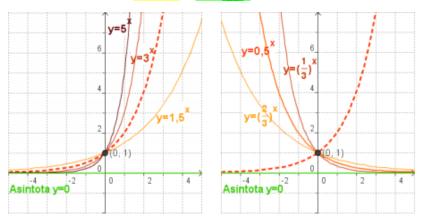
Función Exponencial

La función exponencial La función exponencial es de la forma $y = a^x$, siendo a un número real positivo.

Observa que las gráficas de forma $y = a^x$, y $y = \left(\frac{1}{a}\right)^x$, de son simétricas respecto del eje OY.



El dominio de la función son todos los reales y el recorrido son todos los reales positivos.

La función es continua.

Si a > 0 la función es creciente

Si 0 < a < 1 la función es decreciente

La función corta al eje OY en (0,1)

El eje OX es asíntota

Ecuaciones exponenciales

La función exponencial se presenta en multitud de fenómenos de crecimiento animal, vegetal, económico, etc. En todos ellos la variable es el tiempo. En el crecimiento exponencial, cada valor de \mathbf{y} se obtiene multiplicando el valor anterior por una cantidad constante a.

Propiedades de los exponentes

Ley	Ejemplo	Descripción
$1. \ a^m a^n = a^{m+n}$	$3^2 \cdot 3^5 = 3^{2+5} = 3^7$	Para multiplicar dos potencias del mismo número sume los exponentes.
$2.\frac{a^m}{a^n}=a^{m-n}$	$\frac{3^5}{3^2} = 3^{5-2} = 3^3$	Para dividir dos potencias del mismo número, reste los exponentes.
$3. (a^m)^n = a^m$	$(3^2)^5 = 3^{2 \cdot 5}$ $= 3^{10}$	Para elevar una potencia a una nueva potencia, multiplique los exponentes.
$4. (ab)^n = a^n b^n$	$(3 \cdot 4)^2 = 3^2 \cdot 4^2$	Para elevar un producto a una potencia, eleve cada factor a la potencia.
$5. \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$	$(\frac{3}{4})^2 = \frac{3^2}{4^2}$	Para elevar un cociente a una potencia, eleve tanto el numerador y denominador a la potencia.
$6. \left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$	$(\frac{3}{4})^{-2} = (\frac{4}{3})^2$	Para elevar una fracción a una potencia negativa, invierta la fracción y cambie el signo del exponente.
$7.\frac{a^{-n}}{b^{-m}} = \frac{b^m}{a^n}$	$\frac{3^{-2}}{4^{-5}} = \frac{4^5}{3^2}$	Para pasar un numero elevado a una potencia desde el numerador al denominador o desde el denominador al numerador, cambie el signo del exponente.

Ejemplo_1

Resolver la ecuación:

$$3^{2x-1}=\sqrt{27}$$

$$3^{2x-1} = (3^3)^{\frac{1}{2}}$$

$$3^{2x-1} = 3^{\frac{3}{2}}$$

Como tiene la misma base se igualan los exponentes

$$2x - 1 = \frac{3}{2}$$

$$2x = \frac{5}{2}$$

$$x = \frac{5}{4}$$

Ejemplo_2

Resolver la siguiente ecuación exponencial

$$(4^{3-x})^{2-x} = 1$$

$$4^{(x^2 - 5x + 6)} = 4^0$$

$$x^2 - 5x + 6 = 0$$

$$(x-3)(x-2)=0$$

Ejemplo_3

Resolver la siguiente ecuación exponencial

$$5(5^x + 5^{-x}) = 26$$

$$5 \cdot 5^x + 5 \cdot 5^{-x} - 26 = 0$$

Cambio variable $t = 5^x$

$$5 \cdot 5^x + \frac{5}{5^x} - 26 = 0$$

$$5t + \frac{5}{t} - 26 = 0$$

$$5t^2 + 5 - 26t = 0$$

$$5t^2 - 26t + 5 = 0$$

$$5t - 1$$

$$t - 5 (5t - 1)(t - 5) = 0$$

Resolviendo la ecuación de segundo grado tenemos:

$$t_1 = \frac{1}{5}$$
; $t_2 = 5$

Devuelvo el artificio:

$$5^{-1} = 5^x$$
 $5 = 5^x$

El valor de la incógnita x = -1 ; x = 1

Ejemplo_4

$$3^{2x+4} - 17 = 18(3^{x} - 1)$$
$$3^{4} \cdot 3^{2x} - 17 = 18 \cdot 3^{x} - 18$$
$$3^{4} \cdot 3^{2x} - 18 \cdot 3^{x} + 1 = 0$$

Cambio variable: $z = 3^x$

$$81z^2 - 18z + 1 = 0$$

Resolviendo la ecuación de segundo grado

$$(9z - 1)^2 = 0$$
$$z = \frac{1}{9}$$

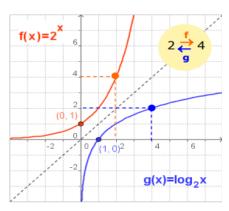
Ahora devuelvo el artificio

$$3^{-2} = \frac{3^x}{3}$$

La solución de la ecuación dada es x = -2

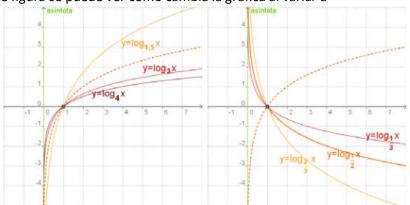
La función inversa de la exponencial

Dada una función inyectiva, y = f(x) se llama función inversa de f a otra función, g, tal que g(y) = x. En la figura adjunta se puede ver la inversa de la función exponencial. La función inversa de la exponencial es la que cumple que g(y)=x. Esta función se llama **función logarítmica** y, como puedes observar, es simétrica de la función exponencial con respecto a la bisectriz del primer y tercer cuadrantes.



Función Logarítmica

La función logaritmo se denota $y = log_a x \ con \ a > 0 \ y \ distinto \ de \ 1$ En la siguiente figura se puede ver como cambia la gráfica al variar a



El **dominio** son los *reales positivos* y **el recorrido** son *todos los reales*.

Es continua

Si a > 1 la función es **creciente** y si 0 < a < 1 es decreciente.

Corta al eje OX en (1,0)

El eje OY es asíntota

La función es inyectiva

Nota:

Términos de **Potenciación**

Inversa

Radicación

 $2^3 = 8$

 $\sqrt[3]{8} = 2$ base

Base:

Exponente:

Logaritmos

 $log_2 8 = 3$ Expon.

Ejemplos:

$$log_3 81 = 4$$

$$log_{\frac{1}{4}}16 = -2$$
$$log_{\sqrt{3}}3 = 2$$

NOTA: Toda ecuación logarítmica se puede expresar como ecuación exponencial y viceversa

$$log_a b = x$$
 $a^x = b$

Propiedades de los logaritmos

PROPIEDADES DE LOS LOGARITMOS

1.
$$log(A \cdot B) = logA + logB$$
 Ejemplo: $log 3x = log 3 + log x$

2. $log\left(\frac{A}{B}\right) = logA - logB$ Ejemplo: $log \frac{x}{2} = log x - log 2$

3. $logA^n = n \cdot logA$ Ejemplo: $log x^3 = 3 \cdot log x$

4. $log \sqrt[n]{A} = \frac{1}{n} \cdot logA$ Ejemplo: $log \sqrt[n]{x} = \frac{1}{4} \cdot log x$

5. $log_a a = 1$ Ejemplo: $log \sqrt[n]{x} = 1$; $log x$

6. $log_c a = \frac{loga}{logc}$ (Cambio de base)

Ejemplo_1

Usando las propiedades de los logaritmos evaluar las siguientes expresiones

1.
$$log_2(\frac{1}{4} \cdot \sqrt{8}) = log_2\frac{1}{4} + log_28\frac{1}{2}$$

 $= -2 + log_22\frac{3}{2}$
 $= -2 + \frac{3}{2}log_22$
 $= -2 + \frac{3}{2}$
 $= -\frac{1}{2}$

2.
$$\log_{2\sqrt{2}}(32 \cdot \sqrt[5]{4}) = \log_{2\sqrt{2}} 2^{5} + \log_{2\sqrt{2}} 2^{\frac{2}{5}}$$

$$2\sqrt{2}^{x} = 2^{5} \qquad 2\sqrt{2}^{x} = 2^{\frac{2}{5}}$$

$$2^{\frac{3}{2}x} = 2^{5} \qquad 2^{\frac{3}{2}x} = 2^{\frac{2}{5}}$$

$$x = \frac{10}{3} \qquad x = \frac{4}{15}$$

$$= \frac{10}{3} + \frac{4}{15}$$

$$= \frac{18}{5}$$

Ejemplo_1

Resolver la ecuación logarítmica

$$log_{7}(x+1) + log_{7}(x-5) = 1$$

$$log_{7}(x+1)(x-5) = 1$$

$$log_{7}(x^{2} - 4x - 5) = 1$$

$$7^{1} = x^{2} - 4x - 5$$

$$x^{2} - 4x - 12 = 0$$

$$x = 6 \quad ; x = -2$$

Ejemplo_2

Resolver la ecuación logarítmica

$$2\log_a x - \log_a 7 = \log_a 4$$

$$\log_a \frac{x^2}{7} = \log_a 4$$

$$\frac{x^2}{7} = 4$$

NOTA: Cambio de base

Para cualquier base a, b y un número positivo x se cumple que:

$$\log_{\mathbf{a}} x = \frac{\log_b x}{\log_b a}$$

Ejemplo_3

Resolver la ecuación logarítmica

$$log_2^2 x - 9 \frac{log_8 x}{} = 4$$

$$\log_2^2 x - 9 \frac{\log_2 x}{\log_2 8} = 4$$

$$\log_2^2 x - 9 \frac{\log_2 x}{3} = 4$$

$$log_2^2x - 3log_2x - 4 = 0$$

Artificio: $log_2 x = z$

$$z^2 - 3z - 4 = 0$$

$$z = 4$$
; $z = -1$

Devuelvo el artificio

$$log_2x = 4 \quad ; \quad log_2x = -1$$

Expresando como potencia:

$$x = 16$$
; $x = \frac{1}{2}$

Ejemplo_4

Resolver la ecuación logarítmica

$$log_2x + log_49 - log_26 + log_22 = 3$$

$$log_2x - - - + = 3$$