INTERVALOS, DESIGUALDADES Y VALOR ABSOLUTO

INTERVALOS

Los Intervalos son una herramienta matemática que se utiliza para delimitar un conjunto determinado de números reales.

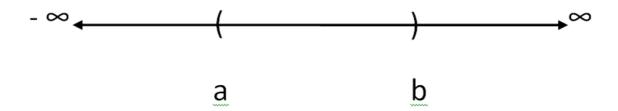
Por ejemplo el intervalo [-5,3] describe el conjunto de números reales que se encuentran entre -5 y 3.

TIPOS DE INTERVALOS

- 1. Intervalo abierto: este tipo de intervalo como es abierto por ambos lados no se incluye "a" y "b" en el conjunto de números que delimita.
- (a, b) Notación de intervalo

 $\{x \in R \mid a < x < b\}$ Notación de conjunto

Gráfica del intervalo



Ejemplo:

(-3,7) Notación de intervalo

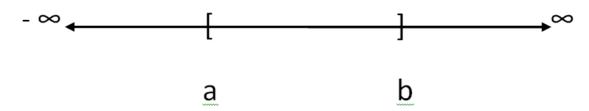
 $\{x \in \mathbb{R}/ -3 < x < 7\}$ Notación de conjunto.

En este caso, el conjunto que se delimita no incluye los números -3 y 7 porque se trata de un intervalo abierto por ambos lados

- 2. Intervalo Cerrado: este tipo de intervalo como es cerrado por ambos lados incluye "a" y "b" en el conjunto de números que delimita.
- [a, b] Notación de intervalo

 $\{x \in R \mid a \le x \le b\}$ Notación de conjunto

Gráfica del intervalo

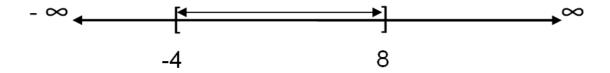


Ejemplo:

[-4,8] Notación de intervalo

 $\{x \in R / -4 \le x \le 8\}$ Notación de conjunto.

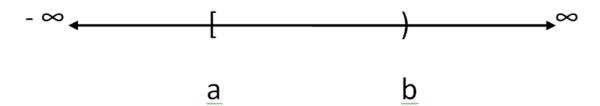
En este caso, el conjunto que se delimita incluye los números -4 y 8 porque se trata de un intervalo cerrado por ambos lados



- 3. Intervalo Abierto por la derecha: este tipo de intervalo como es cerrado por el lado izquierdo incluye "a" y como es abierto por el lado derecho no incluye "b" en el conjunto que delimita.
- [a, b) Notación de intervalo

 $\{x \in R \mid a \le x < b\}$ Notación de conjunto

Gráfica del intervalo



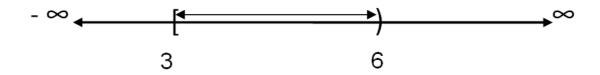
Ejemplo

[3,6) Notación de intervalo

 $\{x \in R / 3 \le x < 6\}$ Notación de conjunto.

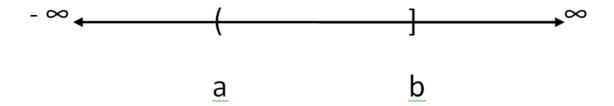
En este caso, el conjunto que se delimita incluye el número 3 por ser cerrado por la izquierda pero no incluye el número 6 por ser abierto por la derecha.

Gráfica del intervalo



- 4. Intervalo abierto por la izquierda: este tipo de intervalo como es abierto por el lado izquierdo no incluye "a" y como es cerrado por el lado derecho incluye "b" en el conjunto que delimita.
- (a, b] Notación de intervalo

 $\{x \in R \mid a < x \le b\}$ Notación de conjunto



Ejemplo

(-1,12] Notación de intervalo

 $\{x \in R/-1 < x \le 12\}$ Notación de conjunto

En este caso, el conjunto que se delimita no incluye el número -1 por ser abierto por la izquierda pero incluye el número 12 por ser cerrado por la derecha.

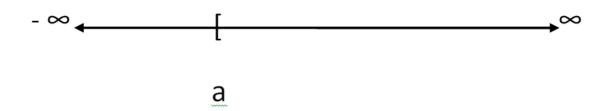
Gráfica del intervalo

5. Intervalo cerrado por la izquierda hacia $+\infty$: este tipo de intervalo como es cerrado por el lado izquierdo incluye "a" y es abierto por el lado derecho hacia infinito positivo.

 $[a, +\infty)$ Notación de intervalo

 $\{x \in R \mid x \ge a\}$ Notación de conjunto

Gráfica del intervalo

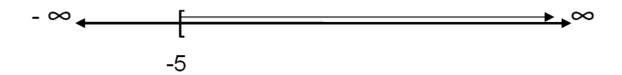


Ejemplo

 $[-5, +\infty)$ Notación de intervalo

 $\{x \in R \mid x \ge -5\}$ Notación de conjunto

En este caso, el conjunto que se delimita incluye el número -5 por ser cerrado por la izquierda hasta infinito positivo.

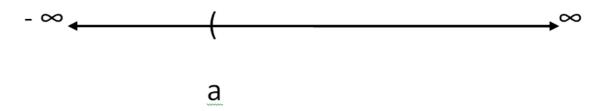


6. Intervalo abierto por la izquierda hacia $+\infty$: este tipo de intervalo como es abierto por el lado izquierdo no incluye "a" y es abierto por el lado derecho hacia infinito positivo.

 $(a, +\infty)$ Notación de intervalo

 $\{x \in R / x > a\}$ Notación de conjunto

Gráfica del intervalo



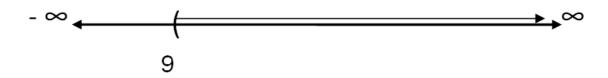
Ejemplo

 $(9, +\infty)$ Notación de intervalo

 $\{x \in R \mid x > 9\}$ Notación de conjunto

En este caso, el conjunto que se delimita no incluye el número 9 por ser abierto por la izquierda hasta infinito positivo.

Gráfica del intervalo

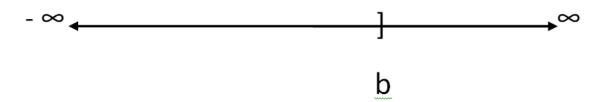


7. Intervalo cerrado por la derecha hacia -∞ : este tipo de intervalo es abierto por el lado izquierdo hacia infinito negativo y como es cerrado por el lado derecho incluye "b".

 $(-\infty, b]$ Notación de intervalo

 $\{x \in R \mid x \le b\}$ Notación de conjunto

Gráfica del intervalo



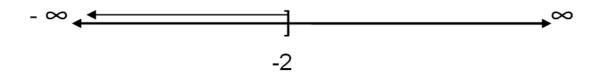
Ejemplo

 $(-\infty, -2]$ Notación de intervalo

 $\{x \in R \mid x \le -2\}$ Notación de conjunto

En este caso, el conjunto que se delimita incluye el número -2 por ser cerrado por la derecha hasta infinito negativo.

Gráfica del intervalo



8. Intervalo abierto por la derecha hacia -∞ : este tipo de intervalo es abierto por el lado izquierdo hacia infinito negativo y como es abieto por el lado derecho no incluye "b".

 $(-\infty, b)$ Notación de intervalo

 $\{x \in R \mid x < b\}$ Notación de conjunto

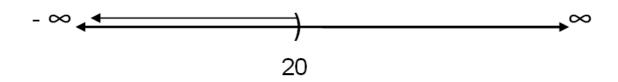
Ejemplo

Notación de intervalo

Notación de conjunto

En este caso, el conjunto que se delimita no incluye el número 20 por ser abierto por la derecha hasta infinito negativo.

Gráfica del intervalo



DESIGUALDADES

Una desigualdad es una expresión matemática que contiene un signo de desigualdad. Los signos de desigualdad son:

- ≠ no es igual
- < menor que
- > mayor que
- ≤ menor o igual que
- ≥ mayor o igual que

Ejemplos de desigualdades:

a) b) c) d) e)

Una desigualdad que tiene variable se llama inecuación.

INECUACIONES

Una inecuación es una desigualdad en la que hay una o más cantidades desconocidas (incógnitas) y que sólo se verifica (o demuestra) para determinados valores de las incógnitas. Las inecuaciones también se conocen como desigualdades de condición.

Ejemplos de inecuaciones

a)
$$6x + 20 \ge 5 - 3x - 16$$

b)
$$\frac{2}{3}x + 20 \le -\frac{2}{5} - 2x$$

a)
$$6x + 20 \ge 5 - 3x - 16$$
 b) $\frac{2}{3}x + 20 \le -\frac{2}{5} - 2x$ c) $-\frac{1}{3}x - 13 < -\frac{6}{5}x - 6$

d)
$$\frac{8}{3}x > -\frac{2}{5}x - 4$$

Para resolver una inecuación deben encontrarse los valores de las incógnitas que satisfagan la inecuación.

Ejemplo 1: hallar el intervalo solución de la inecuación x + 2 > 5

$$x + 2 > 5$$

x > 5 - 2 Organizar términos, variables en la izquierda y números a la derecha

Intervalo solución en forma de conjunto x > 3

Por lo tanto el intervalo solución es $(3, +\infty)$

Ejemplo 2: hallar el intervalo solución de la inecuación 4x - 5 < 11 + x

$$4x - 5 < 11 + x$$

4x - x < 11 + 5 Organizar términos, variables en la izquierda y números a la derecha.

3x < 16 Reducción de términos semejantes en ambos lados y despejar x, como el 3 está multiplicando pasa a dividir.

$$x < \frac{16}{3}$$
 Intervalo solución en forma de conjunto

Por lo tanto el intervalo solución es $\left(-\infty, \frac{16}{3}\right)$

Ejemplo 3: Caso especial variable con signo negativo.

Hallar el intervalo solución de $-8x + 4 \le 5x + 12$.

$$-8x + 4 \le 5x + 12$$

$$-8x - 5x \le 12 - 4$$
 Organizar términos, variables en la izquierda y números a la derecha.

$$-13x \le 8$$
 Reducción de términos semejantes en ambos lados

(-1) $-13x \ge 8$ (-1) Como el término de la variable es negativo -13x multiplicamos en ambos lados por (-1) y le damos la vuelta a la desigualdad \ge .

$$13x \ge -8$$
 Despejar x, como el 13 está multiplicando pasa a dividir

$$x \ge -\frac{8}{13}$$
 Intervalo solución en forma de conjunto

Por lo tanto el intervalo solución es $\left[-\frac{8}{13}, +\infty\right)$

Ejemplo 4: Caso especial variable con signo negativo.

Hallar el intervalo solución de $\frac{4}{5} \ge 1 + \frac{2}{7}x$

$$\frac{4}{5} \ge 1 + \frac{2}{7}x$$

$$-\frac{2}{7}x \ge 1 - \frac{4}{5}$$
 Organizar términos, variables en la izquierda y números a la derecha.

$$-\frac{2}{7}x \ge \frac{1}{5}$$
 Reducción de términos semejantes en ambos lados

$$-2x \ge \frac{1}{5} * (7)$$
 Despejar x, como el 7 está dividiendo pasa a multiplicar

$$-x \ge \frac{1}{5} * (\frac{7}{2})$$
 Como el dos está multiplicando pasa a dividir

(-1) $-x \le \frac{7}{10}$ (-1) Como el término de la variable es negativo -x multiplicamos en ambos lados por (-1) y le damos la vuelta a la desigualdad ≤.

$$x \le -\frac{7}{10}$$
 Intervalo solución en forma de conjunto

Por lo tanto el intervalo solución es $(-\infty, -\frac{7}{10}]$

Ejemplo 5: hallar el intervalo solución de $\frac{3}{2}x + \frac{1}{2} \ge \frac{2}{3}x - \frac{1}{4}$

$$\frac{3}{2}x + \frac{1}{2} \ge \frac{2}{3}x - \frac{1}{4}$$

 $\frac{3}{2}x - \frac{2}{3}x \ge -\frac{1}{2} - \frac{1}{4}$ Organizar términos, variables en la izquierda y números a la derecha.

 $\frac{9x-4x}{6} \ge \frac{-2-4}{8}$ Operaciones con fracciones en ambos lados de la inecuación

 $\frac{5x}{6} \ge \frac{-6}{8}$ Reducción de términos semejantes en ambos lados

 $\frac{5x}{6} \ge \frac{-3}{4}$ Simplificando la fracción

 $5x \ge \frac{-3}{4} * (6)$ Despejar x, como el 6 está dividiendo pasa a multiplicar

 $5x * (4) \ge -3 * (6)$ Como el 4 está dividiendo pasa a multiplicar

 $20x \ge -18$ Como el 20 está multiplicando pasa a dividir

 $x \ge -\frac{18}{20}$ Simplificando la fracción

 $x \ge -\frac{9}{10}$ Intervalo solución en forma de conjunto

Por lo tanto el intervalo solución es $\left[-\frac{9}{10}, +\infty\right)$

VALOR ABSOLUTO

Definición:

Si "a" es un número real, el valor absoluto de "a" que se expresa como |a| se define como:

$$|a| = a \quad si \ a \ge 0$$

$$|a| = -a$$
 si $a < 0$

PROPIEDADES

A continuación se describen algunas propiedades de valor absoluto que se utilizan para resolver ecuaciones e inecuaciones de las formas:

- Ecuaciones de la forma $|x \pm a| = b$
- Inecuaciones de la forma $|x \pm a| \le b$
- 1. Propiedad |x| = |-x|

Ejemplo 1: |7| = |-7| = 7

Ejemplo 2: |25| = |-25| = 25

Ejemplo 3: |125| = |-125| = 125

Esta propiedad la utilizamos para resolver ecuaciones de la forma $|x \pm a| = b$ siendo $b \ge 0$.

Ejemplo 1: hallar los valores de x si |2x - 7| = 5

Aplicando la primera propiedad planteamos que |2x - 7| = |5| = |-5|. Esto significa que:

$$2x - 7 = 5$$
 o $2x - 7 = -5$

Resolviendo la primera ecuación con +5

$$2x - 7 = 5$$

$$2x = 5 + 7$$

$$2x = 12$$

$$x = 6$$

Resolviendo la segunda ecuación con -5

$$2x - 7 = -5$$

$$2x = -5 + 7$$

$$2x = 2$$

$$x = 1$$

Por lo tanto la solución es: x = 6 o x = 1

Ejemplo 2: hallar los valores de x si |3x + 5| = 4

Aplicando la primera propiedad planteamos que |3x + 5| = |4| = |-4|. Esto significa que:

$$3x + 5 = 4$$
 o $3x + 5 = -4$

Resolviendo la primera ecuación con +4

$$3x + 5 = 4$$

$$3x = 4 - 5$$

$$3x = -1$$

$$\chi = -\frac{1}{3}$$

Resolviendo la segunda ecuación con -4

$$3x + 5 = -4$$

$$3x = -4 - 5$$

$$3x = -9$$

$$x = -\frac{9}{3}$$

$$x = -3$$

Por lo tanto la solución es $x = -\frac{1}{3}$ o x = -3

2. Propiedad $|x \pm a| \le b$ $y \ b \ge 0$ sí y solo sí $a - b \le x \le a + b$

Como $b \ge 0$ y $|x| \le b$, entonces $-b \le x \le b$

Ejemplo1: resolver la inecuación $|x-3| \le 2$

$$|x-3| \leq 2$$

$$-2 \le x - 3 \le 2$$
 Aplicando: como $b \ge 0$ y $|x| \le b$, entonces $-b \le x \le b$.

En este caso, como $2 \ge 0$ y $|x| \le 2$, entonces $-2 \le x \le 2$

$$-2 + 3 \le x \le 2 + 3$$
 Despejar x, el -3 pasa a sumar a ambos lados aplicando

$$a - b \le x \le a + b$$

$$1 \le x \le 5$$
 Intervalo solución en forma de conjunto

Por lo tanto el intervalo solución es: [1,5]

Ejemplo 2: resolver la inecuación |2x + 7| < 9

$$|2x + 7| < 9$$

$$-9 < 2x + 7 < 9$$
 Aplicando: como $b \ge 0$ y $|x| \le b$, entonces $-b \le x \le b$.

En este caso, como $9 \ge 0$ y $|x| \le 9$, entonces $-9 \le x \le 9$

$$-9-7 < 2x < 9-7$$
 Despejar x, el +7 pasa a restar a ambos lados aplicando

$$a - b \le x \le a + b$$

$$-16 < 2x < 2$$
 Despejar x, el 2 pasa a dividir a ambos lados

$$-\frac{16}{2} < x < \frac{2}{2}$$
 Simplificar fracciones en ambos lados cuando sea posible

$$-8 < x < 1$$
 Intervalo solución en forma de conjunto

Por lo tanto el intervalo solución es: (-8,1)

3. Propiedad $|x \pm a| \ge b$ $y \ b \ge 0$ sí y solo sí $x \le a - b$ o $x \ge a + b$

Ejemplo 1: resolver la inecuación |3x - 7| > 8

Aplicando $x \le a - b$ o $x \ge a + b$ se obtiene:

$$3x - 7 > 8$$
 o $3x - 7 < -8$

Solución de primera inecuación

$$3x - 7 > 8$$

$$3x > 8 + 7$$

$$3x > 15$$
 Despejar x, pasamos el 3 a dividir

$$x > \frac{15}{3}$$

$$x > 5$$
 Primera solución

Solución de la segunda inecuación

$$3x - 7 < -8$$

$$3x < -8 + 7$$

$$3x > -1$$
 Despejar x, pasamos el 3 a dividir

$$x < -\frac{1}{3}$$
 Segunda solución

Por lo tanto la solución completa es: $(5, +\infty)$ U $(-\infty, -\frac{1}{3})$

Ejemplo 2: resolver la inecuación $|2x + 1| \ge 2$

Aplicando $x \le a - b$ o $x \ge a + b$ se obtiene:

$$2x + 1 \ge 2$$
 o $2x + 1 \le -2$

Solución de primera inecuación

$$2x + 1 \ge 2$$

$$2x \ge 2 - 1$$

$$2x \ge 1$$
 Despejar x, pasamos el 2 a dividir

$$x \ge \frac{1}{2}$$
 Primera solución

Solución de la segunda inecuación

$$2x + 1 \le -2$$

$$2x \leq -2 - 1$$

$$2x \ge -3$$
 Despejar x, pasamos el 2 a dividir

$$x \ge -\frac{3}{2}$$
 Segunda solución

Por lo tanto la solución completa es: $[\frac{1}{2}, +\infty)$ U $(-\infty, -\frac{3}{2}]$