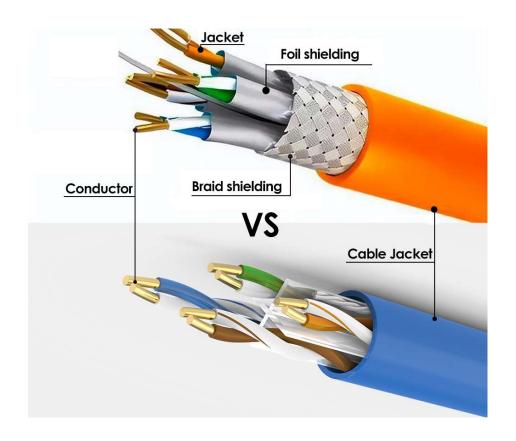

Unidad II Transmisión Digital

Fundamentos básicos de las comunicaciones digitales

Interferencia

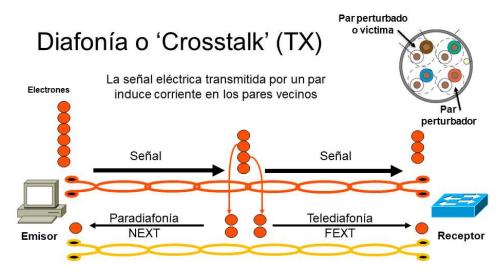
□ La interferencia ocurre cuando señales externas o no deseadas afectan el funcionamiento de una señal principal durante la transmisión. Estas señales adicionales pueden provenir de fuentes electromagnéticas, dispositivos electrónicos cercanos o señales de otras comunicaciones.

Tipos de Interferencia:


- □ Interferencia Electromagnética (EMI):
 - Causada por campos electromagnéticos generados por motores, fuentes de energía o dispositivos electrónicos.
 - Ej: Interferencia de un microondas en una red Wi-Fi.
- □ Interferencia de Frecuencia (RFI):
 - Resultado de señales de radiofrecuencia superpuestas.
 - Ej: Señales de transmisores de radio que afectan sistemas inalámbricos.
- □ Interferencia Intercanal:
 - Ocurre cuando un canal de comunicación afecta a otro
 - Común en sistemas de comunicación por radio o televisión.

□ Impacto:

- Pérdida de datos.
- Aumento de la tasa de errores en los paquetes de comunicación.
- Necesidad de retransmisión, reduciendo la eficiencia.

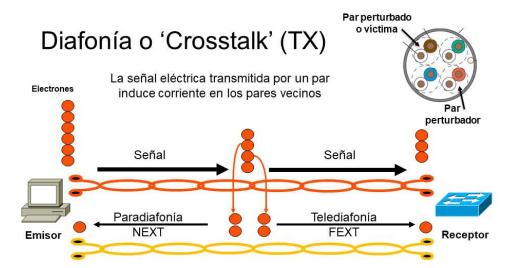

Medidas de Mitigación:

- Uso de blindajes en cables (cables apantallados).
- Aplicación de filtros electromagnéticos.
- Configuración adecuada de frecuencias y distancias entre sistemas.

Paradiafonía (Crosstalk)

□ La paradiafonía, también conocida como diafonía o crosstalk, ocurre cuando una señal de un canal de transmisión afecta a otro canal adyacente debido a un acoplamiento electromagnético entre ellos.

La diafonía se genera en ambos sentidos, pero siempre es más fuerte la que vuelve hacia el emisor o paradiafonía (NEXT)


Tipos de Paradiafonía (Crosstalk)

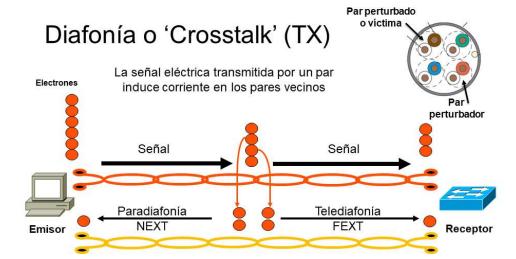
■ NEXT (Near-End Crosstalk):

- Diafonía que ocurre en el extremo más cercano al transmisor.
- Ej: Señales no deseadas que se generan en cables de red cercanos.

□ FEXT (Far-End Crosstalk):

Diafonía en el extremo opuesto al transmisor.

La diafonía se genera en ambos sentidos, pero siempre es más fuerte la que vuelve hacia el emisor o paradiafonía (NEXT)

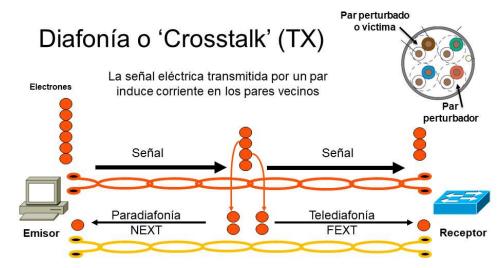

Causas:

Proximidad Física:

■ En cables cercanos, la corriente en uno genera un campo electromagnético que induce señales en los demás.

□ Diseño Deficiente del Sistema:

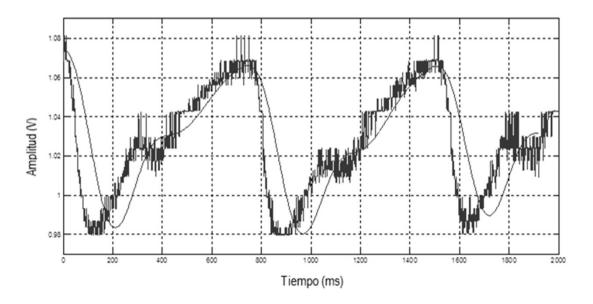
 Falta de aislamiento adecuado entre los circuitos o cables.


La diafonía se genera en ambos sentidos, pero siempre es más fuerte la que vuelve hacia el emisor o paradiafonía (NEXT)

■ Impacto:

- Reducción de la calidad de la señal.
- Degradación del rendimiento en sistemas de alta velocidad, como Ethernet.

Medidas de Mitigación:

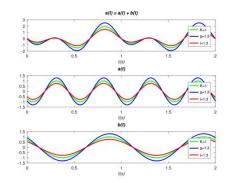

- Uso de cables trenzados (como en redes UTP) para minimizar el acoplamiento.
- Separación adecuada entre los cables.
- Implementación de técnicas de cancelación de interferencia en el receptor.

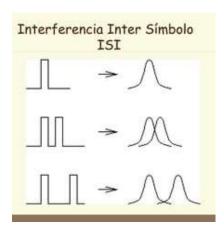
La diafonía se genera en ambos sentidos, pero siempre es más fuerte la que vuelve hacia el emisor o paradiafonía (NEXT)

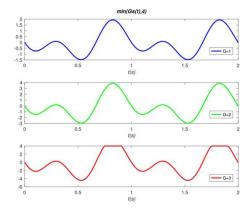
Distorsión

□ La distorsión es cualquier alteración en la forma original de una señal durante su transmisión. Este fenómeno puede deberse a las características del medio o a limitaciones del sistema de transmisión.

Tipos de Distorsión:


- □ Distorsión por Atenuación:
 - Las señales pierden amplitud con la distancia.
 - Es más pronunciada en frecuencias altas.

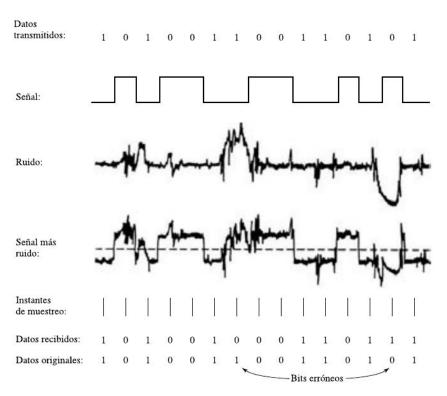



- Ocurre cuando los sistemas de transmisión no tienen una respuesta lineal al estímulo.
- Ej: Sobrecarga en un amplificador.

□ Interferencia Intersímbolo (ISI):

 Superposición de pulsos consecutivos, lo que dificulta la detección precisa de los bits. (señales repetidas)

□ Impacto:


- Pérdida de sincronización entre transmisor y receptor.
- Incremento en la tasa de error de bit (BER).

■ Medidas de Mitigación:

- Uso de amplificadores para restaurar señales distorsionadas.
- Diseño adecuado del sistema para minimizar el ISI.
- Elección del medio de transmisión adecuado, como fibra óptica para distancias largas.

Ruido

□ El ruido se refiere a cualquier señal indeseada que interfiera con la señal de datos durante la transmisión. A menudo es aleatorio y tiene múltiples fuentes.

Tipos de Ruido:

□ Ruido Térmico:

- Generado por el movimiento aleatorio de electrones en conductores.
- Presente en todos los sistemas electrónicos.
- Se mide en función de la temperatura.

□ Ruido de Disparo:

Causado por el flujo irregular de electrones en dispositivos como transistores.

□ Ruido de Intermodulación:

Producto de señales no lineales que crean nuevas frecuencias.

□ Ruido Impulsivo:

 Señales de corta duración y alta amplitud, generadas por interferencias electromagnéticas o fallas en equipos.

□ Relación Señal/Ruido (SNR):

- Es una medida de la calidad de una señal en presencia de ruido.
- Un SNR alto indica mejor calidad de transmisión.

□ Impacto:

- Introduce errores en los datos recibidos.
- Puede causar fallos en la sincronización de la señal.

■ Medidas de Mitigación:

- Uso de filtros de ruido para eliminar componentes indeseados.
- Diseño de sistemas con alta redundancia y capacidad de corrección de errores.
- Mejora del aislamiento en cables y equipos.

□ Resumen Comparativo

Aspecto	Interferencia	Paradiafonía	Distorsión	Ruido
Definición	Perturbación por señales externas.	Acoplamiento entre canales.	Alteración de la forma de onda.	Señales indeseadas aleatorias.
Causa Principal	Fuentes externas o interferentes.	Proximidad física de cables.	Características del canal.	Fenómenos térmicos y eléctricos.
Impacto	Perdida de datos o errores.	Señales contaminadas.	Pérdida de calidad de señal.	Incremento del BER.
Mitigación	Blindajes y filtros.	Cables trenzados, separación.	Amplificadores, ecualizadores.	Filtros, aislamiento, redundancia.

- □ El Teorema de Shannon y el Teorema de Nyquist son pilares fundamentales en las comunicaciones digitales.
- □ Ambos teoremas explican cómo transmitir datos de manera eficiente y sin errores dentro de un canal, pero lo hacen desde perspectivas diferentes.

Nyquist: $R=2 \times B \times log2(M)$

Shannon: $C=B \times log2(1+SNR)$

Teorema de Nyquist: La Relación entre Ancho de Banda y Velocidad Máxima.

□ El teorema de Nyquist, formulado por Harry Nyquist en 1928, establece un límite teórico para la velocidad de transmisión de datos en un canal libre de ruido.

Enunciado del Teorema de Nyquist:

□ La máxima velocidad a la que se pueden transmitir datos en un canal sin ruido está determinada por el doble del ancho de banda del canal.

$$R=2 \times B \times log2(M)$$

Donde:

- R: Tasa máxima de transmisión de datos (bits por segundo, bps).
- B: Ancho de banda del canal (Hz).
- M: Número de niveles discretos en la señal.

Ejemplo Práctico:

□ Un canal con un ancho de banda de 1 kHz (B=1000 Hz) usando M=2 (binario) puede transmitir:

$$R=2 \times B \times log2(M)$$

Ejemplo Práctico:

□ Un canal con un ancho de banda de 1 kHz (B=1000 Hz) usando M=2 (binario) puede transmitir:

$$R=2 \times B \times log2(M)$$

$$R=2 \times 1000 \times log2(2)=2000 bps$$

□ Si aumentamos los niveles a M=4?

Ejemplo Práctico:

□ Un canal con un ancho de banda de 1 kHz (B=1000 Hz) usando M=2 (binario) puede transmitir:

$$R=2 \times B \times log2(M)$$

$$R=2 \times 1000 \times log2(2)=2000 bps$$

□ Si aumentamos los niveles a M=4?

$$R=2 \times 1000 \times log2(4)=4000 bps$$

Limitaciones del Teorema de Nyquist:

- □ Supone que el canal está libre de ruido.
- □ En la práctica, el ruido limita la cantidad de niveles (M) que pueden usarse sin errores.

Teorema de Shannon: El Límite de Capacidad con Ruido

- Claude Shannon, en 1948, extendió las ideas de Nyquist para incluir el efecto del ruido en los canales de comunicación.
- □ Shannon introdujo el concepto de capacidad del canal, que es la máxima tasa de datos que se puede transmitir de manera confiable a través de un canal con ruido.

Enunciado del Teorema de Shannon:

□ La capacidad máxima de un canal de comunicación está determinada por su ancho de banda y la relación señal-ruido (SNR).

$$C=B \times log2(1+SNR)$$

- Donde:
 - C: Capacidad máxima del canal (bits por segundo, bps).
 - B: Ancho de banda del canal (Hz).
 - SNR: Relación señal-ruido (proporción de potencia de la señal / potencia del ruido, adimensional).

 $C=B \times log2(1+SNR)$

Explicación:

- □ Relación entre ancho de banda y capacidad:
 - Un mayor ancho de banda permite transmitir más datos por segundo.
- □ Efecto del ruido (SNR):
 - Si el ruido es alto (SNR→0), la capacidad se reduce drásticamente, ya que las señales no pueden distinguirse del ruido.
 - Si el ruido es bajo (SNR≫1), la capacidad aumenta porque las señales se detectan claramente.
- □ Logaritmo Base 2:
 - Refleja la cantidad de bits adicionales que se pueden transmitir al mejorar la SNR.

Ejemplo Práctico:

□ Un canal con B=1000 Hz y SNR=10:

 $C=B \times log2(1+SNR)$

Ejemplo Práctico:

□ Un canal con B=1000 Hz y SNR=10:

Implicaciones del Teorema de Shannon:

- □ Proporciona un límite teórico superior.
- □ Ningún sistema puede transmitir datos de manera confiable por encima de esta capacidad.
- □ Es fundamental para diseñar sistemas de codificación y modulación.

Aplicaciones Prácticas

□ Teorema de Nyquist:

- Diseño de sistemas de transmisión sin ruido, como redes Ethernet.
- Determinación de tasas de símbolos en sistemas de comunicación binarios o multinivel.

□ Teorema de Shannon:

- Diseño de códigos de corrección de errores y esquemas de modulación.
- Optimización de redes inalámbricas, donde el ruido es significativo.
- Evaluación del rendimiento de canales como fibra óptica y satélites.

Ejemplo 1: Ancho de Banda y Tasa de Datos (Teorema de Nyquist)

□ Supongamos que estás diseñando una red Ethernet que utiliza señales binarias (M=2) para transmitir datos. El canal tiene un ancho de banda de 1 MHz.

Pregunta:

□ ¿Cuál es la tasa máxima de transmisión de datos sin errores si asumimos que el canal está libre de ruido?

Ejemplo 1: Ancho de Banda y Tasa de Datos (Teorema de Nyquist)

□ Supongamos que estás diseñando una red Ethernet que utiliza señales binarias (M=2) para transmitir datos. El canal tiene un ancho de banda de 1 MHz.

Pregunta:

- □ ¿Cuál es la tasa máxima de transmisión de datos sin errores si asumimos que el canal está libre de ruido?
- Utilizamos la fórmula de Nyquist:

$$R=2 \times B \times log2(M)$$

- B=1 MHz
- M=2

$$R=2 \times 1 MHz \times log2(2)$$

$$R=2 \times 1MHz = 2Mbps$$

Ejemplo 2: Capacidad del Canal con Ruido (Teorema de Shannon)

□ Tienes un canal con un ancho de banda de 3 kHz y una relación señal-ruido (SNR) de 20 dB.

Pregunta:

□ ¿Cuál es la capacidad máxima del canal?

Ejemplo 2: Capacidad del Canal con Ruido (Teorema de Shannon)

- □ Tienes un canal con un ancho de banda de 3 kHz y una relación señal-ruido (SNR) de 20 dB. Pregunta:
- □ ¿Cuál es la capacidad máxima del canal?
 - Convertimos SNR de dB a forma lineal:

$$SNR = 10^{SNR(dB)/10} = 10^{20/10} = 100$$

- Utilizamos la fórmula de Shannon:
- Sustituimos los valores:
 - B=3 kHz=3000 Hz
 - SNR=100

$$C = 3000 \times \log_2(1+100) = 3000 \times \log_2(101)$$

 $C = B \times \log_2(1 + \text{SNR})$

- Aproximamos log2(101):
 - $\log 2(101) \approx 6.6582$

 $C = 3000 \times 6.6582 \approx 19,974.6 \text{ bps} \approx 20 \text{ kbps}$

Ejemplo 3. Aplicación Específica: Redes Wi-Fi

- □ En redes Wi-Fi (IEEE 802.11), los teoremas de Shannon y Nyquist son esenciales para determinar:
 - Velocidad máxima de datos: Depende del ancho de banda del canal (como 20 MHz o 40 MHz en Wi-Fi 5).
 - Impacto del ruido: En entornos con interferencia (como múltiples redes Wi-Fi en la misma área), la capacidad teórica puede ser mucho menor.

Ejemplo Práctico:

□ Un router Wi-Fi tiene un ancho de banda de 20 MHz y opera con una relación señal-ruido de 30 dB.

Ejemplo 3. Aplicación Específica: Redes Wi-Fi

- □ En redes Wi-Fi (IEEE 802.11), los teoremas de Shannon y Nyquist son esenciales para determinar:
 - Velocidad máxima de datos: Depende del ancho de banda del canal (como 20 MHz o 40 MHz en Wi-Fi 5).
 - Impacto del ruido: En entornos con interferencia (como múltiples redes Wi-Fi en la misma área), la capacidad teórica puede ser mucho menor.

Eiemplo Práctico:

□ Un router Wi-Fi tiene un ancho de banda de 20 MHz y opera con una relación señal-ruido de 30 dB.

 $SNR = 10^{30/10} = 1000$ Convertimos SNR:

 $C = 20 \times 10^6 \times \log_2(1 + 1000)$ ■ SNR=10^(30/10)=1000

Calculamos la capacidad: $C \approx 20 \times 10^6 \times 9.97 = 199.4 \,\mathrm{Mbps}$

• Como $log2(1001) \approx 9.97$:

□ Esto significa que, teóricamente, el router puede alcanzar una capacidad de 199.4 Mbps. Sin embargo, las interferencias y las limitaciones físicas reducen este valor en la práctica.

- □ Ejemplo 4: Aplicación Específica: Fibra Óptica
 - Nyquist: Define la cantidad máxima de datos transmitibles en función del ancho de banda del láser y los niveles de modulación utilizados.
 - Shannon: Evalúa la capacidad considerando el ruido, como dispersión cromática y ruido térmico.

Ejemplo Práctico:

□ Una fibra tiene un ancho de banda de 50 GHz y un SNR=50.

- □ Ejemplo 4: Aplicación Específica: Fibra Óptica
 - Nyquist: Define la cantidad máxima de datos transmitibles en función del ancho de banda del láser y los niveles de modulación utilizados.
 - Shannon: Evalúa la capacidad considerando el ruido, como dispersión cromática y ruido térmico.

Ejemplo Práctico:

□ Una fibra tiene un ancho de banda de 50 GHz y un SNR=50.

• Convertimos SNR:
$$SNR = 10^{50/10} = 100,000$$

Calculamos la capacidad:

• C=50 × 10⁹ × log2(1+100,000)
$$C = 50 \times 10^9 \times \log_2(1+100,000)$$

■ Como log2(100,001)≈16.6096: $C \sim 50 \times 10^9$

$$C\approx 50\times 10^9\times 16.6096=830.48\,\mathrm{Gbps}$$

□ Esto demuestra cómo las fibras ópticas ofrecen capacidades extremadamente altas gracias a su amplio ancho de banda y bajo ruido.