
M o nito r ing by W ires har k
B a s i c t u t o r i a l

Te l f : 0 9 9 4 6 6 7 1 8 4
M a i l : p e d r o . e s c u d e r o @ u n a c h . e d u . e c
W e b : h t t p s : / / w w w . r e s e a r c h g a t e . n e t / p r o f i l e / P e d r o - E s c u d e r o - 3 / r e s e a r c h

A b r i l – 2 0 2 5

I n g . P e d r o E s c u d e r o

mailto:pedro.escudero@unach.edu.ec
https://www.researchgate.net/profile/Pedro-Escudero-3/research

● Introduction

●

●

What is a network trace?

What is Wireshark?

● Basic UI

● Some of the most useful parts of the UI.

● Packet Capture

● How do we capture packets?

● Trace Analysis

● Individual Packet Analysis

● Filters

● Exercises

Contents

● Network Traffic Trace

• A recording of the network

packets both received by and

transmitted from a network

interface.

● What is a pcap file?

• pcap = Packet Capture

• File format originally designed

for tcpdump/libpcap.

• Most widely used packet capture

format.

• Introduction

● What is Wireshark?

• A graphical network packet analyser.

• Found at http://www.wireshark.org

• The complete manual is located here.

● What some are it's u se s ?

• Troubleshoot network problems.

• Learn network protocol internals.

• Debug protocol/program implementation.

Examine network-related security issues.

http://www.wireshark.org/
http://www.wireshark.org/docs/wsug_html_chunked/

Basic UI• Basic UI

● File - > Open

● Opens a packet capture file.

● View - > Time Display Format

●
Change the format of the packet timestamps in the packet

list pane.

●

●

Switch between absolute and relative timestamps.

Change level of precision.

● View - > Name Resolution

●
Allow wireshark to resolve names from addresses at

different protocol layers.

• Basic UI

● Capture - > Interfaces

●
Available network interfaces

for capture.

●
Total packets per interface.

● Packet rate per interface.

• Basic UI

● Capture - > Options

● Promiscous mode

• Set various capture parameters.

• On – record all packets reaching the

interface.

• Off – record only those packets directed

to the host.

● Analyze - > Follow TCP Stream

● Applies a filter to follow a single tcp conversation within the trace.

● Displays the reassembiled data section of each packet in the conversation.

● Useful for debugging or analyzing any TCP based application layer protocol.

● HTTP, FTP, SSH, LDAP, SMTP, etc.

• Basic UI

●Statistics - > Protocol Hierarchy

● Presents descriptive

statistics per protocol.

● Useful for determining the

types, amounts, and

relative proportions of

protocols within a trace.

• Basic UI

● Statistics - > Conversations

●
Generates descriptive

statistics about each

conversation for each

protocol in the trace.

● Statistics - > Flow Graph

●
Generates a sequence

graph for the selected

traffic.

●
Useful for understanding

seq. and ack. calculations.

• Basic UI

● Interface selection

● Capture - > Interfaces

● Select the interface from which to capture packets.

●

●

any – captures from all interfaces

lo – captures from the loopback interface (i.e. from localhost)

● Set the desired capture parameters under the options

menu.

●Start Capture

●

●

Click the start button next to the desired interface.

Captured traffic will be displayed in the packet list pane.

• Packet Capture

●Stop Capture

● Select Capture - > Stop

●Saving Capture

● Once the capture has been stopped select File - >

Save As.

● From the save dialog you can specify file type and

which packets to save via the packet range

menu.

• Packet Capture

Trace Analysis• Trace Analysis

●Packet list

● Displays all of the packets in the trace in the order they were

recorded.

● Columns

● Time – the timestamp at which the packet crossed the

interface.

●

●

●

●

●

Source – the originating host of the packet.

Destination – the host to which the packet was sent.

Protocol – the highest level protocol that Wireshark can detect.

Lenght – the lenght in bytes of the packet on the wire.

Info – an informational message pertaining to the protocol in

the protocol column.

• Trace Analysis

●Packet list

● Default Coloring

● Gray – TCP packets

• Black with red letters – TCP Packets with errors

• Green – HTTP Packets

●

●

●

●

Light Blue – UDP Packets

Pale Blue – ARP Packets

Lavender – ICMP Packets

Black with green letters – ICMP Packets with errors

● Colorings can be changed under View -> Coloring Rules

• Trace Analysis

Individual Packet Analysis• Individual Packet Analysis

●Packet Details

● Detailed information about the currently selected packet is

displayed in the packet details pane.

●

●

All packet layers are displayed in the tree menu.

Any portion of any layer can be exported via a right click and

selecting Export Selected Packet Bytes

●Packet Bytes

●

●

Displays the raw packet bytes.

The selected packet layer is highlighted.

• Individual Packet Analysis

● Packets captures usually contain many packets irrelevant to

the specific analysis task.

● To remove these packets from display or from the capture

Wireshark provides the ability to create filters.

●

●

●

●

Filters are evaluted against each individual packet.

Boolean expresions dealing with packet properties.

Supports regular expressions.

Can either be manually constructed, composed via the

Expressions menu or composed based on a selected

packet's properties.

• Filters

●Expressions Menu

● Field name – selects the

packet property.

● Relation – selects the

boolean test.

● Predefined values – common

values against which the

selected packet property is

tested.

● Value – Arbitrary Textual or

Numeric value against

which the selected packet

property is tested.

• Filters

●Compound Filters

● Filters can be composed of multiple tests joined with boolean

connectives.

●

●

●

&& - logical conjuction (i.e. AND)

|| - logical disjunction (i.e OR)

! - logical negation (i.e. NOT)

● Supports the order of operations.

●Regular Expressions

● Fields can be evaluated against a regular expression using the

“matches” test.

● Uses Perl regex syntax.

• Filters

http://www.cs.tut.fi/~jkorpela/perl/regexp.html

●Filter Text Box

●

●

●

Green – valid filter

Red – invalid filter

Yellow – may produce unexpected results

●Packet based filters

● Filters can be constructed on the basis of individual packets

by right clicking on a packet and selecting either:

●

●

●

Prepare as filter – creates a filter.

Apply as filter – creates a filter and applies it to the trace.

Follow TCP Stream – creates a filter from a TCP packet's

stream number and applies it to the trace.

• Filters

●Filter examples

●

●

●

●

●

●

http.request – Display all HTTP requests.

http.request ||http.response – Display all HTTP request and

responses.

ip.addr = = 127.0.0.1 – Display all IP packets whose source or

destination is localhost.

tcp.len < 100 – Display all TCP packets whose data length is

less than 100 bytes.

http.request.uri matches “(gif)$” - Display all HTTP requests

in which the uri ends with “gif”.

dns.query.name = = “www.google.com” - Display all DNS

queries for “www.google.com”.

• Filters

http://www.google.com/
http://www.google.com/

Exercises

●

●

●

●

●

Objective: Learn to capture network traffic and understand packet structures.

1. Step 1: Open Wireshark and start a packet capture on the network interface that has
internet connectivity.

2. Step 2: Browse to a website (e.g., http://example.com) to generate some traffic.

3. Step 3: Stop the capture after the page fully loads.

Tasks:

• Filter HTTP packets and identify the GET request for the page.

• Analyze the TCP 3-way handshake (SYN, SYN-ACK, ACK) for the connection.

• Find the server’s IP address and the port used for the HTTP service.

• Take a screenshot of the packet structure and identify fields such as the source and
destination IP addresses, source and destination ports, and sequence numbers.

Exercise 1: Basic Packet Capture and Analysis

http://example.com/

Exercise 2: Analyzing DNS Requests

Objective: Understand how DNS requests are handled in network communication.

1. Step 1: Clear your DNS cache to ensure all DNS requests are fresh.

2. Step 2: Start Wireshark and begin capturing on your active network interface.

3. Step 3: In a browser, visit several websites (e.g., open Google, Yahoo, etc.) and then

stop the capture.

Tasks:

• Use a filter to isolate DNS traffic (dns in the filter).
• Identify at least one DNS query for each website and find the corresponding response.

• Note the response time and TTL (time-to-live) for each DNS query.

• Examine the DNS response and identify if any DNS queries returned multiple IP

addresses.

Exercise 3: Monitoring HTTP and HTTPS Traffic

Objective: Differentiate between HTTP and HTTPS traffic and understand how encryption affects
packet analysis.

1. Step 1: Start capturing packets in Wireshark on your network interface.
2. Step 2: In a browser, visit a website that uses HTTP (e.g., http://neverssl.com) and

another that uses HTTPS (e.g., https://example.com).
3. Step 3: Stop the capture.

Tasks:
• Use a filter to view only HTTP and HTTPS packets.
• Compare the packets from the HTTP and HTTPS connections. Note which fields are

visible and inspectable in HTTP vs. HTTPS.
• Identify any unencrypted data in the HTTP packets, such as the contents of the GET

requests.
• Try to locate the TLS handshake in the HTTPS packets. Identify fields such as the

ServerHello and Certificate messages.

http://neverssl.com/
https://example.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4: Basic UI
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Trace Analysis
	Slide 13
	Slide 14
	Slide 15: Individual Packet Analysis
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Exercises
	Slide 23
	Slide 24
	Slide 25

