

Una función exponencial tiene la forma general $f(x)=a^x$, donde a es una constante positiva llamada base de la exponencial, y x es la variable independiente.

Características principales:

- Crece rápidamente cuando x aumenta si a > 1.
- Se acerca a 0 pero nunca alcanza el eje x cuando x se aproxima a menos infinito.
- Aproxima el eje y pero no lo alcanza

Características principales de las funciones exponenciales:

- Crecimiento/Decrecimiento rápido: Las funciones exponenciales crecen o decrecen
 rápidamente dependiendo de si la base a es mayor que 1 (crecimiento exponencial) o está entre
 0 y 1 (decrecimiento exponencial).
- 2. **Asíntotas**: Tienen una asíntota horizontal en y=0 si a>1 (para exponenciales crecientes) o cuando $x \to -\infty$ si 0 < a < 1 (para exponenciales decrecientes).

Ejemplo de función exponencial:

• Función exponencial creciente: $f(x) = 2^x$

Esta función crece rápidamente a medida que $oldsymbol{x}$ aumenta. Por ejemplo:

•
$$f(0) = 2^0 = 1$$

•
$$f(1) = 2^1 = 2$$

•
$$f(2) = 2^2 = 4$$

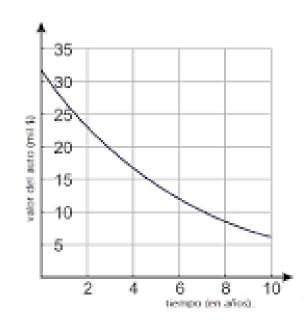
•
$$f(3) = 2^3 = 8$$

Y así sucesivamente.

• Función exponencial decreciente: $g(x) = \left(\frac{1}{2}\right)^x$

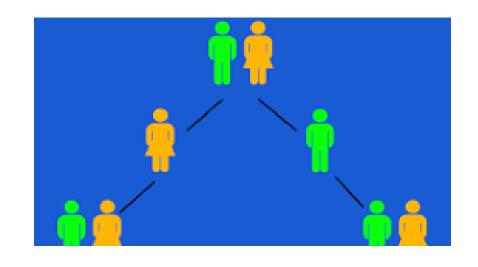
Esta función decrece rápidamente a medida que x aumenta negativamente (es decir, hacia la izquierda del eje vertical). Por ejemplo:

•
$$g(-1) = \left(\frac{1}{2}\right)^{-1} = 2$$

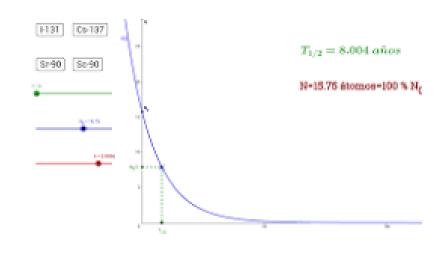

•
$$g(-2) = \left(\frac{1}{2}\right)^{-2} = 4$$

•
$$g(-3) = \left(\frac{1}{2}\right)^{-3} = 8$$

Y así sucesivamente.


FUNCIONES EXPONENCIALES —Aplicaciones-

Las funciones exponenciales tienen una amplia gama de aplicaciones en diversas áreas debido a su para describir capacidad crecimientos o decaimientos rápidos y proporcionar modelos matemáticos precisos para matemáticos precisos para fenómenos naturales, procesos científicos, financieros y más. Aquí te presento algunas de las aplicaciones más comunes de las funciones exponenciales:


FUNCIONES EXPONENCIALES —Aplicaciones-

Crecimiento poblacional: Las funciones exponenciales utilizadas para modelar crecimiento de poblaciones cuando la tasa de reproducción es proporcional al tamaño de la población actual y no hay factores limitantes. Ejemplos incluyen bacterias en cultivos, poblaciones de insectos, o células en cultivos celulares.

FUNCIONES EXPONENCIALES —Aplicaciones-

Procesos de desintegración radioactiva: desintegración radioactiva sigue una ley exponencial, donde la cantidad de material radiactivo disminuye exponencialmente con el tiempo. Este fenómeno es fundamental en física nuclear y radiología.

