Dimensiones

Es la parte de la FÍSICA que estudia las relaciones entre las magnitudes fundamentales y derivadas, en el Sistema Internacional de Unidades, se considera siete magnitudes fundamentales.

Las magnitudes fundamentales son: longitud, masa, tiempo, temperatura, intensidad de corriente eléctrica, intensidad luminosa y cantidad de sustancia.

Las magnitudes derivadas son: área, volumen, densidad, velocidad, aceleración, fuerza, trabajo, potencia, energía, etc.

Sistema Internacional de Unidades

MAGNITUD FÍSICA

UNIDAD

WINTER THE PROPERTY OF THE PARTY OF THE PART			
Nombre	Dimens.	Nombre	Símbolo
1 Longitud	L	metro	m
2 Masa	М	kilogramo	kg
3 Tiempo	Т	segundo	s
4 Temperatura	θ	kelvin	K
5 Intensidad de corriente eléctrica	I	ampere	А
6 Intensidad Luminosa	J	candela	cd
7 Cantidad de Sustancia	N	mol	mol

Fórmula Dimensional

Es aquella igualdad matemática que muestra la relación que existe entre una magnitud derivada y las magnitudes fundamentales. La dimensiòn de una magnitud física se representa del siguiente modo:

Sea A la magnitud física.

[A]: se lee, dimensión de la magnitud física A.

Fórmulas Dimensionales Básicas

1.	[Longitud] = L	14.[Fuerza] = MLT ⁻²
2.	[Masa] = M	15.[Trabajo] = ML ² T ⁻²
3.	[Tiempo] = T	16.[Energía] = ML ² T ⁻²
4.	[Temperatura] = θ	17.[Potencia] = ML ² T ⁻³
5.	[Intensidad de la corriente eléctrica]=I	18.[Presión] = ML ⁻¹ T ⁻²
6.	[Intensidad luminosa] = J	19.[Período] = T
7.	[Cantidad de sustancia] = N	20.[Frecuencia] = T⁻¹
8.	[Número] = 1	21.[Velocidad angular] = T

o. [.tamoro] .	[
 [Área] = L² 	22.[Ángulo] = 1
10.[Volumen] = L3	23.[Caudal] = L3T-1

Principio de homogeneidad dimensional

En una fórmula física, todos los términos de la ecuación son dimensionalmente iguales.

$$A - B^2 = \frac{C}{D}$$

Entonces: [A] = [B²] =
$$\left[\frac{C}{D}\right]$$

Ejemplo:

En la siguiente fórmula física:

$$h = a + bt + ct^2$$

Donde: h : altura

t : tiempo

Hallar la dimensión de a, b y c.

Resolución:

Principio de homogeneidad dimensional:

De (I): L = [a]
De (II): L = [b]T
$$\Rightarrow$$
 [b] = LT⁻¹
De (III): L = [c]T² \Rightarrow [c] = LT⁻²

Casos Especiales

1. Propiedades de los ángulos

Los ángulos son números, en consecuencia, la dimensión de los ángulos es igual a la unidad.

Ejemplo:

En la siguiente fórmula física, hallar la dimensión de x.

$$A = K Cos (2\pi xt)$$

Donde: t:tiempo Resolución:

La dimensión del ángulo es igual a la unidad:

$$[2\pi xt] = 1$$

 $[2\pi][x][t] = 1$
 $[x] \cdot T = 1$
 $[x] = T^{-1}$

2. Propiedad de los exponentes

Los exponentes son siempre números, por consiguiente la dimensión de los exponentes es igual a la unidad.

Ejemplo:

En la siguiente fórmula física, hallar la dimensión de K.

$$x = A^{3Kf}$$

Donde: f: frecuencia

Resolución:

La dimensión del exponente es igual a la unidad:

$$[3Kf] = 1$$

 $[3][K][f] = 1$
 $[K] \cdot T^{-1} = 1$
 $[K] = T$

3. Propiedad de adición y sustracción

En las operaciones dimensionales no se cumplen las reglas de la adición y sustracción.

Ejemplo:

Hallar la dimensión de R en la siguiente fórmula física:

$$R = (k-t)(K^2+a)(a^2-b)$$

Donde: t:tiempo

Resolución:

Por el principio de homogeneidad dimensional:

$$[K] = [t] = T$$

 $[K^2] = [a] = T^2$
 $[a^2] = [b] = T^4$

Analizando la fórmula tenemos:

4. Fórmulas empíricas

Son aquellas fórmulas físicas que se obtienen a partir de datos experimentales conseguidos de la vida cotidiana o en el laboratorio de ciencias.

Ejemplo:

La energía cinética E de un cuerpo depende de su masa "m" y de la rapidez lineal V.

$$E = \frac{m^{x} \cdot V^{y}}{2}$$

Hallar: x+y

Resolución:

Aplicando el principio de homogeneidad dimensional.

[E] =
$$\frac{[m^{x} I V^{y}]}{[2]}$$

[E] = $M^{x} \cdot (LT^{-1})^{y}$
 $M^{1}L^{2}T^{-2} = M^{x}L^{y}T^{-y}$

A bases iguales le corresponden exponentes iguales:

Para M: x = 1
Para L: y = 2
Luego: (x+y) = 3

Problemas I

1. Si la ecuación es dimensionalmente correcta:

$$X + MTy = z - L^2F$$

Entonces, podemos afirmar:

- a) [x] = [MT]
- b) $[x] \neq [z]$
- c) [y] = [z]
- d) $[x] = L^2F$
- e) La expresión no es homogénea.
- 2. Dada la fórmula física:

$$K = dV^2$$

d = densidad Donde:

V = Velocidad lineal

Determinar la unidad en el S.I. de la magnitud "K"

- a) Newton b) Joule
- c) Hertz

- d) Pascal
- e) Watts
- 3. Hallar la ecuación dimensional de "s" en la siguiente fórmula física.

$$\frac{V^2A}{T} = -sa + Q$$

V = Velocidad; A = área; T = tiempo; a = aceleración

- a) L2T2
- b) LT

- d) L3T-1
- e) L-3T

4. En la fórmula física:

$$V = \sqrt{\frac{3w}{R}}$$

Hallar [R]. Si w se expresa en joules y V en m/s.

- a)M
- b) ML
- c) MLT

- d) M²
- e) ML²
- 5. Hallar las dimensiones de "x" en la siguiente ecuación homogénea.

$$\frac{x \cdot v \cdot c}{10P} = c_1^{Csc30^\circ}$$

Donde:

v = volumen; P = Potencia

- c y c, = aceleración
- a) MT-1 d) MT-4
- b) MT-2
- c) MT-3 e) MT-5

6. En la fórmula física:

$$P = \frac{x \cdot v^{Sec60^{\circ}}}{2\pi r}$$

Donde:

x = masa; v = velocidad; r = radio ¿A que magnitud física representa

- a) Presión
- b) Potencia c) Trabajo
- d) Fuerza
- e) Densidad
- 7. Halle las dimensiones de "P", si se sabe que la expresión:

$$P \cdot Sen \theta = \frac{(4 \cdot A \cdot Csc\theta)^{Sen\theta}}{H}$$

Es dimensionalmente homogénea y que:

A = área; H = altura; $\theta = \frac{\pi}{6}$ rad

- a) L2
- c) L1/2

- d) L-1
- e) 1
- 8. Sabiendo que la siguiente expresión es dimensionalmente correcta, hallar [k] en:

$$C = \sqrt{\frac{PK^2}{Dd}}$$

C = Velocidad; P = presión;

- D = Densidad; D = diámetro
- a)L
- b) M^{1/2}
- c) L⁻¹

- d) M⁻¹
- e) L1/2

9. Dada la ecuación dimensionalmente correcta. Hallar [k] en:

$$\frac{2A}{v} = \sqrt{\frac{m}{k}}$$

Siendo: V = Velocidad; A = área;

- m= masa a) L-1MT-1
- b) LMT-2 c) L-2MT-2
- d) LMT e) LM-2T
- 10. Dada la expresión:

$$AB^2 = \frac{4Sen\alpha}{k}$$

Dimensionalmente correcta, hallar [k], si A se expresa en m² y B en m/s.

- a) L4T2
- b) L-4T-2
 - c) L⁻⁴T²

- d) L4T-2
- e) L4T

Análisis dimensional Teoría y Ejercicios

11. La ecuación que permite calcular el gasto o caudal que circula por un orificio practicado en un depósito es:

$$Q = CA\sqrt{2gh}$$

Siendo:

g: aceleración; A = área; h = altura;

Q = caudal

Hallar las unidades de "C" en el SI.

a) m

b) m⁻¹

c) m3s-1

d) m²s⁻¹

e) adimensional

12. En: A = KB2; "A" se mide en newton y "B" en metros. Entonces, para que la ecuación sea homogénea, el coeficiente (K) tiene dimensiones:

a) MLT-2

b) ML2T-3 c) MF⁻²

e) ML-1T-2 d) M-2LT-2

13. En la ecuación homogénea. Determinar [xy]

 $ABx = 3C \cdot Sen \left(\frac{2\pi A}{Bv} \right)$

A = Potencia; B = velocidad;

C = Trabajo

a) M

b) ML

c) MLT

d) ML-1T

e) MLT-2

14. Si la magnitud AB representa una fuerza y la magnitud A2B representa potencia.

Determinar que magnitud representa "A".

a) Longitud

b) área

c) velocidad

d) aceleración

e) adimensional

15. En la siguiente fórmula física: Hallar las dimensiones de "R".

$$R = \frac{V}{I}$$
 y que $V = \frac{W}{q}$

V = Potencial eléctrico:

I = Intensidad de corriente eléctrica

W = Trabajo del campo eléctrico

q = carga eléctrica.

a) ML2T3|-2 b) ML2T2|-2 c) ML2T-3|-1

d) MLTI

e) MLT-2|-1

PREGUNTA	RESPUESTA	PREGUNTA	RESPUESTA	PREGUNTA	RESPUESTA
1		6		11	
2		7		12	
3		8		13	
4		9		14	
5		10		15	

1. En la siguiente fórmula física, calcular [A]:

$$A = BC + DEBt$$

Donde: C = velocidad ; t = tiempo

- b) LT
- c) L2T
- e) L2T d) LT2
- 2. Si tenernos la siguiente fórmula, donde V = velocidad ¿ Cuál o cuales de las afirmaciones son ciertas?

$$V = ALog(KV^2)$$

- Las unidades de A son m/s
- II. Las dimensiones de K son L2T-2
- III. "K" es adimensional
- a) I d) I v II
- b) II e) I v III
- c) III

c) 4

3. En la siguiente fórmula física, calcular la suma de x+v+z, si:

$$P = D^x R^y V^z$$

Donde:

P = Potencia: D = Densidad:

R = Radio; V = Velocidad

- a) 2 d) 5
- b) 3 e) 6

4. En la siguiente fórmula física, calcular la suma de: a+b+c

$$\frac{wt^2}{\Delta}$$
Tg(mt)x^{a+b}y^c

Donde:

W = trabajo; t = tiempo; A = área; x = masa: v = densidad

- a) 5
- b) 4
- c) 3
- d) 2 e) 1
- 5. En un determinado sistema de unidades las tres magnitudes fundamentales son la masa del electrón (m = $9,11 \times 10^{-31}$ kg), la velocidad (v) v la constante de Plank $(h = 6.63 \times 10^{-34} \text{ kg} \cdot \text{m}^2/\text{s})$; De que manera deben combinarse estas magnitudes para que formen una magnitud que tenga dimensión de longitud?
 - a) hvm
- b) h⁻¹v²m³ c) hm⁻¹v⁻¹
- e) h3mv-1 d) h²vm

PREGUNTA	RESPUESTA	PREGUNTA	RESPUESTA
1		6	
2		7	
3		8	
4		9	
5		10	

6. En la siguiente fórmula física. 9. La ecuación es dimensionalmente Calcular: [B], [C], [D] en:

$$BF = \frac{3v^3AFC}{Sen(DAC)}$$

Donde:

v = velocidad: F = fuerza: A = aceleración

- a) MT: ML3T3: MLT
- b) M-1T; M-1L-4T-6; ML3T-2
- c) MT: ML⁴T⁵: M²L³T⁻²
- d) M⁻¹T; M⁻¹L⁻⁴T⁶; ML³T⁻⁴
- e) M-1T2: ML-3T6: ML2T-5
- 7. Si en vez de la longitud, la densidad (D) es considerada magnitud fundamental. ¿Cómo se escribiría la ecuación dimensional de la fuerza?
 - a) M1/2T-2
- b) D1/3T2
- c) D-1/3M4/3T-1
- d) D-1/3M4/3T-2
- e) D-1/2T1/2
- 8. Si la fuerza "F" fuera considerada magnitud fundamental en vez de la masa "M". Determinar la ecuación dimensional de "E".

$$E = DR^2$$

Donde:

D = densidad; R = radio

- a) FL-2T2 d) F2L2T
- b) FL2 e) L2T2

homogénea. Calcular el valor de α

 $(D^2 - E^3)^{1/3} = Sec 60^\circ \cdot DECos \alpha$

- a) 60° b) 90° c) 120°
- d) 150° e) 180°
- 10. En un experimento se verifica que el período (T_a) de oscilación de un sistema cuerpo-resorte, depende solamente de la masa (m) del cuerpo v de la constante elástica (K) del resorte. ¿Cuál es la ecuación para el periodo en función de K, y m? $([K] = MT^{-2})$