

UNIVERSIDAD NACIONAL DE CHIMBORAZO FACULTAD DE INGENIERÍA

RÚBRICA DE LA EVALUACIÓN No 1, 02 DE JUNIO DEL 2025 ASIGNATURA: ANÁLISIS Y CONTROL DE LA CONTAMINACIÓN DEL AIRE CARRERA DE INGENIERÍA AMBIENTAL

		$\overline{}$					_	
n	ш	-	n	/1	ĸ	R	-	•

TEORÍA

1. ¿Según el ámbito de aplicación como se define el tipo de modelo Euleriano? (0,5pts)

El modelo Euleriano se puede aplicar tanto local o regional como regional a continental, para fines de definicación de políticas, información pública e investigación científica.

2. ¿Que explica el modelo de Pasquill - Gifford? (0,5pts)

Explica la concentración de inmisión en el punto (x,y,z) para la altura efectiva de chimenea H.

3. ¿Que es la inmisión de contamiantes atmosféricos? (0,5pts)

Es la cantidad de contaminantes que recibe un receptor a una distacia x en peso en una unidad de volumen .

EJERCICIO

Una central térmica generó 89, $34\frac{ton}{h}$ de gases de combustion una composición indicada en la tabla 1 y una densidad de 776 $\frac{g}{m^3}$ los cuales son emitidos a través de una chimenea de 47 m de altura con una velocidad de salida de gases de $11,5\frac{m}{s}$ y una temperatura de 180 ° C . La velocidad del viento a 10 metros sobre el suelo de $2.8\frac{m}{s}$, radiación solar de $895\frac{W}{m^2}$ y temperatura de 18 °C a 1 atm.

- a) Calcular la concentración de NOx en chimenea $(\frac{g}{s})$ (0,5pts)
- b) Calcular la concentración de NOx a 1900 metros de distancia (0,5pts)
- c) Concentración máxima de NOx (0,5pts)
- d) Si el VLE es de 80 $\frac{mg}{Nm^3}$ la empresa cumple con la Norma? que cantidad de NOx debe ser removido para cumplir con la norma? (0,5pts)

Compuesto	ppmV
N_2	722000
O_2	117400
H ₂ O	91100
CO ₂	68948
CO	369
NO _x	155
SO ₂	28

Tabla 1

```
a) 155 ppm = 155 x10 6 m?
                m: PPNU = 10+m x 46x 155 x 10-6 = 0.19/6 of 8.21 x 10-5 x 453.15
        m = QC = 115128.87 m^3 = 0.19169 = 22058.699
Q = m = 99.34 \times 10^{\frac{1}{2}} \frac{115128.87m^3}{9} = 115128.87m^3
0.776 \times 9

                  b) M-28 (47)01-3,27m
                                 F = 9.8 × 11.5 × (0.5)2 (453.15 - 291) = 7,52
                             Xe= 49 (2.52) 5/8 = 87.27
                                   Oh: 1.6 3/2.52 3/87.272 13 10 m
                                    M= 47 + 13,10 = 60,10 m
               Gy=0.36 (1900) = 231.7m Gz=0.33 (1900) = 217.89m
             C= 6.13 3 P ( ( 2 17.89) 9,63 × 10 9 m3
                                                                                                                                                                                                                                                                                                                                                                                    - 9 63 mg/m3
c) G_{z} = \frac{60.1}{52} = \frac{42.497}{50.86} = \frac{42.497}{50.33} = \frac{42.497}{50.33} = \frac{42.497}{50.33} = \frac{42.497}{50.33} = \frac{46.36}{50.33} = \frac{42.497}{50.33} = \frac{42.4
                                      CMAX: 2×6.12 47,497 -1.11×10-4
exxxxx27x60.12 46.36
     d) Cop-80 273.15 100-9.11 21-[100 11.74]
                                                        = 23.62 mg/g
```