

MATRIZ TRANSPUESTA. CONCEPTO

En álgebra lineal, la transpuesta de una matriz \mathbf{A} es otra matriz, denotada como \mathbf{A}^T o \mathbf{A}' , que se obtiene intercambiando las filas por las columnas de la matriz original. Es decir, si la matriz \mathbf{A} tiene dimensiones $m \times n$ (m filas y n columnas), entonces su transpuesta \mathbf{A}^T tendrá dimensiones $n \times m$. El elemento que se encuentra en la i-ésima fila y la j-ésima columna de \mathbf{A} pasa a ocupar la j-ésima fila y la i-ésima columna de \mathbf{A}^T .

Formalmente, si $\mathbf{A}=(a_{ij})$, donde a_{ij} es el elemento en la i-ésima fila y la j-ésima columna de \mathbf{A} , entonces $\mathbf{A}^T=(a_{ji})$.

MATRIZ TRANSPUESTA. CARACTERÍSTICAS

Características:

- Dimensión invertida: Como mencioné, una matriz de m × n se convierte en una matriz de n × m al ser transpuesta.
- Elemento intercambiado: El elemento en la posición (i, j) de la matriz original se mueve a la posición (j, i) en la matriz transpuesta.
- Transpuesta de una transpuesta: La transpuesta de la transpuesta de una matriz es la matriz original: (A^T)^T = A.
- Transpuesta de una suma: La transpuesta de la suma de dos matrices es igual a la suma de sus transpuestas: (A + B)^T = A^T + B^T. (Esto solo es válido si A y B tienen las mismas dimensiones).

MATRIZ TRANSPUESTA. CARACTERÍSTICAS

- Transpuesta de un producto escalar: La transpuesta del producto de un escalar c por una matriz \mathbf{A} es igual al producto del escalar por la transpuesta de la matriz: $(c\mathbf{A})^T = c\mathbf{A}^T$.
- Transpuesta de un producto de matrices: La transpuesta del producto de dos matrices es
 igual al producto de sus transpuestas en orden inverso: (AB)^T = B^TA^T. (Esto solo es
 válido si el número de columnas de A es igual al número de filas de B).
- Matrices simétricas: Una matriz cuadrada A es simétrica si A^T = A. Esto significa que los elementos simétricamente opuestos con respecto a la diagonal principal son iguales (a_{ij} = a_{ji}).
- Matrices antisimétricas (o hemisimétricas): Una matriz cuadrada A es antisimétrica si
 A^T = -A. Esto implica que los elementos simétricamente opuestos con respecto a la
 diagonal principal son opuestos (a_{ij} = -a_{ji}), y los elementos de la diagonal principal son
 cero (a_{ii} = 0).

MATRIZ TRANSPUESTA. APLICACIONES

- Cálculo del producto escalar de vectores: Si u y v son vectores columna, su producto escalar se puede calcular como u^Tv.
- Formulación de la función de costo en regresión lineal: En el método de los mínimos cuadrados, la función de costo a minimizar a menudo involucra la transpuesta de la matriz de diseño.
- Cálculo de la matriz de covarianza: Para un conjunto de vectores de datos, la matriz de covarianza se calcula utilizando las transpuestas de los vectores centrados en su media.

MATRIZ TRANSPUESTA. APLICACIONES

- Reducción de dimensionalidad (Análisis de Componentes Principales PCA): La transpuesta de la matriz de datos juega un papel importante en el cálculo de la matriz de covarianza y los autovectores.
- Implementación de filtros en procesamiento de imágenes: En algunas operaciones de convolución, se puede utilizar la transpuesta del kernel del filtro.

PROPIEDADES DE LAS TRANSPUESTAS

1. La transpuesta de la transpuesta es la matriz original:

$$(A^T)^T = A$$

Ejemplo:

Considera la matriz
$$A=egin{pmatrix} 1 & 2 \ 3 & 4 \end{pmatrix}$$
 . La transpuesta de A es:

$$A^T = egin{pmatrix} 1 & 3 \ 2 & 4 \end{pmatrix}$$

Y la transpuesta de ${\cal A}^T$ es:

$$(A^T)^T=egin{pmatrix}1&2\3&4\end{pmatrix}=A$$

PROPIEDADES DE LAS TRANSPUESTAS

2. La transpuesta de la suma de matrices es igual a la suma de las transpuestas:

$$(A+B)^T = A^T + B^T$$

Ejemplo:

Sean
$$A=\begin{pmatrix}1&2\\3&4\end{pmatrix}$$
 y $B=\begin{pmatrix}5&6\\7&8\end{pmatrix}$. La suma de estas matrices es: $A+B=\begin{pmatrix}1+5&2+6\\3+7&4+8\end{pmatrix}=\begin{pmatrix}6&8\\10&12\end{pmatrix}$

La transpuesta de la suma de matrices es:

$$(A+B)^T=egin{pmatrix} 6&10\ 8&12 \end{pmatrix}$$

Y la suma de las transpuestas de las matrices es:

$$A^T+B^T=egin{pmatrix}1&3\2&4\end{pmatrix}+egin{pmatrix}5&7\6&8\end{pmatrix}=egin{pmatrix}6&10\8&12\end{pmatrix}$$

PROPIEDADES DE LAS TRANSPUESTAS

 La transpuesta de un producto de matrices es el producto de las transpuestas en orden inverso:

$$(AB)^T = B^T A^T$$

Ejemplo:

Sean
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 y $B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}$. El producto de estas matrices es:

$$AB = \begin{pmatrix} 1*5+2*7 & 1*6+2*8 \\ 3*5+4*7 & 3*6+4*8 \end{pmatrix} = \begin{pmatrix} 19 & 22 \\ 43 & 50 \end{pmatrix}$$

La transpuesta del producto de matrices es:

$$(AB)^T = \begin{pmatrix} 19 & 43 \\ 22 & 50 \end{pmatrix}$$

Y el producto de las transpuestas de las matrices en orden inverso es:

$$B^TA^T=egin{pmatrix} 5 & 7 \ 6 & 8 \end{pmatrix} egin{pmatrix} 1 & 3 \ 2 & 4 \end{pmatrix} = egin{pmatrix} 19 & 22 \ 43 & 50 \end{pmatrix}$$

EJERCICIOS

Investigación, consulta, resumen y ejercicios a estudiantes.

