

z2 = 1 + j1.33.

Thus, the first solution requires a stub with a reactance of j1.33. The length of
an open-circuited stub that gives this reactance can be found on the Smith chart
by starting at z = ∞ (open circuit), and moving along the outer edge of the chart
(r = 0) toward the generator to the j1.33 point. This gives a stub length of

�1 = 0.397λ.

Similarly, the required open-circuited stub length for the second solution is

�2 = 0.103λ.

This completes the tuner designs.
If the load is a series resistor and inductor with ZL = 100 + j80 � at 2 GHz,

then R = 100 � and L = 6.37 nH. The two matching circuits are shown in
Figure 5.6b. Figure 5.6c shows the calculated reflection coefficient magnitudes
versus frequency for the two solutions. ■
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To derive formulas for d and � for the series-stub tuner, let the load admittance be
written as YL = 1/ZL = GL + j BL . Then the admittance Y down a length d of line from
the load is

Y = Y0
(GL + j BL) + j tY0

Y0 + j t (GL + j BL)
, (5.12)

where t = tan βd and Y0 = 1/Z0. The impedance at this point is

Z = R + j X = 1

Y
,

where

R = GL(1 + t2)

G2
L + (BL + Y0t)2

, (5.13a)

X = G2
L t − (Y0 − t BL)(BL + tY0)

Y0
[
G2

L + (BL + Y0t)2
] . (5.13b)

Now d (which implies t) is chosen so that R = Z0 = 1/Y0. From (5.13a), this results in a
quadratic equation for t :

Y0(GL − Y0)t
2 − 2BL Y0t + (

GL Y0 − G2
L − B2

L

) = 0.

Solving for t gives

t =
BL ±

√
GL

[
(Y0 − GL)2 + B2

L

]
/Y0

GL − Y0
for GL �= Y0. (5.14)

If GL = Y0, then t = −BL/2Y0. Then the two principal solutions for d are

d/λ =

⎧⎪⎪⎨
⎪⎪⎩

1

2π
tan−1 t for t ≥ 0

1

2π
(π + tan−1 t) for t < 0.

(5.15)

The required stub lengths are determined by first using t in (5.13b) to find the reactance
X . This reactance is the negative of the necessary stub reactance, Xs . Thus, for a short-
circuited stub,

�s

λ
= 1

2π
tan−1

(
Xs

Z0

)
= −1

2π
tan−1

(
X

Z0

)
, (5.16a)

and for an open-circuited stub,

�o

λ
= −1

2π
tan−1

(
Z0

Xs

)
= 1

2π
tan−1

(
Z0

X

)
. (5.16b)

If the length given by (5.16a) or (5.16b) is negative, λ/2 can be added to give a positive
result.

5.3 DOUBLE-STUB TUNING

The single-stub tuner of the previous section is able to match any load impedance (having
a positive real part) to a transmission line, but suffers from the disadvantage of requiring
a variable length of line between the load and the stub. This may not be a problem for a
fixed matching circuit, but would probably pose some difficulty if an adjustable tuner was
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FIGURE 5.7 Double-stub tuning. (a) Original circuit with the load an arbitrary distance from the
first stub. (b) Equivalent circuit with the load transformed to the first stub.

desired. In this case, the double-stub tuner, which uses two tuning stubs in fixed positions,
can be used. Such tuners are often fabricated in coaxial line with adjustable stubs connected
in shunt to the main coaxial line. We will see, however, that a double-stub tuner cannot
match all load impedances.

The double-stub tuner circuit is shown in Figure 5.7a, where the load may be an ar-
bitrary distance from the first stub. Although this is more representative of a practical sit-
uation, the circuit of Figure 5.7b, where the load Y ′

L has been transformed back to the
position of the first stub, is easier to deal with and does not lose any generality. The shunt
stubs shown in Figure 5.7 can be conveniently implemented for some types of transmission
lines, while series stubs are more appropriate for other types of lines. In either case, the
stubs can be open-circuited or short-circuited.

Smith Chart Solution

The Smith chart of Figure 5.8 illustrates the basic operation of the double-stub tuner. As
in the case of the single-stub tuner, two solutions are possible. The susceptance of the first
stub, b1 (or b′

1, for the second solution), moves the load admittance to y1 (or y′
1). These

points lie on the rotated 1 + jb circle; the amount of rotation is d wavelengths toward the
load, where d is the electrical distance between the two stubs. Then transforming y1 (or
y′

1) toward the generator through a length d of line leaves us at the point y2 (or y′
2), which

must be on the 1 + jb circle. The second stub then adds a susceptance b2 (or b′
2), which

brings us to the center of the chart and completes the match.
Notice from Figure 5.8 that if the load admittance, yL , were inside the shaded region

of the g0 + jb circle, no value of stub susceptance b1 could ever bring the load point to
intersect the rotated 1 + jb circle. This shaded region thus forms a forbidden range of load
admittances that cannot be matched with this particular double-stub tuner. A simple way
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FIGURE 5.8 Smith chart diagram for the operation of a double-stub tuner.

of reducing the forbidden range is to reduce the distance d between the stubs. This has
the effect of swinging the rotated 1 + jb circle back toward the y = ∞ point, but d must
be kept large enough for the practical purpose of fabricating the two separate stubs. In
addition, stub spacings near 0 or λ/2 lead to matching networks that are very frequency
sensitive. In practice, stub spacings are usually chosen as λ/8 or 3λ/8. If the length of line
between the load and the first stub can be adjusted, then the load admittance yL can always
be moved out of the forbidden region.

EXAMPLE 5.4 DOUBLE-STUB TUNING

Design a double-stub shunt tuner to match a load impedance ZL = 60 − j80 �

to a 50 � line. The stubs are to be open-circuited stubs and are spaced λ/8 apart.
Assuming that this load consists of a series resistor and capacitor and that the
match frequency is 2 GHz, plot the reflection coefficient magnitude versus fre-
quency from 1 to 3 GHz.

Solution
The normalized load admittance is yL = 0.3 + j0.4, which is plotted on the Smith
chart of Figure 5.9a. Next we construct the rotated 1 + jb conductance circle by
moving every point on the g = 1 circle λ/8 toward the load. We then find the
susceptance of the first stub, which can be one of two possible values:

b1 = 1.314 or b′
1 = −0.114.

We now transform through the λ/8 section of line by rotating along a constant-
radius (SWR) circle λ/8 toward the generator. This brings the two solutions to the
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following points:

y2 = 1 − j3.38 or y′
2 = 1 + j1.38.

Then the susceptance of the second stub should be

b2 = 3.38 or b′
2 = −1.38.

The lengths of the open-circuited stubs are then found as

�1 = 0.146λ, �2 = 0.204λ or �′
1 = 0.482λ, �′

2 = 0.350λ.

This completes both solutions for the double-stub tuner design.
At f = 2 GHz the resistor-capacitor load of ZL = 60 − j80 � implies that

R = 60 � and C = 0.995 pF. The two tuning circuits are then as shown in
Figure 5.9b, and the reflection coefficient magnitudes are plotted versus frequency
in Figure 5.9c. Note that the first solution has a much narrower bandwidth than
the second (primed) solution due to the fact that both stubs for the first solution
are somewhat longer (and closer to λ/2) than the stubs of the second solution. ■
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c05ImpedanceMatchingandTuning Pozar July 29, 2011 20:34

5.3 Double-Stub Tuning 245

f (GHz)

1.0
0

0.4

0.6

0.8

1.0

1.5 2.0 2.5 3.0

Solution #2

Solution #1

Solution 2

50 Ω

0.350�

�/8

50 Ω

(b)

(c)

⎪Γ⎪

0.482�

Solution 1

50 Ω

0.204�

�/8

50 Ω

0.146�

60 Ω

0.995 pF

60 Ω

0.995 pF

0.2

FIGURE 5.9 Continued. (b) The two double-stub tuning solutions. (c) Reflection coefficient mag-
nitudes versus frequency for the tuning circuits of (b).

Analytic Solution

The admittance just to the left of the first stub in Figure 5.7b is

Y1 = GL + j (BL + B1), (5.17)

where YL = GL + j BL is the load admittance, and B1 is the susceptance of the first stub.
After transforming through a length d of transmission line, we find that the admittance just
to the right of the second stub is

Y2 = Y0
GL + j (BL + B1 + Y0t)

Y0 + j t (GL + j BL + j B1)
, (5.18)

where t = tan βd and Y0 = 1/Z0. At this point the real part of Y2 must equal Y0, which
leads to the equation

G2
L − GL Y0

1 + t2

t2
+ (Y0 − BLt − B1t)2

t2
= 0. (5.19)

Solving for GL gives

GL = Y0
1 + t2

2t2

[
1 ±

√
1 − 4t2(Y0 − BLt − B1t)2

Y 2
0 (1 + t2)2

]
. (5.20)
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Because GL is real, the quantity within the square root must be nonnegative, and so

0 ≤ 4t2(Y0 − BLt − B1t)2

Y 2
0 (1 + t2)2

≤ 1.

This implies that

0 ≤ GL ≤ Y0
1 + t2

t2
= Y0

sin2 βd
, (5.21)

which gives the range on GL that can be matched for a given stub spacing d. After d has
been set, the first stub susceptance can be determined from (5.19) as

B1 = −BL +
Y0 ±

√
(1 + t2)GL Y0 − G2

L t2

t
. (5.22)

Then the second stub susceptance can be found from the negative of the imaginary part of
(5.18) to be

B2 =
±Y0

√
Y0GL(1 + t2) − G2

L t2 + GL Y0

GLt
. (5.23)

The upper and lower signs in (5.22) and (5.23) correspond to the same solutions. The
open-circuited stub length is found as

�o

λ
= 1

2π
tan−1

(
B

Y0

)
, (5.24a)

and the short-circuited stub length is found as

�s

λ
= −1

2π
tan−1

(
Y0

B

)
, (5.24b)

where B = B1 or B2.

5.4 THE QUARTER-WAVE TRANSFORMER

As introduced in Section 2.5, the quarter-wave transformer is a simple and useful circuit
for matching a real load impedance to a transmission line. An additional feature of the
quarter-wave transformer is that it can be extended to multisection designs in a methodical
manner to provide broader bandwidth. If only a narrow band impedance match is required,
a single-section transformer may suffice. However, as we will see in the next few sec-
tions, multisection quarter-wave transformer designs can be synthesized to yield optimum
matching characteristics over a desired frequency band. We will see in Chapter 8 that such
networks are closely related to bandpass filters.

One drawback of the quarter-wave transformer is that it can only match a real load
impedance. A complex load impedance can always be transformed into a real impedance,
however, by using an appropriate length of transmission line between the load and the
transformer, or an appropriate series or shunt reactive element. These techniques will usu-
ally alter the frequency dependence of the load, and this often has the effect of reducing
the bandwidth of the match.

In Section 2.5 we analyzed the operation of a quarter-wave transformer from both
an impedance viewpoint and a multiple reflection viewpoint. Here we will concentrate
on the bandwidth performance of the transformer as a function of the load mismatch; this
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l

Z0 Z1 ZL (real)

FIGURE 5.10 A single-section quarter-wave matching transformer. � = λ0/4 at the design fre-
quency f0.

discussion will also serve as a prelude to the more general case of multisection transformers
in the sections to follow.

The single-section quarter-wave matching transformer circuit is shown in Figure 5.10,
with the characteristic impedance of the matching section given as

Z1 = √
Z0 ZL . (5.25)

At the design frequency, f0, the electrical length of the matching section is λ0/4, but at
other frequencies the length is different, so a perfect match is no longer obtained. We will
derive an approximate expression for the resulting impedance mismatch versus frequency.

The input impedance seen looking into the matching section is

Zin = Z1
ZL + j Z1t

Z1 + j ZL t
, (5.26)

where t = tan β� = tan θ , and β� = θ = π/2 at the design frequency f0. The resulting re-
flection coefficient is

� = Z in − Z0

Z in + Z0
= Z1(ZL − Z0) + j t

(
Z2

1 − Z0 ZL
)

Z1(ZL + Z0) + j t
(
Z2

1 + Z0 ZL
) . (5.27)

Because Z2
1 = Z0 ZL , this reduces to

� = ZL − Z0

ZL + Z0 + j2t
√

Z0 ZL
. (5.28)

The reflection coefficient magnitude is

|�| = |ZL − Z0|[
(ZL + Z0)2 + 4t2 Z0 ZL

]1/2

= 1{
(ZL + Z0)2/(ZL − Z0)2 + [4t2 Z0 ZL/(ZL − Z0)2]}1/2

= 1{
1 + [4Z0 ZL/(ZL − Z0)2] + [4Z0 ZLt2/(ZL − Z0)2]}1/2

= 1{
1 + [4Z0 ZL/(ZL − Z0)2] sec2 θ

}1/2
, (5.29)

since 1 + t2 = 1 + tan2 θ = sec2 θ .
If we assume that the operating frequency is near the design frequency f0, then � �

λ0/4 and θ � π/2. Then sec2 θ � 1, and (5.29) simplifies to

|�| � |ZL − Z0|
2
√

Z0 ZL
| cos θ | for θ near π/2. (5.30)
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0

∆�

FIGURE 5.11 Approximate behavior of the reflection coefficient magnitude for a single-section
quarter-wave transformer operating near its design frequency.

This result gives the approximate mismatch of the quarter-wave transformer near the design
frequency, as sketched in Figure 5.11.

If we set a maximum value, �m , for an acceptable reflection coefficient magnitude,
then the bandwidth of the matching transformer can be defined as

�θ = 2
(π

2
− θm

)
, (5.31)

since the response of (5.29) is symmetric about θ = π /2, and � = �m at θ = θm and at
θ = π − θm . Equating �m to the exact expression for the reflection coefficient magnitude
in (5.29) allows us to solve for θm :

1

�2
m

= 1 +
(

2
√

Z0 ZL

ZL − Z0
sec θm

)2

,

or

cos θm = �m√
1 − �2

m

2
√

Z0 ZL

|ZL − Z0| . (5.32)

If we assume TEM lines, then

θ = β� = 2π f

vp

vp

4 f0
= π f

2 f0
,

and so the frequency of the lower band edge at θ = θm is

fm = 2θm f0

π
,

and the fractional bandwidth is, using (5.32),

� f

f0
= 2( f0 − fm)

f0
= 2 − 2 fm

f0
= 2 − 4θm

π

= 2 − 4

π
cos−1

[
�m√

1 − �2
m

2
√

Z0 ZL

|ZL − Z0|

]
. (5.33)

Fractional bandwidth is usually expressed as a percentage, 100� f/ f0%. Note that the
bandwidth of the transformer increases as ZL becomes closer to Z0 (a less mismatched
load).

The above results are strictly valid only for TEM lines. When non-TEM lines (such as
waveguides) are used, the propagation constant is no longer a linear function of frequency,
and the wave impedance will be frequency dependent. These factors serve to complicate
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FIGURE 5.12 Reflection coefficient magnitude versus frequency for a single-section quarter-
wave matching transformer with various load mismatches.

the general behavior of quarter-wave transformers for non-TEM lines, but in practice the
bandwidth of the transformer is often small enough that these complications do not sub-
stantially affect the result. Another factor ignored in the above analysis is the effect of
reactances associated with discontinuities when there is a step change in the dimensions of
a transmission line. This can often be compensated by making a small adjustment in the
length of the matching section.

Figure 5.12 shows a plot of the reflection coefficient magnitude versus normalized
frequency for various mismatched loads. Note the trend of increased bandwidth for smaller
load mismatches.

EXAMPLE 5.5 QUARTER-WAVE TRANSFORMER BANDWIDTH

Design a single-section quarter-wave matching transformer to match a 10 � load
to a 50 � transmission line at f0 = 3 GHz. Determine the percent bandwidth for
which the SWR ≤ 1.5.

Solution
From (5.25), the characteristic impedance of the matching section is

Z1 = √
Z0 ZL = √

(50)(10) = 22.36 �,

and the length of the matching section is λ/4 at 3 GHz (the physical length de-
pends on the dielectric constant of the line). An SWR of 1.5 corresponds to a
reflection coefficient magnitude of

�m = SWR − 1

SWR + 1
= 1.5 − 1

1.5 + 1
= 0.2.

The fractional bandwidth is computed from (5.33) as

� f

f0
= 2 − 4

π
cos−1

[
�m√

1 − �2
m

2
√

Z0 ZL

|ZL − Z0|

]

= 2 − 4

π
cos−1

[
0.2√

1 − (0.2)2

2
√

(50)(10)

|10 − 50|

]

= 0.29, or 29%. ■
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5.5 THE THEORY OF SMALL REFLECTIONS

The quarter-wave transformer provides a simple means of matching any real load imped-
ance to any transmission line impedance. For applications requiring more bandwidth than a
single quarter-wave section can provide, multisection transformers can be used. The design
of such transformers is the subject of the next two sections, but prior to that material we
need to derive some approximate results for the total reflection coefficient caused by the
partial reflections from several small discontinuities. This topic is generally referred to as
the theory of small reflections [1].

Single-Section Transformer

We will derive an approximate expression for the overall reflection coefficient, �, for
the single-section matching transformer shown in Figure 5.13. The partial reflection and
transmission coefficients are

�1 = Z2 − Z1

Z2 + Z1
, (5.34)

�2 = −�1, (5.35)

�3 = ZL − Z2

ZL + Z2
, (5.36)

T21 = 1 + �1 = 2Z2

Z1 + Z2
, (5.37)

T12 = 1 + �2 = 2Z1

Z1 + Z2
. (5.38)

We can compute the total reflection, �, seen by the feed line using either the impedance
method, or the multiple reflection method, as discussed in Section 2.5. For our present

T21

T12

T12

ZL
Z2Z1

T21

T12

Γ3Γ2Γ1

Γ

�l = θ

Γ3

Γ3

Γ3

Γ1

1
e–j�

e–j�

e–j�

e–j�

e–j�

FIGURE 5.13 Partial reflections and transmissions on a single-section matching transformer.
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purpose the latter technique is preferred, so we express the total reflection as an infinite
sum of partial reflections and transmissions as follows:

� = �1 + T12T21�3e−2 jθ + T12T21�
2
3�2e−4 jθ + · · ·

= �1 + T12T21�3e−2 jθ
∞∑

n=0

�n
2�n

3 e−2 jnθ . (5.39)

The summation of the geometric series
∞∑

n=0

xn = 1

1 − x
for |x | < 1

allows us to express (5.39) in closed form as

� = �1 + T12T21�3e−2 jθ

1 − �2�3e−2 jθ
. (5.40)

From (5.35), (5.37), and (5.38), we use �2 = −�1, T21 = 1 + �1, and T12 = 1 − �1 in
(5.40) to give

� = �1 + �3e−2 jθ

1 + �1�3e−2 jθ
. (5.41)

If the discontinuities between the impedances Z1, Z2 and Z2, ZL are small, then |�1�3|=1,
so we can approximate (5.41) as

� � �1 + �3e−2 jθ . (5.42)

This result expresses the intuitive idea that the total reflection is dominated by the reflection
from the initial discontinuity between Z1 and Z2 (�1), and the first reflection from the
discontinuity between Z2 and ZL (�3e−2 jθ ). The e−2 jθ term accounts for the phase delay
when the incident wave travels up and down the line. The accuracy of this approximation
is illustrated in Problem 5.14.

Multisection Transformer

Now consider the multisection transformer shown in Figure 5.14, which consists of N
equal-length (commensurate) sections of transmission lines. We will derive an approximate
expression for the total reflection coefficient �.

Partial reflection coefficients can be defined at each junction, as follows:

�0 = Z1 − Z0

Z1 + Z0
, (5.43a)

�n = Zn+1 − Zn

Zn+1 + Zn
, (5.43b)

�N = ZL − Z N

ZL + Z N
. (5.43c)

Z0
Γ

Γ0 Γ1 Γ2 ΓN

Z1 Z2 ZN ZL

���

FIGURE 5.14 Partial reflection coefficients for a multisection matching transformer.
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We also assume that all Zn increase or decrease monotonically across the transformer
and that ZL is real. This implies that all �n will be real and of the same sign (�n > 0
if ZL > Z0; �n < 0 if ZL < Z0). Using the results of the previous section allows us to
approximate the overall reflection coefficient as

�(θ) = �0 + �1e−2 jθ + �2e−4 jθ + · · · + �N e−2 j Nθ . (5.44)

Further assume that the transformer can be made symmetrical, so that �0 = �N , �1 =
�N−1, �2 = �N−2, and so on. (Note that this does not imply that the Zn are symmetrical.)
Then (5.44) can be written as

�(θ) = e− j Nθ
{
�0[e j Nθ + e− j Nθ ] + �1[e j (N−2)θ + e− j (N−2)θ ] + · · ·

}
. (5.45)

If N is odd, the last term is �(N−1)/2(e jθ + e− jθ ), while if N is even, the last term is �N/2.

Equation (5.45) is seen to be of the form of a finite Fourier cosine series in θ , which can
be written as

�(θ) = 2e− j Nθ

[
�0 cos Nθ + �1 cos(N − 2)θ + · · · + �n cos(N − 2n)θ

+ · · · + 1

2
�N/2

]
for N even, (5.46a )

�(θ) = 2e− j Nθ [�0 cos Nθ + �1 cos(N − 2)θ + · · · + �n cos(N − 2n)θ

+ · · · + �(N−1)/2 cos θ ] for N odd. (5.46b)

The importance of these results lies in the fact that we can synthesize any desired
reflection coefficient response as a function of frequency (θ ) by properly choosing the �n

and using enough sections (N ). This should be clear from the realization that a Fourier se-
ries can approximate an arbitrary smooth function if enough terms are used. In the next two
sections we will show how to use this theory to design multisection transformers for two
of the most commonly used passband responses: the binomial (maximally flat) response,
and the Chebyshev (equal-ripple) response.

5.6 BINOMIAL MULTISECTION MATCHING TRANSFORMERS

The passband response (the frequency band where a good impedance match is achieved)
of a binomial matching transformer is optimum in the sense that, for a given number of
sections, the response is as flat as possible near the design frequency. This type of response,
which is also known as maximally flat, is determined for an N -section transformer by
setting the first N − 1 derivatives of |�(θ)| to zero at the center frequency, f0. Such a
response can be obtained with a reflection coefficient of the following form:

�(θ) = A(1 + e−2 jθ )N . (5.47)

Then the reflection coefficient magnitude is

|�(θ)| = |A||e− jθ |N |e jθ + e− jθ |N

= 2N |A|| cos θ |N (5.48)

Note that |�(θ)| = 0 for θ = π/2, and that dn|�(θ)|/dθn = 0 at θ = π/2 for n = 1, 2, . . . ,

N − 1. (θ = π/2 corresponds to the center frequency, f0, for which � = λ/4 and θ =
β� = π/2.)
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We can determine the constant A by letting f → 0. Then θ = β� = 0, and (5.47)
reduces to

�(0) = 2N A = ZL − Z0

ZL + Z0
,

since for f = 0 all sections are of zero electrical length. The constant A can then be written
as

A = 2−N ZL − Z0

ZL + Z0
. (5.49)

Next we expand �(θ) in (5.47) according to the binomial expansion:

�(θ) = A(1 + e−2 jθ )N = A
N∑

n=0

C N
n e−2 jnθ , (5.50)

where

C N
n = N !

(N − n)!n! (5.51)

are the binomial coefficients. Note that C N
n = C N

N−n, C N
0 = 1, and C N

1 = N = C N
N−1. The

key step is now to equate the desired passband response, given by (5.50), to the actual
response as given (approximately) by (5.44):

�(θ) = A
N∑

n=0

C N
n e−2 jnθ = �0 + �1e−2 jθ + �2e−4 jθ + · · · + �N e−2 j Nθ .

This shows that the �n must be chosen as

�n = AC N
n . (5.52)

where A is given by (5.49) and C N
n is a binomial coefficient.

At this point, the characteristic impedances, Zn , can be found via (5.43), but a simpler
solution can be obtained using the following approximation [1]. Because we assumed that
the �n are small, we can write

�n = Zn+1 − Zn

Zn+1 + Zn
� 1

2
ln

Zn+1

Zn
,

since ln x � 2(x − 1)/(x + 1) for x close to unity. Then, using (5.52) and (5.49) gives

ln
Zn+1

Zn
� 2�n = 2AC N

n = 2(2−N )
ZL − Z0

ZL + Z0
C N

n � 2−N C N
n ln

ZL

Z0
, (5.53)

which can be used to find Zn+1, starting with n = 0. This technique has the advantage of
ensuring self-consistency, in that Z N+1 computed from (5.53) will be equal to ZL , as it
should.

Exact design results, including the effect of multiple reflections in each section, can
be found by using the transmission line equations for each section and numerically solv-
ing for the characteristic impedances [2]. The results of such calculations are listed in
Table 5.1, which gives the exact line impedances for N = 2-, 3-, 4-, 5-, and 6-section
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binomial matching transformers for various ratios of load impedance, ZL , to feed line
impedance, Z0. The table gives results only for ZL/Z0 > 1; if ZL/Z0 < 1, the results for
Z0/ZL should be used but with Z1 starting at the load end. This is because the solution is
symmetric about ZL/Z0 = 1; the same transformer that matches ZL to Z0 can be reversed
and used to match Z0 to ZL . More extensive tables can be found in reference [2].

The bandwidth of the binomial transformer can be evaluated as follows. As in Section
5.4, let �m be the maximum value of reflection coefficient that can be tolerated over the
passband. Then from (5.48),

�m = 2N |A| cosN θm,

where θm < π/2 is the lower edge of the passband, as shown in Figure 5.11. Thus,

θm = cos−1

[
1

2

(
�m

|A|
)1/N

]
, (5.54)

and using (5.33) gives the fractional bandwidth as

� f

f0
= 2( f0 − fm)

f0
= 2 − 4θm

π

= 2 − 4

π
cos−1

[
1

2

(
�m

|A|
)1/N

]
. (5.55)

EXAMPLE 5.6 BINOMIAL TRANSFORMER DESIGN

Design a three-section binomial transformer to match a 50 � load to a 100 �

line and calculate the bandwidth for �m = 0.05. Plot the reflection coefficient
magnitude versus normalized frequency for the exact designs using 1, 2, 3, 4, and
5 sections.

Solution
For N = 3, ZL = 50 �, and Z0 = 100 � we have, from (5.49) and (5.53),

A = 2−N ZL − Z0

ZL + Z0
� 1

2N+1
ln

ZL

Z0
= −0.0433.

From (5.55) the bandwidth is

� f

f0
= 2 − 4

π
cos−1

[
1

2

(
�m

|A|
)1/N

]

= 2 − 4

π
cos−1

[
1

2

(
0.05

0.0433

)1/3
]

= 0.70, or 70%.

The necessary binomial coefficients are

C3
0 = 3!

3!0! = 1,

C3
1 = 3!

2!1! = 3,

C3
2 = 3!

1!2! = 3.
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FIGURE 5.15 Reflection coefficient magnitude versus frequency for multisection binomial
matching transformers of Example 5.6. ZL = 50 � and Z0 = 100 �.

Using (5.53) gives the required characteristic impedances as

n = 0 : ln Z1 = ln Z0 + 2−N C3
0 ln

ZL

Z0

= ln 100 + 2−3(1) ln
50

100
= 4.518,

Z1 = 91.7 �;
n = 1 : ln Z2 = ln Z1 + 2−N C3

1 ln
ZL

Z0

= ln 91.7 + 2−3(3) ln
50

100
= 4.26,

Z2 = 70.7 �;
n = 2 : ln Z3 = ln Z2 + 2−N C3

2 ln
ZL

Z0

= ln 70.7 + 2−3(3) ln
50

100
= 4.00,

Z3 = 54.5 �.

To use the data in Table 5.1 we reverse the source and load impedances and
consider the problem of matching a 100 � load to a 50 � line. Then ZL/Z0 = 2.0,
and we obtain the exact characteristic impedances as Z1 = 91.7 �, Z2 = 70.7 �,
and Z3 = 54.5 �, which agree with the approximate results to three significant
digits. Figure 5.15 shows the reflection coefficient magnitude versus frequency for
exact designs using N = 1, 2, 3, 4, and 5 sections. Observe that greater bandwidth
is obtained for transformers using more sections. ■

5.7 CHEBYSHEV MULTISECTION MATCHING TRANSFORMERS

In contrast with the binomial transformer, the multisection Chebyshev matching trans-
former optimizes bandwidth at the expense of passband ripple. Compromising on the flat-
ness of the passband response leads to a bandwidth that is substantially better than that of
the binomial transformer for a given number of sections. The Chebyshev transformer is
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designed by equating �(θ) to a Chebyshev polynomial, which has the optimum character-
istics needed for this type of transformer. We will first discuss the properties of Chebyshev
polynomials and then derive a design procedure for Chebyshev matching transformers us-
ing the small-reflection theory of Section 5.5.

Chebyshev Polynomials

The nth-order Chebyshev polynomial is a polynomial of degree n, denoted by Tn(x). The
first four Chebyshev polynomials are

T1(x) = x, (5.56a)

T2(x) = 2x2 − 1, (5.56b)

T3(x) = 4x3 − 3x, (5.56c)

T4(x) = 8x4 − 8x2 + 1. (5.56d)

Higher order polynomials can be found using the following recurrence formula:

Tn(x) = 2xTn−1(x) − Tn−2(x). (5.57)

The first four Chebyshev polynomials are plotted in Figure 5.16, from which the fol-
lowing very useful properties of Chebyshev polynomials can be noted:

� For −1 ≤ x ≤ 1, |Tn(x)| ≤ 1. In this range the Chebyshev polynomials oscillate
between ±1. This is the equal-ripple property, and this region will be mapped to
the passband of the matching transformer.

� For |x | >1, |Tn(x)| >1. This region will map to the frequency range outside the
passband.

� For |x | >1, the |Tn(x)| increases faster with x as n increases.

2

–2

–4

–6

4

6

Tn(x)

0.5–1.5 –1.0 1.5

4 3

2

n = 1

–0.5

x1.0

FIGURE 5.16 The first four Chebyshev polynomials, Tn(x).
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Now let x = cos θ for |x | < 1. Then it can be shown that the Chebyshev polynomials
can be expressed as

Tn(cos θ) = cos nθ,

or more generally as

Tn(x) = cos(n cos−1 x) for |x | < 1, (5.58a)

Tn(x) = cosh(n cosh−1 x) for x > 1. (5.58b)

We desire equal ripple for the passband response of the transformer, so it is necessary to
map θm to x = 1 and π − θm to x = −1, where θm and π − θm are the lower and upper
edges of the passband, respectively, as shown in Figure 5.11. This can be accomplished by
replacing cos θ in (5.58a) with cos θ/cos θm :

Tn

(
cos θ

cos θm

)
= Tn(sec θm cos θ) = cos n

[
cos−1

(
cos θ

cos θm

)]
. (5.59)

Then | sec θm cos θ | ≤ 1 for θm < θ < π − θm, so |Tn(sec θm cos θ)| ≤ 1 over this same
range.

Because cosn θ can be expanded into a sum of terms of the form cos(n − 2m)θ , the
Chebyshev polynomials of (5.56) can be rewritten in the following useful form:

T1(sec θm cos θ) = sec θm cos θ, (5.60a)

T2(sec θm cos θ) = sec2 θm(1 + cos 2θ) − 1, (5.60b)

T3(sec θm cos θ) = sec3 θm(cos 3θ + 3 cos θ) − 3 sec θm cos θ, (5.60c)

T4(sec θm cos θ) = sec4 θm(cos 4θ + 4 cos 2θ + 3)

−4 sec2 θm(cos 2θ + 1) + 1. (5.60d)

These results can be used to design matching transformers with up to four sections, and
will also be used in later chapters for the design of directional couplers and filters.

Design of Chebyshev Transformers

We can now synthesize a Chebyshev equal-ripple passband by making �(θ) proportional
to TN (sec θm cos θ), where N is the number of sections in the transformer. Thus, using
(5.46), we have

�(θ) = 2e− j Nθ [�0 cos Nθ + �1 cos(N − 2)θ + · · · + �n cos(N − 2n)θ + · · ·]
= Ae− j Nθ TN (sec θm cos θ), (5.61)

where the last term in the series of (5.61) is (1/2)�N/2 for N even and �(N−1)/2 cos θ for
N odd. As in the binomial transformer case, we can find the constant A by letting θ = 0,
corresponding to zero frequency. Thus,

�(0) = ZL − Z0

ZL + Z0
= ATN (sec θm),

so we have

A = ZL − Z0

ZL + Z0

1

TN (sec θm)
. (5.62)

If the maximum allowable reflection coefficient magnitude in the passband is �m , then
from (5.61) �m= |A| since the maximum value of Tn(sec θm cos θ) in the passband is unity.
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Then (5.62) gives

TN (sec θm) = 1

�m

∣∣∣∣ ZL − Z0

ZL + Z0

∣∣∣∣,
which, after using (5.58b) and the approximations introduced in Section 5.6, allows us to
determine θm as

sec θm = cosh

[
1

N
cosh−1

(
1

�m

∣∣∣∣ ZL − Z0

ZL + Z0

∣∣∣∣
)]

� cosh

[
1

N
cosh−1

(∣∣∣∣ ln ZL/Z0

2�m

∣∣∣∣
)]

. (5.63)

Once θm is known, the fractional bandwidth can be calculated from (5.33) as

� f

f0
= 2 − 4θm

π
. (5.64)

From (5.61), the �n can be determined using the results of (5.60) to expand TN (sec θm cos θ)

and equating similar terms of the form cos(N − 2n)θ . The characteristic impedances Zn

can be found from (5.43), although, as in the case of the binomial transformer, accuracy
can be improved and self-consistency can be achieved by using the approximation that

�n � 1

2
ln

Zn+1

Zn
.

This procedure will be illustrated in Example 5.7.
The above results are approximate because of the reliance on small-reflection theory

but are general enough to design transformers with an arbitrary ripple level, �m . Table 5.2
gives exact results [2] for a few specific values of �m for N = 2, 3, and 4 sections; more
extensive tables can be found in reference [2].

EXAMPLE 5.7 CHEBYSHEV TRANSFORMER DESIGN

Design a three-section Chebyshev transformer to match a 100 � load to a 50 �

line with �m = 0.05, using the above theory. Plot the reflection coefficient mag-
nitude versus normalized frequency for exact designs using 1, 2, 3, and 4 sections.

Solution
From (5.61) with N = 3,

�(θ) = 2e− j3θ (�0 cos 3θ + �1 cos θ) = Ae− j3θ T3(sec θm cos θ).

Then A = �m = 0.05, and from (5.63),

sec θm = cosh

[
1

N
cosh−1

(
ln ZL/Z0

2�m

)]

= cosh

[
1

3
cosh−1

(
ln(100/50)

2(0.05)

)]

= 1.408,

so θm = 44.7◦.
Using (5.60c) for T3 gives

2 (�0 cos 3θ + �1 cos θ) = A sec3 θm(cos 3θ + 3 cos θ) − 3A sec θm cos θ.
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TABLE 5.2 Chebyshev Transformer Design

N = 2 N = 3

�m = 0.05 �m = 0.20 �m = 0.05 �m = 0.20

ZL/Z0 Z1/Z0 Z2/Z0 Z1/Z0 Z2/Z0 Z1/Z0 Z2/Z0 Z3/Z0 Z1/Z0 Z2/Z0 Z3/Z0

1.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1.5 1.1347 1.3219 1.2247 1.2247 1.1029 1.2247 1.3601 1.2247 1.2247 1.2247

2.0 1.2193 1.6402 1.3161 1.5197 1.1475 1.4142 1.7429 1.2855 1.4142 1.5558

3.0 1.3494 2.2232 1.4565 2.0598 1.2171 1.7321 2.4649 1.3743 1.7321 2.1829

4.0 1.4500 2.7585 1.5651 2.5558 1.2662 2.0000 3.1591 1.4333 2.0000 2.7908

6.0 1.6047 3.7389 1.7321 3.4641 1.3383 2.4495 4.4833 1.5193 2.4495 3.9492

8.0 1.7244 4.6393 1.8612 4.2983 1.3944 2.8284 5.7372 1.5766 2.8284 5.0742

10.0 1.8233 5.4845 1.9680 5.0813 1.4385 3.1623 6.9517 1.6415 3.1623 6.0920

N = 4

�m = 0.05 �m = 0.20

ZL/Z0 Z1/Z0 Z2/Z0 Z3/Z0 Z4/Z0 Z1/Z0 Z2/Z0 Z3/Z0 Z4/Z0

1.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1.5 1.0892 1.1742 1.2775 1.3772 1.2247 1.2247 1.2247 1.2247

2.0 1.1201 1.2979 1.5409 1.7855 1.2727 1.3634 1.4669 1.5715

3.0 1.1586 1.4876 2.0167 2.5893 1.4879 1.5819 1.8965 2.0163

4.0 1.1906 1.6414 2.4369 3.3597 1.3692 1.7490 2.2870 2.9214

6.0 1.2290 1.8773 3.1961 4.8820 1.4415 2.0231 2.9657 4.1623

8.0 1.2583 2.0657 3.8728 6.3578 1.4914 2.2428 3.5670 5.3641

10.0 1.2832 2.2268 4.4907 7.7930 1.5163 2.4210 4.1305 6.5950

Equating similar terms in cos nθ gives the following results:

cos 3θ : 2�0 = A sec3 θm,

�0 = 0.0698;
cos θ : 2�1 = 3A(sec3 θm − sec θm),

�1 = 0.1037.

From symmetry we also have that

�3 = �0 = 0.0698,

�2 = �1 = 0.1037.

Then the characteristic impedances are:

n = 0: ln Z1 = ln Z0 + 2�0
= ln 50 + 2(0.0698) = 4.051

Z1 = 57.5 �;
n = 1: ln Z2 = ln Z1 + 2�1

= ln 57.5 + 2(0.1037) = 4.259
Z2 = 70.7 �;

n = 2: ln Z3 = ln Z2 + 2�2
= ln 70.7 + 2(0.1037) = 4.466

Z3 = 87.0 �.
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FIGURE 5.17 Reflection coefficient magnitude versus frequency for the multisection matching
transformers of Example 5.7.

These values can be compared to the exact values from Table 5.2 of Z1 = 57.37 �,
Z2 = 70.71 �, and Z3 = 87.15 �. The bandwidth, from (5.64), is

� f

f0
= 2 − 4θm

π
= 2 − 4

(
44.7◦

180◦

)
= 1.01,

or 101%. This is significantly greater than the bandwidth of the binomial trans-
former of Example 5.6 (70%), which involved the same impedance mismatch.
The trade-off, of course, is a nonzero ripple in the passband of the Chebyshev
transformer.

Figure 5.17 shows reflection coefficient magnitudes versus frequency for the
exact designs from Table 5.2 for N = 1, 2, 3, and 4 sections. ■

5.8 TAPERED LINES

In the preceding sections we discussed how an arbitrary real load impedance could be
matched to a line over a desired bandwidth by using multisection matching transformers.
As the number N of discrete transformer sections increases, the step changes in charac-
teristic impedance between the sections become smaller, and the transformer geometry
approaches a continuously tapered line. In practice, of course, a matching transformer
must be of finite length—often no more than a few sections long. This suggests that,
instead of discrete sections, the transformer can be continuously tapered, as shown in
Figure 5.18a. Different passband characteristics can be obtained by using different types of
taper.

In this section we will derive an approximate theory, again based on the theory of small
reflections, to predict the reflection coefficient response as a function of the impedance
taper versus position, Z(z). We will apply these results to a few common types of imped-
ance tapers.

Consider the continuously tapered line of Figure 5.18a as being made up of a num-
ber of incremental sections of length �z, with an impedance change �Z(z) from one
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z

zz z + ∆z

0

(a)

(b)

L

ZL

Z(z)Z0

Z Z + ∆Z

∆Γ

FIGURE 5.18 A tapered transmission line matching section and the model for an incremen-
tal length of tapered line. (a) The tapered transmission line matching section.
(b) Model for an incremental step change in impedance of the tapered line.

section to the next, as shown in Figure 5.18b. The incremental reflection coefficient from
the impedance step at z is given by

�� = (Z + �Z) − Z

(Z + �Z) + Z
� �Z

2Z
. (5.65)

In the limit as �z → 0 we have an exact differential:

d� = d Z

2Z
= 1

2

d(ln Z/Z0)

dz
dz, (5.66)

since

d(ln f (z))

dz
= 1

f

d f (z)

dz
.

By using the theory of small reflections, we can find the total reflection coefficient at
z = 0 by summing all the partial reflections with their appropriate phase shifts:

�(θ) = 1

2

∫ L

z=0
e−2 jβz d

dz
ln

(
Z

Z0

)
dz, (5.67)

where θ = 2β�. If Z(z) is known, �(θ) can be found as a function of frequency. Alter-
natively, if �(θ) is specified, then in principle Z(z) can be found by inversion. This latter
procedure is difficult, and is generally avoided in practice; the reader is referred to refer-
ences [1] and [4] for further discussion of this topic. Here we will consider three special
cases of Z(z) impedance tapers, and evaluate the resulting responses.

Exponential Taper

Consider first an exponential taper, where

Z(z) = Z0eaz for 0 < z < L , (5.68)
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Z(z)

ZL

Z0

zL0

(a)

�L0 � 2� 3� 4� 5�

(b)

⎪Γ⎪

FIGURE 5.19 A matching section with an exponential impedance taper. (a) Variation of imped-
ance. (b) Resulting reflection coefficient magnitude response.

as indicated in Figure 5.19a. At z = 0, Z(0) = Z0, as desired. At z = L we wish to have
Z(L) = ZL = Z0eaL , which determines the constant a as

a = 1

L
ln

(
ZL

Z0

)
. (5.69)

We find �(θ) by using (5.68) and (5.69) in (5.67):

� = 1

2

∫ L

0
e−2 jβz d

dz
(ln eaz)dz

= ln ZL/Z0

2L

∫ L

0
e−2 jβzdz

= ln ZL/Z0

2
e− jβL sin βL

βL
. (5.70)

Observe that this derivation assumes that β, the propagation constant of the tapered line, is
not a function of z—an assumption generally valid only for TEM lines.

The magnitude of the reflection coefficient in (5.70) is sketched in Figure 5.19b; note
that the peaks in |�| decrease with increasing length, as one might expect, and that the
length should be greater than λ/2 (βL > π) to minimize the mismatch at low frequencies.

Triangular Taper

Next consider a triangular taper for d ln (Z/Z0) /dz, that is,

Z(z) =
{

Z0e2(z/L)2 ln ZL/Z0 for 0 ≤ z ≤ L/2

Z0e(4z/L−2z2/L2−1) ln ZL/Z0 for L/2 ≤ z ≤ L ,
(5.71)
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2

FIGURE 5.20 A matching section with a triangular taper for d(ln Z/Z0)/dz. (a) Variation of
impedance. (b) Resulting reflection coefficient magnitude response.

so that the derivative is triangular in form:

d(ln Z/Z0)

dz
=

{
4z/L2 ln ZL/Z0 for 0 ≤ z ≤ L/2

(4/L − 4z/L2) ln ZL/Z0 for L/2 ≤ z ≤ L .
(5.72)

Z(z) is plotted in Figure 5.20a. Evaluating � from (5.67) gives

�(θ) = 1

2
e− jβL ln

(
ZL

Z0

) [
sin(βL/2)

βL/2

]2

. (5.73)

The magnitude of this result is sketched in Figure 5.20b. Note that, for βL > 2π , the
peaks of the triangular taper are lower than the corresponding peaks of the exponential
case. However, the first null for the triangular taper occurs at βL = 2π , whereas for the
exponential taper it occurs at βL = π .

Klopfenstein Taper

Considering the fact that there is an infinite number of possibilities for choosing an
impedance matching taper, it is logical to ask if there is a design that is “best.” For a given
taper length (greater than some critical value), the Klopfenstein impedance taper [4, 5] has
been shown to be optimum in the sense that the reflection coefficient is minimum over the
passband. Alternatively, for a maximum reflection coefficient specification in the passband,
the Klopfenstein taper yields the shortest matching section.

The Klopfenstein taper is derived from a stepped Chebyshev transformer as the num-
ber of sections increases to infinity, and is analogous to the Taylor distribution of antenna
array theory. We will not present the details of this derivation, which can be found in
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references [1] and [4]; only the necessary results for the design of Klopfenstein tapers are
given in what follows.

The logarithm of the characteristic impedance variation for the Klopfenstein taper is
given by

ln Z(z) = 1

2
ln Z0 ZL + �0

cosh A
A2φ(2z/L − 1, A) for 0 ≤ z ≤ L , (5.74)

where the function φ(x, A) is defined as

φ(x, A) = −φ(−x, A) =
∫ x

0

I1(A
√

1 − y2)

A
√

1 − y2
dy for |x | ≤ 1, (5.75)

where I1(x) is the modified Bessel function. The function of (5.75) has the following spe-
cial values:

φ(0, A) = 0

φ(x, 0) = x

2

φ(1, A) = cosh A − 1

A2
,

but otherwise (5.75) must be calculated numerically. A simple and efficient method for
doing this is available [6].

The resulting reflection coefficient is given by

�(θ) = �0e− jβL cos
√

(βL)2 − A2

cosh A
for βL > A. (5.76)

If βL < A, the cos
√

(βL)2 − A2 term becomes cosh
√

A2 − (βL)2.
In (5.74) and (5.76), �0 is the reflection coefficient at zero frequency, given as

�0 = ZL − Z0

ZL + Z0
� 1

2
ln

(
ZL

Z0

)
. (5.77)

The passband is defined as βL ≥ A, and so the maximum ripple in the passband is

�m = �0

cosh A
(5.78)

because �(θ) oscillates between ±�0/ cosh A for βL > A.
It is interesting to note that the impedance taper of (5.74) has steps at z = 0 and

L (the ends of the tapered section) and so does not smoothly join the source and load
impedances. A typical Klopfenstein impedance taper and its response are given in the fol-
lowing example.

EXAMPLE 5.8 DESIGN OF TAPERED MATCHING SECTIONS

Design a triangular taper, an exponential taper, and a Klopfenstein taper (with
�m = 0.02) to match a 50 � load to a 100 � line. Plot the impedance variations
and resulting reflection coefficient magnitudes versus βL .

Solution
Triangular taper: From (5.71) the impedance variation is

Z(z) = Z0

{
e2(z/L)2 ln ZL/Z0 for 0 ≤ z ≤ L/2

e(4z/L−2z2/L2−1) ln ZL/Z0 for L/2 ≤ z ≤ L ,
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FIGURE 5.21 Solution to Example 5.8. (a) Impedance variations for the triangular, exponential,
and Klopfenstein tapers. (b) Resulting reflection coefficient magnitude versus fre-
quency for the tapers of (a).

with Z0 = 100 � and ZL = 50 �. The resulting reflection coefficient response is
given by (5.73):

|�(θ)| = 1

2
ln

(
ZL

Z0

)[
sin(βL/2)

βL/2

]2

.

Exponential taper: From (5.68) the impedance variation is

Z(z) = Z0eaz for 0 < z < L ,

with a = (1/L) ln ZL/Z0 = 0.693/L . The reflection coefficient response is, from
(5.70),

|�(θ)| = 1

2
ln

(
ZL

Z0

)
sin βL

βL
.

Klopfenstein taper: Using (5.77) gives �0 as

�0 = 1

2
ln

(
ZL

Z0

)
= 0.346,
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and (5.78) gives A as

A = cosh−1
(

�0

�m

)
= cosh−1

(
0.346

0.02

)
= 3.543.

The impedance taper must be numerically evaluated from (5.74). The reflection
coefficient magnitude is given by (5.76):

|�(θ)| = �0
cos

√
(βL)2 − A2

cosh A
.

The passband for the Klopfenstein taper is defined as βL > A = 3.543 = 1.13π .
Figure 5.21 shows the impedance variations (vs. z/L), and the resulting re-

flection coefficient magnitude (vs. βL) for the three types of tapers. The Klopfen-
stein taper gives the desired response of |�| ≤ �m = 0.02 for βL ≥ 1.13π , which
is smaller than the corresponding lengths of either the triangular or the expo-
nential taper transformer. Also note that, like the stepped-Chebyshev matching
transformer, the response of the Klopfenstein taper has equal-ripple lobes versus
frequency in its passband. ■

5.9 THE BODE–FANO CRITERION

In this chapter we discussed several techniques for matching an arbitrary load at a single
frequency, using lumped elements, tuning stubs, and single-section quarter-wave trans-
formers. We presented multisection matching transformers and tapered lines as a means of
obtaining broader bandwidths with various passband characteristics. We close our study of
impedance matching with a somewhat qualitative discussion of the theoretical limits that
constrain the performance of an impedance matching network.

We limit our discussion to the circuit of Figure 5.1, where a lossless network is used to
match an arbitrary complex load, generally over a nonzero bandwidth. From a very general
perspective, we might raise the following questions in regard to this problem:

� Can we achieve a perfect match (zero reflection) over a specified bandwidth?
� If not, how well can we do? What is the trade-off between �m , the maximum allow-

able reflection in the passband, and the bandwidth?
� How complex must the matching network be for a given specification?

These questions can be answered by the Bode–Fano criterion [7, 8] which gives, for
certain canonical types of load impedances, a theoretical limit on the minimum reflec-
tion coefficient magnitude that can be obtained with an arbitrary matching network. The
Bode–Fano criterion thus represents an optimum result that can be ideally achieved, even
though such a result may only be approximated in practice. Such optimal results are always
important, however, because they specify an upper limit of performance, and so provide a
benchmark against which a practical design can be compared.

Figure 5.22a shows a lossless network used to match a parallel RC load impedance.
The Bode–Fano criterion states that∫ ∞

0
ln

1

|�(ω)|dω ≤ π

RC
, (5.79)

where �(ω) is the reflection coefficient seen looking into the arbitrary lossless match-
ing network. The derivation of this result is beyond the scope of this text (the interested
reader is referred to references [7] and [8]); our goal here is to discuss the implications of
this result.
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Circuit Bode-Fano limit
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Γ(�) Lossless

matching
network

(b)

R

C

Γ(�) Lossless
matching
network

(c)

(d)

RL
Γ(�) Lossless

matching
network

R

L

Γ(�) Lossless
matching
network

0
ln d� �<

RC
1

⎪Γ(�)⎪

ln d� <1
⎪Γ(�)⎪

ln d�
�R<
L

1
⎪Γ(�)⎪

�L
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�RC

∫

0
∫

0
∫

�
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�

�2
1
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FIGURE 5.22 The Bode–Fano limits for RC and RL loads matched with passive and lossless
networks (ω0 is the center frequency of the matching bandwidth). (a) Parallel RC.
(b) Series RC. (c) Parallel RL. (d) Series RL.

Assume that we desire to synthesize a matching network with a reflection coefficient
response like that shown in Figure 5.23a. Applying (5.79) to this function gives∫ ∞

0
ln

1

|�|dω =
∫

�ω

ln
1

�m
dω = �ω ln

1

�m
≤ π

RC
, (5.80)

which leads to the following conclusions:

� For a given load (a fixed RC product), a broader bandwidth (�ω) can be achieved
only at the expense of a higher reflection coefficient in the passband (�m).

� The passband reflection coefficient, �m , cannot be zero unless �ω = 0. Thus a
perfect match can be achieved only at a finite number of discrete frequencies, as
illustrated in Figure 5.23b.

� As R and/or C increases, the quality of the match (�ω and/or 1/�m) must decrease.
Thus, higher-Q circuits are intrinsically harder to match than are lower-Q circuits
(we will discussQ in Chapter 6).

Because ln (1/|�|) is proportional to the return loss (in dB) at the input of the matching
network, (5.79) can be interpreted as requiring that the area between the return loss curve
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⎪Γ⎪

�∆�0

1
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⎪Γ⎪

�
Not realizable

⎪Γ⎪

�
Realizable

(a)

(b)

FIGURE 5.23 Illustrating the Bode–Fano criterion. (a) A possible reflection coefficient response.
(b) Nonrealizable and realizable reflection coefficient responses.

and the |�| = 1 (RL = 0 dB) axis must be less than or equal to a particular constant.
Optimization then implies that the return loss curve be adjusted so that |�| = �m over
the passband and |�| = 1 elsewhere, as in Figure 5.23a. In this way, no area under the
return loss curve is wasted outside the passband, or lost in regions within the passband
for which |�| < �m . The square-shaped response of Figure 5.23a is therefore the optimum
response, but cannot be realized in practice because it would require an infinite number
of elements in the matching network. It can be approximated, however, with a reasonably
small number of elements, as described in reference [8]. Finally, note that the Chebyshev
matching transformer can be considered as a close approximation to the ideal passband of
Figure 5.23a when the ripple of the Chebyshev response is made equal to �m . Figure 5.22
lists the Bode–Fano limits for other types of RC and RL loads.
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PROBLEMS

5.1 Design two lossless L-section matching circuits to match each of the following loads to a 100 �

generator at 3 GHz. (a) ZL = 150 − j200 � and (b) ZL = 20 − j90 �.

5.2 We have seen that the matching of an arbitrary load impedance requires a network with at least two
degrees of freedom. Determine the types of load impedances/admittances that can be matched with
the two single-element networks shown below.

Z0 ZL

(a)

jX

Z0 YL

(b)

jB

5.3 A load impedance ZL = 100 + j80 � is to be matched to a 75 � line using a single shunt-stub tuner.
Find two designs using open-circuited stubs.

5.4 Repeat Problem 5.3 using short-circuited stubs.

5.5 A load impedance ZL = 90 + j60 � is to be matched to a 75 � line using a single series-stub tuner.
Find two designs using open-circuited stubs.

5.6 Repeat Problem 5.5 using short-circuited stubs.

5.7 In the circuit shown below a load ZL = 200 + j100 � is to be matched to a 40 � line, using a length
� of lossless transmission line of characteristic impedance Z1. Find � and Z1. Determine, in general,
what type of load impedances can be matched using such a circuit.

l

Z0 = 40 Ω Z1 ZL ZL = 200 + j100 Ω

5.8 An open-circuit tuning stub is to be made from a lossy transmission line with an attenuation con-
stant α. What is the maximum value of normalized reactance that can be obtained with this stub?
What is the maximum value of normalized reactance that can be obtained with a shorted stub of the
same type of transmission line? Assume α� is small.

5.9 Design a double-stub tuner using open-circuited stubs with a λ/8 spacing to match a load admittance
YL = (0.4 + j1.2)Y0.

5.10 Repeat Problem 5.9 using a double-stub tuner with short-circuited stubs and a 3λ/8 spacing.

5.11 Derive the design equations for a double-stub tuner using two series stubs spaced a distance d apart.
Assume the load impedance is ZL = RL + j X L .

5.12 Consider matching a load ZL = 200 � to a 100 � line, using single shunt-stub, single series stub,
and double shunt-stub tuners, with short-circuited stubs. Which tuner will give the best bandwidth?
Justify your answer by calculating the reflection coefficient for all six solutions at 1.1 f0, where f0 is
the match frequency, or use CAD to plot the reflection coefficient versus frequency.

5.13 Design a single-section quarter-wave matching transformer to match a 350 � load to a 100 � line.
What is the percent bandwidth of this transformer, for SWR ≤ 2? If the design frequency is 4 GHz,
sketch the layout of a microstrip circuit, including dimensions, to implement this matching trans-
former. Assume the substrate is 0.159 cm thick, with a relative permittivity of 2.2.

5.14 Consider the quarter-wave transformer of Figure 5.13 with Z1 = 100 �, Z2 = 150 �, and ZL =
225 �. Evaluate the worst-case percent error in computing |�| from the approximate expression
(5.42), compared to the exact result.



c05ImpedanceMatchingandTuning Pozar July 29, 2011 20:34

Problems 271

5.15 A waveguide load with an equivalent TE10 wave impedance of 377 � must be matched to an air-filled
X-band rectangular guide at 10 GHz. A quarter-wave matching transformer is to be used, and is to
consist of a section of guide filled with dielectric. Find the required dielectric constant and physical
length of the matching section. What restrictions on the load impedance apply to this technique?

5.16 A four-section binomial matching transformer is to be used to match a 12.5 � load to a 50 �

line at a center frequency of 1 GHz. (a) Design the matching transformer, and compute the band-
width for �m = 0.05. Use CAD to plot the input reflection coefficient versus frequency. (b) Lay out
the microstrip implementation of this circuit on an FR4 substrate having εr = 4.2, d = 0.158 cm,
and tan δ = 0.02, with copper conductors 0.5 mil thick. Use CAD to plot the insertion loss versus
frequency.

5.17 Derive the exact characteristic impedance for a two-section binomial matching transformer for a
normalized load impedance ZL/Z0 = 1.5. Check your results with Table 5.1.

5.18 Calculate and plot the percent bandwidth for an N = 1-, 2-, and 4-section binomial matching trans-
former versus ZL/Z0 = 1.5 to 6 for �m = 0.2.

5.19 Design a four-section Chebyshev matching transformer to match a 50 � line to a 30 � load. The
maximum permissible SWR over the passband is 1.25. What is the resulting bandwidth? Use the
approximate theory developed in the text, as opposed to the tables. Use CAD to plot the input SWR
versus frequency.

5.20 Derive the exact characteristic impedances for a two-section Chebyshev matching transformer for a
normalized load impedance ZL/Z0 = 1.5. Check your results with Table 5.2 for �m = 0.05.

5.21 A load of ZL/Z0 = 1.5 is to be matched to a feed line using a multisection transformer, and it is
desired to have a passband response with |�(θ)| = A(0.1 + cos2 θ) for 0 ≤ θ ≤ π . Use the approx-
imate theory for multisection transformers to design a two-section transformer.

5.22 A tapered matching section has d ln (Z/Z0) /dz = A sin π z/L . Find the constant A so that Z(0) =
Z0 and Z(L) = ZL . Compute �, and plot |�| versus βL .

5.23 Design an exponentially tapered matching transformer to match a 100 � load to a 50 � line. Plot |�|
versus βL , and find the length of the matching section (at the center frequency) required to obtain
|�| ≤ 0.05 over a 100% bandwidth. How many sections would be required if a Chebyshev matching
transformer were used to achieve the same specifications?

5.24 An ultra wideband (UWB) radio transmitter, operating from 3.1 to 10.6 GHz, drives a parallel RC
load with R = 75 � and C = 0.6 pF. What is the best return loss that can be obtained with an
optimum matching network?

5.25 Consider a series RL load with R = 80 � and L = 5 nH. Design a lumped-element L-section match-
ing network to match this load to a 50 � line at 2 GHz. Plot |�| versus frequency for this network
to determine the bandwidth for which |�| ≤ �m = 0.1. Compare this with the maximum possible
bandwidth for this load, as given by the Bode–Fano criterion. (Assume a square reflection coefficient
response like that of Figure 5.23a.)
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Microwave Resonators

Microwave resonators are used in a variety of applications, including filters, oscillators,
frequency meters, and tuned amplifiers. Because the operation of microwave resonators is very
similar to that of lumped-element resonators of circuit theory, we will begin by reviewing the
basic characteristics of series and parallel RLC resonant circuits. We will then discuss various
implementations of resonators at microwave frequencies using distributed elements such as
transmission lines, rectangular and circular waveguides, and dielectric cavities. We will also
discuss the excitation of resonators using apertures and current sheets.

6.1 SERIES AND PARALLEL RESONANT CIRCUITS

At frequencies near resonance, a microwave resonator can usually be modeled by either a
series or parallel RLC lumped-element equivalent circuit, and so we will now review some
of the basic properties of these circuits.

Series Resonant Circuit

A series RLC resonant circuit is shown in Figure 6.1a. The input impedance is

Z in = R + jωL − j
1

ωC
, (6.1)

and the complex power delivered to the resonator is

Pin = 1

2
VI ∗ = 1

2
Z in|I |2 = 1

2
Z in

∣∣∣∣ V

Z in

∣∣∣∣
2

= 1

2
|I |2

(
R + jωL − j

1

ωC

)
. (6.2)

272
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IV
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LR

(a)

(b)

BW

FIGURE 6.1 A series RLC resonator and its response. (a) A series RLC resonator circuit. (b) Input
impedance magnitude versus frequency.

The power dissipated by the resistor R is

Ploss = 1

2
|I |2R, (6.3a)

the average magnetic energy stored in the inductor L is

Wm = 1

4
|I |2L , (6.3b)

and the average electric energy stored in the capacitor C is

We = 1

4
|Vc|2C = 1

4
|I |2 1

ω2C
, (6.3c)

where Vc is the voltage across the capacitor. Then the complex power of (6.2) can be
rewritten as

Pin = Ploss + 2 jω(Wm − We), (6.4)

and the input impedance of (6.1) can be rewritten as

Z in = 2Pin

|I |2 = Ploss + 2 jω(Wm − We)

1
2 |I |2 . (6.5)

Resonance occurs when the average stored magnetic and electric energies are equal, or
Wm = We. Then from (6.5) and (6.3a), the input impedance at resonance is

Z in = Ploss
1
2 |I |2 = R,
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which is purely real. From (6.3b,c), Wm = We implies that the resonant frequency, ω0, can
be defined as

ω0 = 1√
LC

. (6.6)

Another important parameter of a resonant circuit is its Q, or quality factor, which is
defined as

Q = ω
average energy stored

energy loss/second

= ω
Wm + We

Ploss
. (6.7)

Thus Q is a measure of the loss of a resonant circuit—lower loss implies a higher Q.
Resonator losses may be due to conductor loss, dielectric loss, or radiation loss, and are
represented by the resistance, R, of the equivalent circuit. An external connecting network
may introduce additional loss. Each of these loss mechanisms will have the effect of low-
ering the Q. The Q of the resonator itself, disregarding external loading effects, is called
the unloaded Q, denoted as Q0.

For the series resonant circuit of Figure 6.1a, the unloaded Q can be evaluated from
(6.7), using (6.3) and the fact that Wm = We at resonance, to give

Q0 = ω0
2Wm

Ploss
= ω0L

R
= 1

ω0RC
, (6.8)

which shows that Q increases as R decreases.
Next, consider the behavior of the input impedance of this resonator near its resonant

frequency [1]. Let ω = ω0 + �ω, where �ω is small. The input impedance can then be
rewritten from (6.1) as

Zin = R + jωL

(
1 − 1

ω2LC

)

= R + jωL

(
ω2 − ω2

0

ω2

)
,

since ω2
0 = 1/LC. Now ω2 − ω2

0 = (ω − ω0)(ω + ω0) = �ω(2ω − �ω) � 2ω�ω for
small �ω. Thus,

Zin � R + j2L�ω

� R + j
2RQ0�ω

ω0
. (6.9)

This form will be useful for identifying equivalent circuits with distributed element
resonators.

Alternatively, a resonator with loss can be modeled as a lossless resonator whose res-
onant frequency, ω0, has been replaced with a complex effective resonant frequency:

ω0 ← ω0

(
1 + j

2Q0

)
. (6.10)

This can be seen by considering the input impedance of a series resonator with no loss, as
given by (6.9) with R = 0:

Zin = j2L(ω − ω0).
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Then substituting the complex frequency of (6.10) for ω0 gives

Z in = j2L

(
ω − ω0 − j

ω0

2Q0

)

= ω0L

Q0
+ j2L(ω − ω0) = R + j2L�ω,

which is identical to (6.9). This is a useful procedure because for most practical resonators
the loss is very small, so the Q can be found using the perturbation method, beginning
with the solution for the lossless case. Then the effect of loss can be added to the input
impedance by replacing ω0 with the complex resonant frequency given in (6.10).

Finally, consider the half-power fractional bandwidth of the resonator. Figure 6.1b
shows the variation of the magnitude of the input impedance versus frequency. When the
frequency is such that |Z in|2 = 2R2, then by (6.2) the average (real) power delivered to
the circuit is one-half that delivered at resonance. If BW is the fractional bandwidth, then
�ω/ω0 = BW/2 at the upper band edge. Using (6.9) gives

|R + jRQ0(BW)|2 = 2R2,

or

BW = 1

Q0
. (6.11)

Parallel Resonant Circuit

The parallel RLC resonant circuit, shown in Figure 6.2a, is the dual of the series RLC
circuit. The input impedance is

Zin =
(

1

R
+ 1

jωL
+ jωC

)−1

, (6.12)

⎪Zin(�)⎪

R

�/�00 1

0.707R

Zin

C

I

LV

+

–

R

(a)

(b)

BW

FIGURE 6.2 A parallel RLC resonator and its response. (a) A parallel RLC circuit. (b) Input
impedance magnitude versus frequency.
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and the complex power delivered to the resonator is

Pin = 1

2
VI ∗ = 1

2
Z in|I |2 = 1

2
|V |2 1

Z∗
in

= 1

2
|V |2

(
1

R
+ j

ωL
− jωC

)
. (6.13)

The power dissipated by the resistor, R, is

Ploss = 1

2

|V |2
R

, (6.14a)

the average electric energy stored in the capacitor, C , is

We = 1

4
|V |2C, (6.14b)

and the average magnetic energy stored in the inductor, L , is

Wm = 1

4
|IL |2L = 1

4
|V |2 1

ω2L
, (6.14c)

where IL is the current through the inductor. Then the complex power of (6.13) can be
rewritten as

Pin = Ploss + 2 jω(Wm − We), (6.15)

which is identical to (6.4). Similarly, the input impedance can be expressed as

Z in = 2Pin

|I |2 = Ploss + 2 jω(Wm − We)

1
2 |I |2 , (6.16)

which is identical to (6.5).
As in the series case, resonance occurs when Wm = We. Then from (6.16) and (6.14a)

the input impedance at resonance is

Z in = Ploss
1
2 |I |2 = R,

which is a purely real impedance. From (6.14b) and (6.14c), Wm = We implies that the
resonant frequency, ω0, can be defined as

ω0 = 1√
LC

, (6.17)

which is identical to the series resonant circuit case. Resonance in the case of a parallel
RLC circuit is sometimes referred to as an antiresonance.

From the definition of (6.7), and the results in (6.14), the unloaded Q of the parallel
resonant circuit can be expressed as

Q0 = ω0
2Wm

Ploss
= R

ω0L
= ω0RC, (6.18)

since Wm = We at resonance. This result shows that the Q of the parallel resonant circuit
increases as R increases.
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Near resonance, the input impedance of (6.12) can be simplified using the series ex-
pansion result that

1

1 + x
� 1 − x + · · · .

Again letting ω = ω0 + �ω, where �ω is small, allows (6.12) to be rewritten as [1]

Zin �
(

1

R
+ 1 − �ω/ω0

jω0L
+ jω0C + j�ωC

)−1

�
(

1

R
+ j

�ω

ω2
0 L

+ j�ωC

)−1

�
(

1

R
+ 2 j�ωC

)−1

� R

1 + 2 j�ωRC
= R

1 + 2 j Q0�ω/ω0
, (6.19)

since ω2
0 = 1/LC. When R = ∞ (6.19) reduces to

Zin = 1

j2C(ω − ω0)
.

As in the series resonator case, the effect of loss can be accounted for by replacing ω0
in this expression with a complex effective resonant frequency:

ω0 ← ω0

(
1 + j

2Q0

)
. (6.20)

Figure 6.2b shows the behavior of the magnitude of the input impedance versus
frequency. The half-power bandwidth edges occur at frequencies (�ω/ω0 = BW/2)

such that

|Z in|2 = R2

2
,

which, from (6.19), implies that

BW = 1

Q0
, (6.21)

as in the series resonance case.

Loaded and Unloaded Q

The unloaded Q, Q0, defined in the preceding sections is a characteristic of the resonator it-
self, in the absence of any loading effects caused by external circuitry. In practice, however,
a resonator is invariably coupled to other circuitry, which will have the effect of lowering
the overall, or loaded Q, QL , of the circuit. Figure 6.3 depicts a resonator coupled to an

RL

Resonant
circuit

Q

FIGURE 6.3 A resonant circuit connected to an external load, RL .
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TABLE 6.1 Summary of Results for Series and Parallel Resonators

Quantity Series Resonator Parallel Resonator

Input impedance/admittance Zin = R + jωL − j
1

ωC
Yin = 1

R
+ jωC − j

1

ωL

� R + j
2RQ0�ω

ω0
� 1

R
+ j

2Q0�ω

Rω0

Power loss Ploss = 1

2
|I |2 R Ploss = 1

2

|V |2
R

Stored magnetic energy Wm = 1

4
|I |2L Wm = 1

4
|V |2 1

ω2L

Stored electric energy We = 1

4
|I |2 1

ω2C
We = 1

4
|V |2C

Resonant frequency ω0 = 1√
LC

ω0 = 1√
LC

Unloaded Q Q0 = ω0L

R
= 1

ω0RC
Q0 = ω0RC = R

ω0L

External Q Qe = ω0L

RL
Qe = RL

ω0L

external load resistor, RL . If the resonator is a series RLC circuit, the load resistor RL adds
in series with R, so the effective resistance in (6.8) is R + RL . If the resonator is a parallel
RLC circuit, the load resistor RL combines in parallel with R, so the effective resistance in
(6.18) is RRL/(R + RL). If we define an external Q, Qe, as

Qe =

⎧⎪⎪⎨
⎪⎪⎩

ω0L

RL
for series circuits

RL

ω0L
for parallel circuits,

(6.22)

then the loaded Q can be expressed as

1

QL
= 1

Qe
+ 1

Q0
. (6.23)

Table 6.1 summarizes the above results for series and parallel resonant circuits.

6.2 TRANSMISSION LINE RESONATORS

As we have seen, ideal lumped circuit elements are often unattainable at microwave fre-
quencies, so distributed elements are frequently used. In this section we will study the use
of transmission line sections with various lengths and terminations (usually open- or short-
circuited) to form resonators. Because we are interested in the Q of these resonators, we
must consider transmission lines with losses.

Short-Circuited λ/2 Line

A length of lossy transmission line, short circuited at one end, is shown in Figure 6.4.
The line has a characteristic impedance, Z0, propagation constant, β, and attenuation
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V

0

Z0, �, �Zin

n = 2

n = 1

FIGURE 6.4 A short-circuited length of lossy transmission line, and the voltage distributions for
n = 1 (� = λ/2) and n = 2 (� = λ) resonators.

constant, α. At the resonant frequency ω = ω0, the length of the line is � = λ/2.
From (2.91), the input impedance is

Z in = Z0 tanh(α + jβ)�.

Using an identity for the hyperbolic tangent gives

Z in = Z0
tanh α� + j tan β�

1 + j tan β� tanh α�
. (6.24)

Observe that Z in = jZ0 tan β� if α = 0 (a lossless line).
In practice it is usually desirable to use a low-loss transmission line, so we assume

that α� � 1, and then tanh α� � α�. Again let ω = ω0 + �ω, where �ω is small. Then,
assuming a TEM line, we have

β� = ω�

vp
= ω0�

vp
+ �ω�

vp
,

where vp is the phase velocity of the transmission line. Because � = λ/2 = πvp/ω0 for
ω = ω0, we have

β� = π + �ωπ

ω0
,

and then

tan β� = tan

(
π + �ωπ

ω0

)
= tan

�ωπ

ω0
� �ωπ

ω0
.

Using these results in (6.24) gives

Z in � Z0
α� + j (�ωπ/ω0)

1 + j (�ωπ/ω0)α�
� Z0

(
α� + j

�ωπ

ω0

)
, (6.25)

since �ωα�/ω0 � 1.
Equation (6.25) is of the form

Z in = R + 2 jL�ω,
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which is the input impedance of a series RLC resonant circuit, as given by (6.9). We can
identify the resistance of the equivalent circuit as

R = Z0α�, (6.26a)

and the inductance of the equivalent circuit as

L = Z0π

2ω0
. (6.26b)

The capacitance of the equivalent circuit can be found from (6.6) as

C = 1

ω2
0 L

. (6.26c)

The resonator of Figure 6.4 thus resonates for �ω = 0 (� = λ/2), and its input
impedance at resonance is Zin = R = Z0α�. Resonance also occurs for � = nλ/2, n =
1, 2, 3, . . . . The voltage distributions for the n = 1 and n = 2 resonant modes are shown
in Figure 6.4. The unloaded Q of this resonator can be found from (6.8) and (6.26) as

Q0 = ω0L

R
= π

2α�
= β

2α
, (6.27)

since β� = π at the first resonance. This result shows that the Q decreases as the attenua-
tion of the line increases, as expected.

EXAMPLE 6.1 Q OF HALF-WAVE COAXIAL LINE RESONATORS

A λ/2 resonator is made from a piece of copper coaxial line having an inner
conductor radius of 1 mm and an outer conductor radius of 4 mm. If the resonant
frequency is 5 GHz, compare the unloaded Q of an air-filled coaxial line resonator
to that of a Teflon-filled coaxial line resonator.

Solution
We first compute the attenuation of the coaxial line, using the results of Examples
2.6 or 2.7. From Appendix F, the conductivity of copper is σ = 5.813 × 107 S/m.
The surface resistivity at 5 GHz is

Rs =
√

ωµ0

2σ
= 1.84 × 10−2 	.

The attenuation due to conductor loss for the air-filled line is

αc = Rs

2η ln b/a

(
1

a
+ 1

b

)

= 1.84 × 10−2

2(377) ln (0.004/0.001)

(
1

0.001
+ 1

0.004

)
= 0.022 Np/m.
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