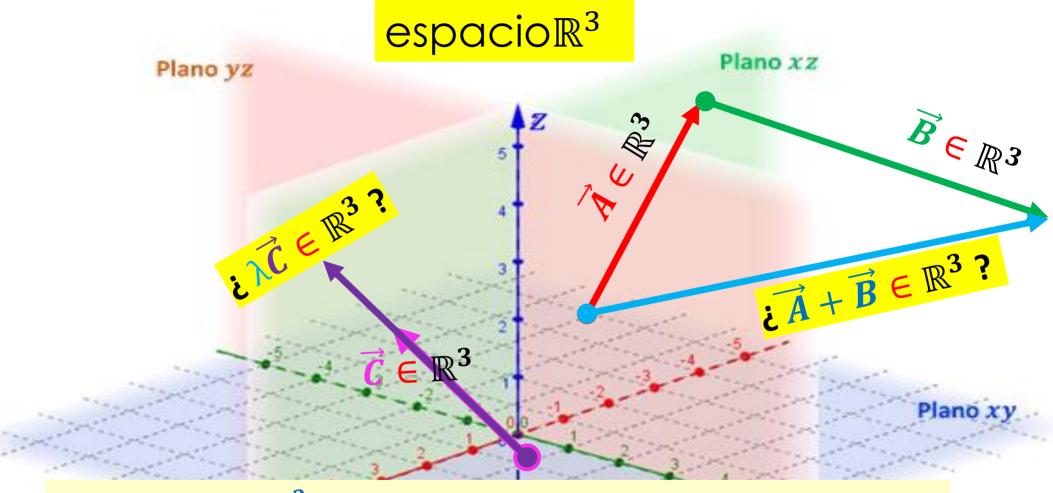
SISTEMA VECTORIAL

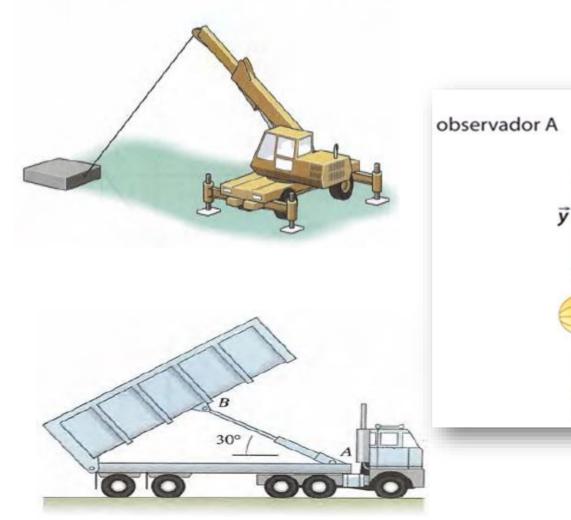
¿Cómo se le llama al espacio tridimensional en el que vivimos?

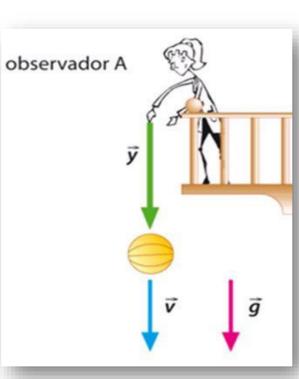


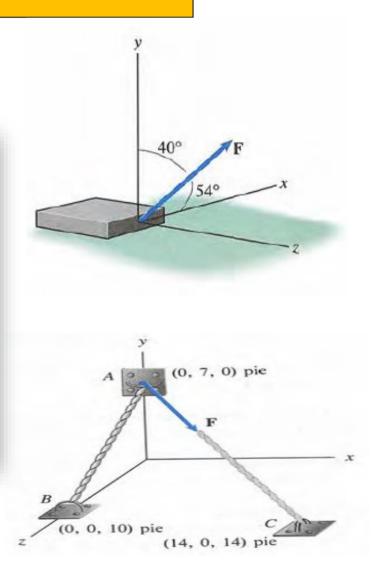
En \mathbb{R}^3 se cumplen dos condiciones:

- i. Si $\overrightarrow{A} \in \mathbb{R}^3$ y $\overrightarrow{B} \in \mathbb{R}^3$, entonces $\overrightarrow{A} + \overrightarrow{B} \in \mathbb{R}^3$
- ii. Si $\lambda \in \mathbb{R}$ y $\overrightarrow{C} \in \mathbb{R}^3$, entonces $\lambda \overrightarrow{C} \in \mathbb{R}^3$

VECTORES EN LA VIDA COTIDIANA







SABERES PREVIOS (PRE REQUISITOS)

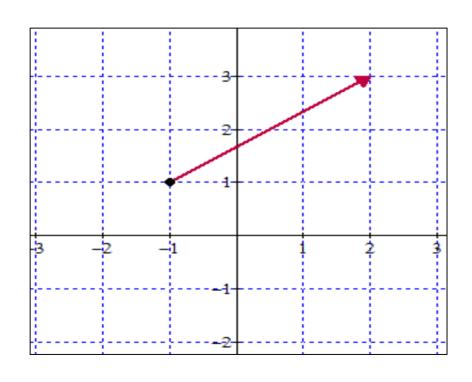
- Operaciones con los números reales
- Conjuntos
- Operaciones con matrices
- Operacionescon funciones

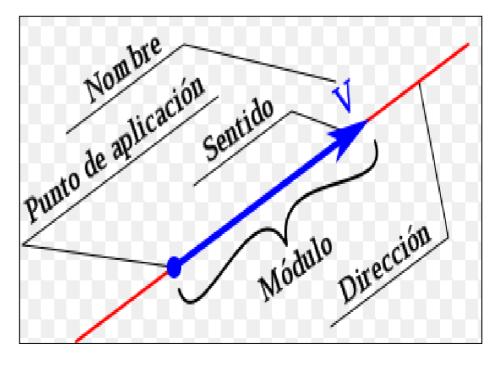
CONTENIDO DE LA SESIÓN

- Vectores en el espacio R3
 - Definición
 - Operaciones
 - Producto Escalar
 - Norma de un vector
 - Paralelismo y ortogonalidad
 - Proyección ortogonal de un vector sobre otro
 - Ángulo entre vectores
 - Producto Vectorial
 - > Triple producto escalar
 - Aplicaciones

DEFINICIÓN

Consideremos el plano cartesiano. Un vector es un **segmento** de recta **dirigido** o **una flecha** que corresponde a un desplazamiento del punto A hacia otro punto B.

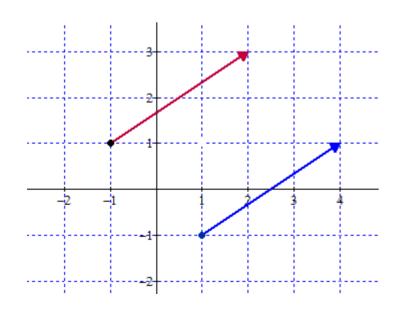




Los científicos emplean el término **vector** para indicar una **cantidad**, ejemplo: velocidad y fuerza. $u = \overrightarrow{AB}$

Notación: Al vector de A en B lo denotaremos por

VECTORES EQUIVALENTES



Del gráfico anterior, se tienen los vectores:

$$u = \overrightarrow{AB}, v = \overrightarrow{CD}$$

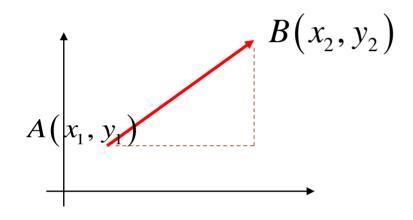
Ambos tienen la misma magnitud y dirección pero en diferentes posiciones, se llaman vectores equivalentes (o iguales).

Los vectores u y v son equivalentes.

El vector cero, denotado por 0, tiene longitud cero pero sin dirección específica.

COORDENADAS DE UN VECTOR EN EL PLANO

Si las coordenadas de A y B son:



Las coordenadas o componentes del vector AB son:

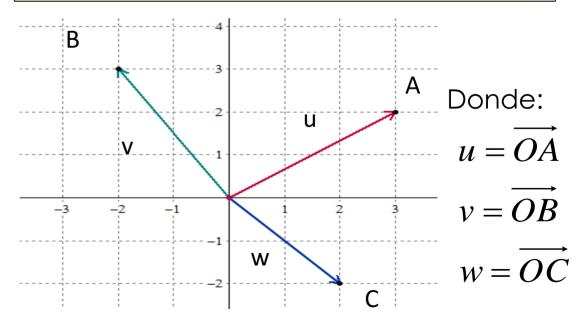
$$\overrightarrow{AB} = B - A$$

$$= (x_2, y_2) - (x_1, y_1)$$

$$= (x_2 - x_1, y_2 - y_1)$$

VECTOR DE POSICIÓN

El conjunto representa gráficamente al plano cartesiano. Entonces el conjunto de todos los puntos A en el plano, corresponden al conjunto de todos los vectores cuyos orígenes están en el origen O. A cada punto del conjunto R2 le corresponde al vector y a cada vector con origen en O, le corresponde su punta A.

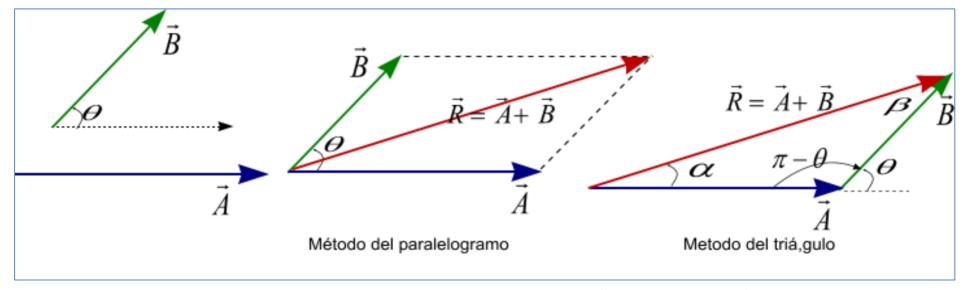


OPERACIONES CON VECTORES

SUMA VECTORIAL

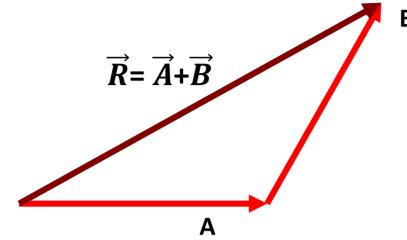
Si u y v son vectores colocados de modo que el punto inicial de v está en el punto terminal de u, entonces la suma u + v es el vector del punto inicial de u al punto terminal de v.

Considere dos vectores A y B como se muestra:



 El vector suma se puede determinar mediante la regla del paralelogramo o del triángulo .

ADICIÓN DE VECTORES

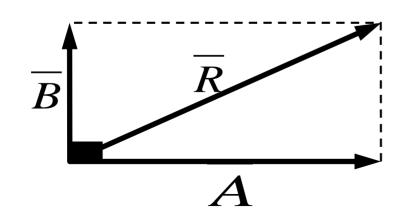


Método del triángulo

$\overrightarrow{R} = \overrightarrow{A} + \overrightarrow{B}$

Método del paralelogramo

$$R = \sqrt{A^2 + B^2 + 2AB.\cos\theta}$$

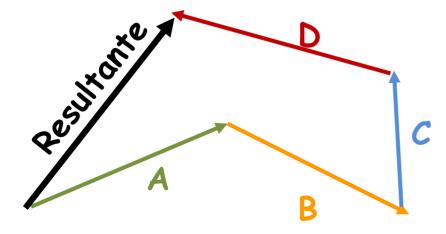


Si los vectores son perpendiculares:

$$R = \sqrt{A^2 + B^2}$$

Método del polígono

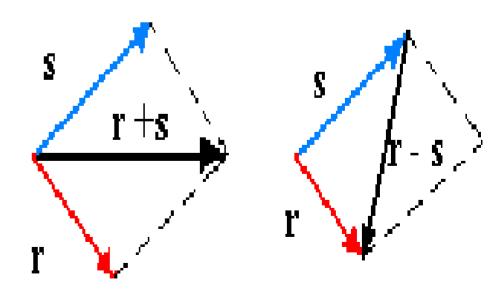
Se emplea, sobre todo, cuando se desean sumar varios vectores a la vez. En el extremo del primer vector se sitúa el punto de aplicación del segundo, sobre el extremo del segundo vector se coloca el punto de aplicación del tercero y así hasta terminar de dibujar todos los vectores. El vector resultante es el que se obtiene al unir el punto de aplicación del primero con el extremo del último



Diferencia de vectores

La resta se realiza en forma análoga a la adición.

$$\vec{R} = \vec{r} + (-\vec{s})$$



PRODUCTO ESCALAR. DEFINICIÓN Y PROPIEDADES

DEFINICIÓN. Sean los siguientes vectores

$$\vec{a} = (a_1, a_2, a_3),$$

$$\vec{b} = (b_1, b_2, b_3)$$

Se define el producto escalar de

$$\vec{a}$$
 y \vec{b}

como:

PROPIEDADES

$$1) \ \overline{a}.\overline{a} = \|\overline{a}\|^2$$

2)
$$a.b = b.a$$

3)
$$a.(b+c) = a.b + a.c$$

4)
$$(ra)b = r.(a.b) = a.(rb)$$

5)
$$0.a = 0$$

$$\vec{a}.\vec{b} = (a_1, a_2, a_3).(b_1, b_2, b_3)$$

$$= a_1.b_1 + a_2.b_2 + a_3.b_3$$

NORMA DE UN VECTOR Y VECTOR UNITARIO

Σ Sea el vector \vec{a} :

$$\vec{a} = (2,1,2) \implies |\vec{a}| = \sqrt{2^2 + 1^2 + 2^2} = 3$$

$$\frac{\vec{a}}{|\vec{a}|} = (\frac{2}{3}, \frac{1}{3}, \frac{2}{3}) \implies \left| \frac{\vec{a}}{|\vec{a}|} \right| = \sqrt{(\frac{2}{3})^2 + (\frac{1}{3})^2 + (\frac{2}{3})^2} = 1$$

$$\frac{\vec{a}}{|\vec{a}|} = \vec{u}$$

El vector no es unitario

El vector se vuelve unitario

PARALELISMO Y ORTOGONALIDAD DE VECTORES

VECTORES PARALELOS

Dos vectores Paralelos se representan como: $\vec{a}//\vec{b}$

$$\vec{a}//\vec{b} \rightarrow \vec{a} = k\vec{b}$$
 (k es un escalar)

Si un escalar multiplicado por un vector \vec{a} da el vector \vec{b} entonces ambos vectores son Paralelos.

El concepto del módulo de un vector y el reconocimiento del paralelismo genera un Teorema de aplicación para la física.

$$TEOREMA: \overrightarrow{a}//\overrightarrow{b} \rightarrow \frac{\overrightarrow{a}}{|\overrightarrow{a}|} = \frac{\overrightarrow{b}}{|\overrightarrow{b}|}$$

Si dos vectores a y b son paralelos entonces sus vectores unitarios son iguales

EJEMPLO 1

Determine si los vectores son paralelos:

$$\vec{a} = (6, -5, 12)$$
 $\vec{b} = (-2, 10, -4)$ $\vec{c} = (3, -15, 6)$

Si
$$\vec{a}//\vec{b}$$
 entonces $\frac{6}{-2} = \left(\frac{-5}{10}\right) = \frac{12}{-4}$

No es equivalente a las demás

Si
$$\vec{b}//\vec{c}$$
 entonces $\frac{-2}{3} = \frac{10}{-15} = \frac{-4}{6}$

Son equivalentes
Por tanto son
paralelos

Si
$$\vec{a}//\vec{c}$$
 entonces $\frac{6}{3} = \frac{-5}{-15} = \frac{12}{6}$

No es equivalente a las demás

VECTORES PERPENDICULARES

Dos vectores \vec{u} y \vec{v} son perpendiculares si y solo si : \vec{u} . $\vec{v} = 0$

Si:
$$\vec{u} \perp \vec{v} \leftrightarrow \vec{u}$$
 . $\vec{v} = 0$

Decir Perpendiculares implica a decir que entre ellos el ángulo es de 90°.

<u>Teorema:</u> Sean a, b vectores en \Re^2 y α un número real, entonces:

- a.0 = 0
- a.b = b.a (propiedad conmutativa)
- $(\alpha a).b = \alpha(a.b) = a.(\alpha b)$
- \diamond a.(b + c) = a.b + a.c (propiedad distributiva) $a.a = ||a||^2$
- Si a . b = 0 entonces el vector a es perpendicular al vector b

EJEMPLO 2

Sean $\vec{u} = (2, -5, -1)\vec{v} = (4,1,3)$ Compruebe si son perpendiculares:

$$\vec{u}.\vec{v} = 2(4) + (-5)(1) + (-1)(3) = 0$$

Además:
$$\|\vec{u}\| = \sqrt{30}$$

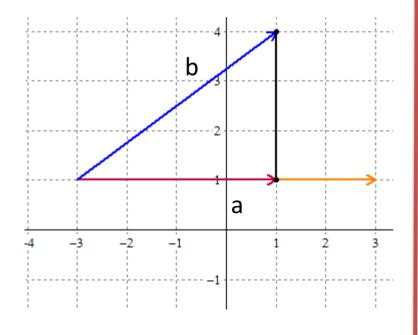
$$\|\vec{v}\| = \sqrt{26}$$

Luego:
$$\cos\theta = \frac{0}{\sqrt{30}.\sqrt{26}} = 0$$
 Finalmente: $\vec{u} \perp \vec{w}$

PROYECCION ORTOGONAL

En la siguiente figura muestran las representaciones

$$\overrightarrow{PQ}$$
 y \overrightarrow{PR}



Proyección escalar de b sobre a

$$Comp_{\vec{a}}\vec{b} = \frac{\vec{a}.\vec{b}}{\|\vec{a}\|}$$

Proyección vectorial de b sobre a

$$\operatorname{Pr} oy_{\vec{a}} \vec{b} = \left(\frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\|} \right) \frac{\vec{a}}{\|\vec{a}\|} = \left(\frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\|^2} \right) \vec{a}$$

PRODUCTO ESCALAR

PRODUCTO VECTORIAL

Si el producto escalar

$$|\vec{a} \cdot \vec{b}| = |\vec{a}| |\vec{b}| \cos \theta$$

de dos vectores es cero, entonces:

- 1) Al menos uno de los dos es cero.
- 2) Los vectores son perpendiculares, es decir que:

$$\theta = 90^{\circ} (\pi/2) \text{ ó } 270^{\circ} (3\pi/2)$$

Sean los vectores:

$$\vec{A} = (A_x, A_y, A_z) \qquad \vec{B} = (B_x, B_y, B_z)$$

$$\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z k \qquad \vec{B} = B_x \hat{i} + B_y \hat{j} + B_z k$$

$$\overrightarrow{C} = \overrightarrow{A}x\overrightarrow{B} = \begin{vmatrix} \widehat{i} & j & k \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$

$$\vec{C} = (A_y B_z - A_z B_y)\hat{i} - (A_x B_z - A_z B_x)j + (A_x B_y - A_y B_x)k$$

$$\vec{C} = (A_y B_z - A_z B_y) - (A_x B_z - A_z B_x), A_x B_y - A_y B_x$$

Producto cruz como "determinante"

$$\vec{a} = (a_1, a_2, a_3)$$

 $\vec{b} = (b_1, b_2, b_3)$ $\vec{a} \times \vec{b} = (a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1)$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \hat{i} \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} - \hat{j} \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} + \hat{k} \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}$$

$$= \hat{\imath}(a_2b_3 - a_3b_2) - \hat{\jmath}(a_1b_3 - a_3b_1) + \hat{k}(a_1b_2 - a_2b_1)$$

$$= (a_2b_3 - a_3b_2)\hat{\imath} + (a_3b_1 - a_1b_3)\hat{\jmath} + (a_1b_2 - a_2b_1)\hat{k}$$

h

EJEMPLO 3

Dados los siguientes vectores:

$$\vec{a} = -2\hat{i} + 3\hat{j} + \hat{k}$$

$$\vec{b} = 4\hat{i} - 3\hat{j} + 3\hat{k}$$

$$\vec{c} = -\hat{j} + 4\hat{k}$$

Determine:

$$(\vec{a}-2\vec{b}) \cdot 3\vec{c}$$

$$-(4\vec{b}-3\vec{c})\times 2\vec{b}$$

Solución:

$$(\vec{a} - 2\vec{b}) \bullet 3\vec{c} = (-2\hat{i} + 3\hat{j} + \hat{k} - 8\hat{i} + 6\hat{j} - 6\hat{k}) \bullet (-3\hat{j} + 12\hat{k})$$

$$= (-10\hat{i} + 9\hat{j} - 5\hat{k}) \bullet (-3\hat{i} + 12\hat{j})$$

$$= (-10)(0) + (9)(-3) + (-5)(12) = -87$$

$$-(4\vec{b} - 3\vec{c}) \times 2\vec{b} = 4(4\hat{i} - 3\hat{j} + 3\hat{k}) - 3(-\hat{j} + 4\hat{k}) = 16\hat{i} - 9\hat{j}$$

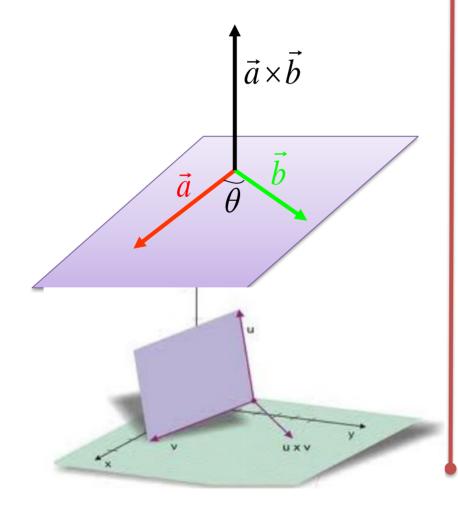
$$\Rightarrow -(4\vec{b} - 3\vec{c}) = -16\hat{i} + 9\hat{j}$$

$$2\vec{b} = 8\hat{i} - 6\hat{j} + 6\hat{k}$$

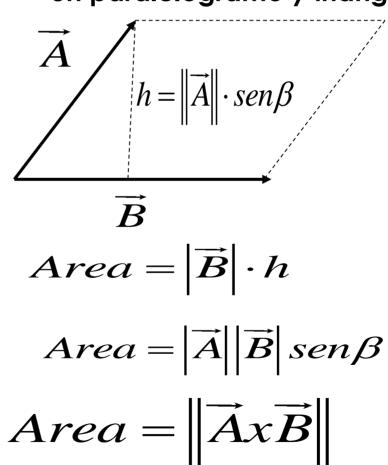
$$-(4\vec{b} - 3\vec{c}) \times 2\vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -16 & 9 & 0 \\ 8 & -6 & 6 \end{vmatrix} = 54\hat{i} + 96\hat{j} + 24\hat{k}$$

MÓDULO DEL PRODUCTO VECTORIAL

$$\|\vec{a} \times \vec{b}\| = \|\vec{a}\| \|\vec{b}\| \operatorname{sen}\theta$$



Interpretación Geométrica (área de un paralelogramo y triángulo)



ÁNGULO ENTRE VECTORES

Sean \vec{u} y \vec{v} dos vectores no nulos que tienen el mismo origen, sea θ el menor de los ángulos positivos formado por dichos vectores que satisfacen:

 $0 \le \theta \le \pi$ donde:

$$\cos\theta = \frac{\vec{u}.\vec{v}}{\|\vec{u}\|\|\vec{v}\|}$$

Finalmente:

$$\theta = arcos(\frac{\vec{u}.\vec{v}}{\|\vec{u}\|\|\vec{v}\|})$$

EJEMPLO 4

Sean los vectores: $\vec{u} = 4i + 2j$; $\vec{v} = i + 4j$ Obtenga el ángulo entre ellos:

Solución: Realizamos un pequeño bosquejo de los dos vectores, recordemos que; lo que está en i es lo que está en "x" y lo que está en j es lo que hay en "y". Aplicando nuestra fórmula tenemos lo siguiente:

$$\cos \varphi = \frac{\vec{u} \cdot \vec{v}}{|u| |v|} = \frac{(4i+2j)(i+4j)}{(\sqrt{4^2+2^2})(\sqrt{1^2+4^2})}$$
$$\varphi = \cos^{-1}(0.6508) = 49.4^{\circ}$$

TRIPLE PRODUCTO ESCALAR

Es un escalar que resulta del producto escalar de un vector por el vector resultante del producto vectorial de dos vectores. Sean los vectores:

$$\vec{A} \cdot (\vec{B}x\vec{C}) = (A_x \hat{i} + A_y j + A_z k) \cdot \begin{vmatrix} \hat{i} & j & k \\ B_x & B_y & B_z \\ C_x & C_y & C_z \end{vmatrix}$$

Donde:

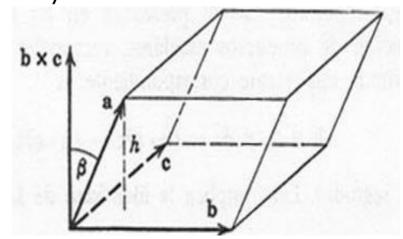
$$\vec{A} = (A_x, A_y, A_z) \qquad \vec{B} = (B_x, B_y, B_z)$$

$$\vec{A} = A_x \hat{i} + A_y j + A_z k \qquad \vec{B} = B_x \hat{i} + B_y j + B_z k$$

$$\vec{C} = (C_x, C_y, C_z) = C_x \hat{i} + C_y j + C_z k$$

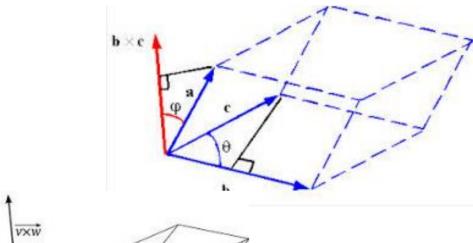
INTERPRETACIÓN GEOMÉTRICA

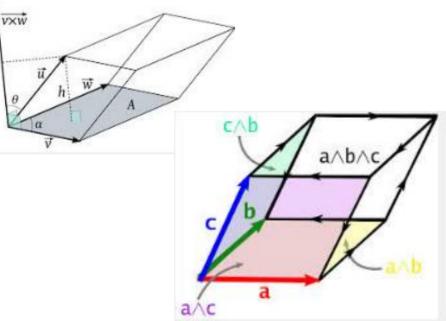
El valor absoluto del triple producto escalar (**a b c**) tiene una interpretación geométrica sencilla. Es igual al volumen del paralelepípedo **P** con **a**, **b**, **c**, como aristas adyacentes.



APLICACIONES

INTERPRETACIÓN GEOMÉTRICA





Dados los vectores $\mathbf{u} = (1, -2, 3)$; $\mathbf{v} = (0, 4, 2)$ y $\mathbf{w} = (-4, 1, -1)$, obtenga el volumen del paralelepípedo delimitado por ellos.

Solución:

$$\vec{u} \cdot (\vec{v} \times \vec{w}) = (\hat{i} - 2j + 3k) \cdot \begin{vmatrix} \hat{i} & j & k \\ 0 & 4 & 2 \\ -4 & 1 & -1 \end{vmatrix}$$

$$\vec{u} \cdot (\vec{v} \cdot \vec{w}) = 1(-4-2) - (0+8) + (0+16)$$

$$V = \left| \vec{u} \cdot (\vec{v} \times \vec{w}) \right| = 50.9u^3$$