Introduction to

Telecommunications

UNACH - FI

September 2021

Overview

- 1. What: 5G Definition, timeline, Applications
- 2. Frame Structure, Scalable OFDM
- 3. Massive MIMO, Beamforming
- 4. Core Network architecture, features
- 5. Current and future releases of 3GPP

5G Definition

Ref: ITU-R Recommendation M.2083-0, "IMT Vision – Framework and overall objectives of the future development of IMT for 2020 and beyond," Sep. 2015, 21 pp., <u>https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2083-0-201509-I!!PDF-E.pdf</u>

5G Definition (Cont)

- 1. **Peak Data Rate**: max rate per user under ideal conditions. 10 Gbps for mobiles, 20 Gbps under certain conditions.
- 2. User experienced Data Rate: 95% Rate across the coverage area per user. 100 Mbps in urban/suburban areas. 1 Gbps hotspot.
- 3. Latency: Radio contribution to latency between send and receive
- 4. Mobility: Max speed at which seamless handover and QoS is guaranteed
- 5. **Connection Density**: Devices per km²
- 6. Energy Efficiency: Network bits/Joule, User bits/Joule
- 7. **Spectrum Efficiency**: Throughput per Hz per cell
- 8. Area Traffic Capacity: Throughput per m²

Additional Capabilities for 5G

- 1. **Spectrum and Bandwidth Flexibility**: Ability to operate at different frequencies and channel bandwidths
- 2. **Reliability**: High availability
- 3. **Resilience**: Continue working in face of disasters
- 4. Security and Privacy: Confidentiality, Integrity, Authentication, Protection against hacking, denial of service, man-in-the-middle attacks
- 5. **Operational Lifetime**: Long battery life

Ref: ITU-R Recommendation M.2083-0, "IMT Vision – Framework and overall objectives of the future development of IMT for 2020 and beyond," Sep. 2015, 21 pp., <u>https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2083-0-201509-I!!PDF-E.pdf</u>

3GPP Schedule

3G: IMT-2000 started in 1985, first release in 2000
4G: IMT-Advanced, vision in 2003, First release in 2012
5G: IMT-2020, vision in 2015, first release in 2020

http://www.itu.int/en/ITU-R/study-groups/rsg5/rwp5d/imt-2020/Documents/Antipated-Time-Schedule.pdf

ITU-R Schedule

Ref: ITU-R, "Workplan, timeline, process and deliverables for the future development of IMT," ITU-R Document 5D/758, Attachment 2.12

ITU-R Schedule (Cont)

- 1. **Technical Requirements**: 13 minimum performance requirements [ITU-R M.2410]
- 2. Evaluation Guideline: Configurations, test environments, and channel models [ITU-R M.2412]
- 3. Submission templates: For submitting a candidate technology [ITU-R M.2411]
- Workshop on IMT-2020 was held in October 2017.
 Candidate proposals can now be submitted.
- Radio Interface Specification for IMT-2020 will be published in 2020.

5G Applications

Three Key Application Areas:

- 1. Enhanced Mobile Broadband (eMBB): Better mobile phones and hot spots. High data rates, high user density. Human centric communications
- 2. Ultra-Reliable and Low-Latency Communications
 (URLLC): Vehicle-to-Vehicle communication, Industrial IoT,
 3D Gaming. Human and Machine centric communication
- 3. Massive Machine Time Communications (mMTC): Very large number of devices, low data rate, low power. IoT with long battery life time. Addition to GSM, LoRa, Zigbee, etc. Machine-centric communication.

5G Applications (Cont)

Enhanced mobile broadband

Massive machine type communications

Ultra-reliable and low latency communications

M.2083-02

Ref: ITU-R M.2083-0, "IMT Vision – Framework and overall objectives of the future development of IMT for 2020 and beyond," Sep. 2015. <u>https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2083-0-201509-I!!PDF-E.pdf</u>

Application Requirements

M.2083-04

Ref: ITU-R M.2083-0, "IMT Vision – Framework and overall objectives of the future development of IMT for 2020 and beyond," Sep. 2015. <u>https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2083-0-201509-I!!PDF-E.pdf</u>

5G Requirements Template

Parameter	Min Requirement			
Peak Data Rate	20 Gbps DL, 10 Gbps UL			
Peak Spectral Efficiency	30 bps/Hz DL, 10 bps/Hz UL			
User Experienced Data Rate	100 Mbps DL, 50 Mbps UL			
Fifth-Percentile User	$3 \times 4G$			
Spectral Efficiency				
Average User Spectral	$3 \times 4G$			
Efficiency				
Area Traffic Capacity	10 Mbps/m ² (Indoor hot spot)			
User Plane Latency	4 ms for eMBB, 1 ms for URLLC			
Control Plane Latency	20 ms			
Connection Density	1 M devices/km^2			
Energy Efficiency				
Reliability	0.99999 probability of successful transmission in Urban			
	macro cell edge for URLLC			
Mobility	$1.5 \times 4G$			
Mobility Interruption time	0 ms			
Bandwidth	At least 100 MHz and up to 1 GHz in higher bands.			
	Scalable bandwidth support required.			
Ref: ITU-R M.2411-0, "Requirements, evaluation criteria and submission templates for the development of IMT-2020," Nov. 2017,				

https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-M.2411-2017-PDF-E.pdf

Spectrum for 5G

- World Radio-communications Conference (WRC) determines the spectrum requirements
- □ WRC-2000 identified the spectrum required for 3G
- □ WRC-2007 identified the spectrum required for 4G
- □ WRC-2019 is expected to finalize spectrum required for 5G
- □ Two Frequency Ranges (FRs)
 - **FR1**: Sub 6-GHz. Several new bands in this range.
 - > **FR2**: 24.25-52.6 GHz (mm-Waves)
 - \Rightarrow Good for high throughput in small cells
 - NR can use both paired and unpaired spectrum NR specs list 26 operating bands for FR1 and 3 for FR2

Above 6 GHz

- □ Free-space loss increases in proportion to square of frequency and square of distance. 88 dB loss with 30 GHz at 20 m ⇒ 10-100 m cell radius
- **Outdoor-to-Indoor**: Glass windows add 20-40 dB
- Mobility: Doppler shift is proportional to frequency and velocity. Multipath results in varying Doppler shifts
 ⇒ Lower mobility
- Wide Channels: Duplex filters cover only 3-4% of center frequency ⇒ Need carrier aggregation.
- Antenna: 8x8 array at 60 GHz is only 2cm x 2cm. A/D and D/A converters per antenna element may be expensive
- □ 2 Gbps to 1 km is feasible using mm waves

Above 6 GHz (Cont)

- □ 100s MHz \Rightarrow Multi-gigabit data rates
- **Dense spatial reuse**
- □ Lower latency
- □ Need analog beamforming with narrow beam width
- Adaptive beam steering and switching to avoid blockage from hand, body, or foliage
- □ Need different antenna configurations in the mobile
- Directional antennas with adaptable 3D beamforming and beam tracking

5G Health Concerns

- □ 5G may need higher power transmission levels than those allowed currently by health regulations in various countries
- Federal Communications Commission (FCC) and International Commission on Non-Ionizing Radiation (ICNIRP)
 - > Specify max *absorption rate* in W/Kg up to 6 GHz
 - Specify max *incident power* density W/m² for 6-10 GHz (absorption becomes difficult to measure in this range)
- □ 5G industry wants limits increased. Health activists want limits decreased.
 ⇒ Current debate

Ref: Radiationhealthrisks.com, "Why 5G Cell Towers Are More Dangerous," https://www.radiationhealthrisks.com/5g-cell-towers-dangerous/

3GPP Evolution from 4G to 5G

3.9G

4G

- Rel. 8: LTE. 4x4 MIMO, Flat Architecture, Low Latency, Multi-Band
- Rel. 9: Evolved MultiMedia Broadcast Multicast Services (eMBMS), Voice over LTE (VoLTE), Femto Cells, Self-Organizing Network (SON)
- Rel. 10: LTE-Advanced (4G). June 2011. Carrier aggregation, MIMO, Relays, Inter-Cell interference coordination
- Rel. 11: March 2013. Coordinated Multipoint (CoMP) transmission, Enhanced carrier aggregation, New control channels, new mobile categories
- Rel. 12: March 2015. Small Cells, Dual connectivity, Small-cell on/off, Semi-dynamic TDD, Direct device-todevice communication, simpler machine-type communications.

3GPP Evolution from 4G to 5G (Cont)

- Rel. 13: LTE-Advanced Pro (4.5G). March 2016. License Assisted Access (LAA), Improved machine-type communications, carrier aggregation, device-to-device comm.
- Rel. 14: June 2017. Improved LAA, Vehicle-to-Everything (V2X), Wide-area broadcast with reduced subcarrier spacing
- Rel. 15: 5G Phase 1. Sep 2018. New Radio (NR), Non-Stand-Alone (NSA), Short TTI, ...
- □ **Rel. 16**: 5G Phase 2. mMTC, Stand-alone (SA)

5G

4.5G

3GPP Releases from 4G to 5G

Ref: https://portal.3gpp.org/#55934-releases

Ref: H. Holma, A. Toskala, J. Reunanen, "LTE Small Cell Optimization," Wiley, 2016, ISBN: 9781118912577 (Not a Safari Book)

3GPP 5G Proposal

- **Rel**. 8-9: LTE
- □ Rel. 10-12: LTE-Advanced
- □ Rel. 13-14: LTE Advanced-Pro
- □ Rel. 15: New Radio (NR), a.k.a., *5G* NR.
- □ 3GPP specs are numbered TS xx.yyy, where xx is the series.
 - > 36-series specs define LTE, LTE-Advanced, LTE-Advanced Pro
 - > **38-series** specs define NR
- Note: NR has been submitted as a candidate for IMT-2020 in Feb. 2018. Has not passed the ITU evaluation yet. It is actually 5G Phase 1.
- Release 16 (5G Phase 2) will satisfy all IMT-2020 requirements.

Release 15 Features

- Scalable OFDM
- Supplementary Uplink
- □ Flexible Frame Structure
- □ Flexible Duplex Modes
- Efficient Channel Coding
- Low-Latency Features
- Optimized Massive MIMO
- Analog Beamforming
- Non-Standalone vs. Standalone Deployments
- Service Based Architecture
- Network Slicing
- □ Control-Plane User-Plane Split

Scalable OFDM

- Small subcarrier spacing ⇒ Large symbol time
 ⇒ Allows large cyclic prefix
 ⇒ Allows larger multipath delays (required at lower frequencies)
- $\Box \text{ Larger frequencies} \Rightarrow \text{Shorter ranges}$
 - \Rightarrow Shorter Cyclic Prefix OK \Rightarrow Shorter symbols
 - \Rightarrow Larger subcarrier spacing ok
- □ Increased phase noise at higher frequencies
 - \Rightarrow Larger subcarrier spacing required
- □ Scalable OFDM: Subcarrier spacing increases with the carrier frequency
 - > 15 kHz or $2^{n} \times 15$ kHz \Rightarrow 15, 30, 60, 120 kHz
 - > Max 3300 subcarriers \Rightarrow 50, 100, 200, 400 MHz band

□ R15 allows 15/30/60 kHz spacing for FR1, 60/120 kHz for FR2

Scalable OFDM Numerology

Ref: G. Pfeifer, "5G Technology Introduction, Market Status Overview and Worldwide Trials," 5G and IoT Seminar, Italy, May 2017, https://cdn.rohde-schwarz.com/it/seminario/5G_Seminar_Part1_Standardization_Market_PHY_170509_Italy.pdf

Scalable OFDM Numerology (Cont)

Subcarrier Spacing (kHz)	15	30	60	15×2^n
Symbol Duration (µs)	66.67	33.33	16.67	$66.67/2^{n}$
Cyclic Prefix (µs)	4.69	2.34	1.17	$4.69/2^{n}$
Symbol + CP (μ s)	71.35	35.68	27.84	71.35/2 ⁿ
Symbols/Slot	14	14	14	14
Slot Duration (µs)	1000	500	250	$1000/2^{n}$

□ In NR: Max FFT size is higher (4098) and spectrum utilization is higher:

	LTE	5G NR	5G NR
Channel Width (MHz)	20	20	50
FFT Size	2048	2048	4096
Number of Subcarriers (15 kHz spacing)	1333	1333	3333
Occupied PRBs	100	106	270
Spectrum Utilization	90%	95.4%	97.2%

Ref: A. Zaidi, et al, "5G Physical Layer: Principles, Models and Technology Components," Academic Press, 2018,302 pp., ISBN: <u>9780128145784</u>

Supplementary Uplink

- Supplementary uplink (SUL) generally operates in a lower frequency band than the regular UL/DL
- SUL enhances the uplink rate in power limited situations where lower frequencies with lower path loss can extend uplink coverage
- Slightly different from carrier aggregation.
 Only uplink. No supplementary downlink.

Frame Structure

10 subframes/frame

Slots/subframe depends on subcarrier spacing. symbols/slot depends on cyclic prefix: 12 or 14 A mini-slot consists of 2, 3 or 7 symbols

 \Rightarrow 2, 4, or 7 symbols/mini-slot

Subcarrier	Slot	Slots
Spacing	Duration	per
kHz	us	Subframe
15	1000	1
30	500	2
60	250	4
120	125	8
240	62.5	

Mini Slots

- At high-frequency, large bandwidth bands allows a large amount of data in a few symbols
- □ NR allows transmission over a fraction of a slot \Rightarrow Mini-slot
- □ 14 OFDM symbols per slot \Rightarrow 2, 4, or 7-symbols mini-slots
- ❑ URLLC traffic use mini-slots and can pre-empt eMBB traffic ⇒ Very low latency. Pre-empted user recovers using HARQ
- Slot aggregation for high-data rate eMBB

Resource Blocks

- In LTE: Physical Resource
 Block = 12 subcarriers x 6 or 7 symbols
- $\Box In 5G NR:$
 - Resource Element
 - = 1 subcarrier $\times 1$ symb
 - PRB = 12 subcarriers × 1 symbol
- Assuming 15 kHz Subcarriers:
 - Time slot: 1 ms = 14 OFDM symbols
 - Physical Resource Block: 12 subcarriers (180 kHz) over 1 slot

Bandwidth Parts (BWP)

- □ In LTE: All devices can transmit and receive the entire frequency band and use a fixed 15 kHz subcarrier spacing
- In 5G NR: A cell may have many subcarrier spacing and a device is not required to transmit/receive entire band
 Time-Frequency grid is divided into bandwidth parts
- On each serving cell, at each time instant, there is one active downlink BWP and one uplink BWP
- After connection, a device can be configured with up to 4 downlink BWPs and 4 uplink BWPs for each serving cell
- In case of SUL operation, device can have up to 4 additional uplink BWPs

BWP Example

- □ For all subcarrier spacing
- PRB = 12 subcarriers × 14 symbols
- Smaller subcarrier spacing
 - \Rightarrow Larger symbols
- Some bandwidth parts may not be active.
- NR supports carrier aggregation of 16 carriers
- Up to 256 QAM in DL and UL

Ref: 5G Americas, "Wireless Technology Evolution - Transition from 4G to 5G, 3GPP Releases 14 to 16," Whitepaper, Oct 2018, http://www.5gamericas.org/files/8015/4024/0611/3GPP_Rel_14-16_10.22-final_for_upload.pdf

Duplex Modes

- □ FDD: Different transmission directions on either part of a paired spectrum
- NR allows one common frame structure over both paired and unpaired spectra
- □ Allows both half and full duplex operation:
 - > Half-duplex FDD
 - > TDD (half-duplex by definition)
 - Full-duplex FDD
- □ Inter-cell interference due to TDD is less in small cells
 - \Rightarrow **Dynamic TDD**
 - \Rightarrow UL/DL directions can be dynamically assigned on a slot basis Allows handling larger variation of traffic due to smaller number of users in small cells

Duplex Mode Examples

Ref: A. Zaidi, et al, "5G Physical Layer: Principles, Models and Technology Components," Academic Press, 2018, ISBN: <u>9780128145784</u>

Reference Signals

□ Used to access channel quality like pilot subcarriers

- Demodulation Reference Signal (DM-RS): Estimate channel for demodulation. Placed at the beginning of slot.
- Phase Tracking Reference Signal (PT-RS): Estimate phase noise at high carrier frequencies
- Channel State Information Reference Signal (CSI-RS): Beam management and uplink power control
- □ Sounding Reference Signal (SRS): Transmitted in uplink to measure channel for scheduling and link adaptation

Reference Signals (Cont)

Control Channels

- Control channels are used for scheduling requests, grants, HARQ acks, Channel state feedback, etc.
- Several Physical Downlink Control Channels (PDCCH) and Physical Uplink Control Channels (PUCCH)
- PDCCHs occupy only a part of the carrier bandwidth (LTE uses full bandwidth for control)

 \Rightarrow Allows narrow-band devices do not need to listen to whole bandwidth

- Each control channel has its own reference signals
 Allows beamforming of control channels
- Short PUCCH can be transmitted in the same slot

Channel Coding

□ Multi-Edge Low Density Parity Check Code for Data:

- > A.k.a. Quasi-Cyclic LDPC
- Less complex than LTE Turbo codes
 - \Rightarrow Good for high data rates
- Polar Code for Control
 - Better performance for small data in control channel
 - > Uses CRC for joint detection and decoding

Ref: T. Richardson, R. Urbanke, "Multi-Edge Type LDPC Codes," 36 pp., <u>http://wiiau4.free.fr/pdf/Multi-Edge%20Type%20LDPC%20Codes.pdf</u> Ref: V. Bioglio, C. Condo, I. Land, "Design of Polar Codes in 5G New Radio," 9 pp., 12 Apr 2018, <u>https://arxiv.org/pdf/1804.04389</u>
Low-Latency Features

- Front-loaded reference signals and control signaling.
 ⇒ Device can start processing the control immediately without inter-leaving in time as in LTE.
- □ Mini-Slots:
 - > Device can respond with HARQ ack within one slot
 - > Device can upload data within one slot of grant
- MAC and RLC are designed so that device can start processing data without knowing the total data
- Pre-emption may results in missing symbols HARQ retransmits only missing code-block groups (CBG)
- Device can be configured to transmit/receive without going through request-grant-transmit sequence.

Optimized Massive MIMO

□ Massive MIMO: Large number of steerable antenna elements

- > Necessary for beamforming in higher bands
- > Used for spatial multiplexing in lower bands
- □ NR channels and signals designed to support beamforming
- Assuming channel reciprocity, UL Sounding reference signal (SRS) can be used for DL in TDD

Optimized Massive MIMO (Cont)

- High-resolution Channel State Information (CSI) RS design and reporting
- High-spatial resolution codebook supporting up to 256 antennas
- 12 Orthogonal demodulation reference signals specified for multi-user MIMO
- Phase-tracking reference signals are used to overcome increased phase noise at higher frequencies (otherwise higher constellation QAMs, e.g., 64-QAM, cannot be used)
- Massive MIMO with high-power user equipment (HPUE) $\Rightarrow 3 \times \text{to } 4 \times \text{more throughput}$

Distributed MIMO

- A device can receive multiple data channels per slot from different sites
- Some MIMO layers are transmitted from one site and others from another site
- □ Allows simultaneous data transmissions from multiple sites
- □ Not complete in R15

Ref: W. Peng, et al, "Outage and Capacity Performance Evaluation of Distributed MIMO Systems over a Composite Fading Channel," Mathematical Problems in Engineering 2014, September 2014, 13 pp.,

https://www.researchgate.net/publication/285571817_Outage_and_Capacity_Performance_Evaluation_of_Distributed_MIMO_Systems_over_a_Composite_Fading_Channel

Beamforming

- □ In mmWave, beamforming is required
- Beam management procedures include beam determination, measurement, reporting and sweeping
- Beam recovery procedures include beam failure detection, notification, and recovery request
- Beam management requires 3 step refinements: coarse, medium, and narrow beams

Ref: ZTE, "Pre5G: Building the Bridge to 5G," White Paper, June 2, 2017, 20 pp., http://www.zte-deutschland.de/pub/endata/magazine/ztetechnologies/2017/no3/201705/P020170516552408246119.pdf

Analog Beamforming

- Beam is sent after digital-to-analog conversion
- Required at high frequencies
- □ Analog beam can be sent only in one direction at one time
- Beam sweeping:
 - > Send the same signal in other directions in other symbols
 - > Allows reaching the entire coverage area

Code Block Group (CBG)

- Larger transport blocks are segmented into multiple code block groups (CBG).
- □ Each **code block** has a CRC
- □ Entire transport block has a cyclic redundancy check (CRC)
- □ If a code block fails CRC, the entire code block group is retransmitted
- □ HARQ feedback has a bit for each CBG to indicate whether to retransmit that CBG or not.

Non Standalone vs. Standalone Deployments

- $\Box \ 5G = 5G \ RAN + 5G \ Core$
- Core is responsible for non-radio functions: authentication, charging, end-to-end connections, paging
- ❑ Non-Standalone (NSA): Use legacy EPC core w 5G RAN
 ⇒ Help accelerate 5G NR deployments
- □ Standalone (SA): Full 5G RAN + 5G Core

c = control planeu = user plane

5G Core Network

- Service Based Architecture
- Network Slicing
- □ Control-Plane/User-Plane Split

Service Based Architecture

Each service is a function and several functions can be implemented in a physical node or a virtual machine

Network Slicing

- Slice = A logical network serving a particular application, business partner, or customer
- □ Similar to Virtual Machines (VMs) on a computer
- □ A network can be divided in to many slices
- Each slice looks to the user as a separate network with reserved resources reserved

Ref: E. Guttman, "5G New Radio and System Standardization in 3GPP,"

https://www.itu.int/en/ITU-T/Workshops-and-Seminars/201707/Documents/Eric_Guttman_5G%20New%20Radio%20and%20System%20Standardization%20in%203GPP.pdf

Control-Plane User-Plane Split

- Control: Session management, IP address allocation, signaling between core and device, authentication, security, mobility,
- □ User: Packet routing and forwarding, packet filtering, packet inspection, quality of service
- □ Control-plane and user-plane interfaces are separate.
- □ For example: A node with dual connectivity. Control through LTE and data split between LTE and 5G

User-Plane RAN Protocol Stack

Network Evolutions

□ Cloud-Radio Access Network (C-RAN)

- > Centralized radio processing
- > Minimizes changes to RAN for 5G and future evolutions
- □ Mobile Edge Computing (MEC)
 - Distributed core
 - > Helps reduce latency

Cloud Radio Access Network (C-RAN)

- Centralize baseband processing in a cloud
- Need to carry high-bit rate signal (after A-to-D conversion) from tower to cloud site ~ 10 Gbps
- Optical fiber, 10 Gbps Ethernet, Microwave can be used depending upon the distance ~ 1-20 km of front haul
- □ Particularly good for dense small cells. Multi-provider support.

Ref: C. I, et al, "Recent Progress on C-RAN Centralization and Cloudification," IEEE Access, Vol. 2, 2014, pp. 1030-1039, http://ieeexplore.ieee.org/iel7/6287639/6514899/06882182.pdf?arnumber=6882182

Mobile Edge Computing (MEC)

□ To service mobile users/IoT, the computation needs to come to edge ⇒ Mobile Edge Computing

Ref: L. Gupta, R. Jain, H. Chan, "Mobile Edge Computing - an important ingredient of 5G Networks," IEEE Softwarization Newsletter, March 2016, <u>http://sdn.ieee.org/newsletter/march-2016/mobile-edge-computing-an-important-ingredient-of-5g-networks</u>

Network Function Virtualization

- ❑ Standard hardware is fast and cheap ⇒ No specialized hardware
- □ Implement all functions in software
- □ Virtualize all functions \Rightarrow Cloud \Rightarrow Create capacity on demand

5G Trials

- Many operators have announced 5G trials Verizon, SK Telecom, Korea Telecom, NTT DoCoMo, AT&T, China Mobile, ...
- □ Pre-Standard 5G.
- □ Most are using sub-6GHz spectrum
- Mostly enhanced Mobile Broadband (eMBB) and Fixed Wireless Access (FWA)

3G vs. 4G vs. 5G

	3G	4G	5G
DL Waveform	CDMA	OFDMA	OFDMA,SCFDMA
UL Waveform	CDMA	SCFDMA	OFDMA,SCFDMA
Channel Coding	Turbo	Turbo	LDPC (Data)/Polar (Control)
Beamforming	No	Data only	Full support
Spectrum	0.8-2.1 GHz	0.4-6 GHZ	0.4-52.6 GHz
Bandwidth	5 MHz	1.4-20 MHz	Up to 400 MHz
Network Slicing	No	No	Yes
QoS	Bearer based	Bearer based	Flow based
Small Packet Support	No	No	Connectionless
Cloud Support	No	No	Yes

Ref: A. Toskala, "5G Standards and Outlook for 5G Unlicensed," June 2018, https://www.multefire.org/wp-content/uploads/5G_Standard_Toskala_MUulteFire-Open-Day-Meeting.pdf

Release 16 Timeline

- □ No major changes are done after a release is frozen.
- Abstract Syntax Notation One (ASN.1) is the notation used to specify message formats in the final specifications.
- Release 15 had 3 stages: Non-standalone (NSA), Standalone (SA), and Late Drop.

Ref: A. Toskala, "5G Standards and Outlook for 5G Unlicensed," June 2018, https://www.multefire.org/wp-content/uploads/5G_Standard_Toskala_MUulteFire-Open-Day-Meeting.pdf

Release 16 Work Items

- $\Box \quad NR \ V2X$
- **D** Non-Terrestrial Networks
- □ Above 52.6 GHz
- **Integrated Access and Backhaul (IAB)**
- **IoT Techniques**
- **D** Private 5G Networks for Industrial IoT
- **Enhancements to:**
 - Positioning
 - MIMO Enhancements
 - > Power Saving
 - > Interference
 - Data Collection and Utilization
 - Network Automation
 - Mobility Enhancements
 - Carrier Aggregation and Dual Connectivity
 - Access to Unlicensed Spectrum
 - Conversational Services
 - Wireless-Wire line Convergence

Ref: 5G Americas, "Wireless Technology Evolution - Transition from 4G to 5G, 3GPP Releases 14 to 16," Whitepaper, Oct 2018, http://www.5gamericas.org/files/8015/4024/0611/3GPP_Rel_14-16_10.22-final_for_upload.pdf

NR V2X

□ Vehicle Platooning:

- Dynamically form platoon travelling together
- > All vehicles get information from the leading vehicle

Extended Sensors:

- Sharing data/video from sensors with other vehicles, road-side units, pedestrians, and application servers
- Allows vehicles to get a more global view of the environment and Intention sharing
- Evolve for autonomous driving
- Need high data rate

Remote Driving:

- > Driving in dangerous areas or driving for those unable to drive
- Public transports train/metro driving
- Need high reliability and low latency
- High-throughput sensor sharing

Ref: Qualcomm, "Expanding the 5G NR ecosystem and roadmap in 3GPP Release 16 and beyond," Sep 2018, 35 pp., https://www.qualcomm.com/media/documents/files/expanding-the-5g-nr-ecosystem-and-roadmap-in-3gpp-rel-16-beyond.pd

Non-Terrestrial Networks

- □ Satellite use with 5G will allow continuity of coverage
- □ Unmanned aircrafts as cell towers
- □ Not high throughput. For continuity of coverage
- Need to make PHY retransmission procedures more delay tolerant
- Study effect of propagation delays
 - Low-Earth Orbit (LEO),Geo-stationary (GEO)
- Handover and paging

Above 52.6 GHz

- □ R15 designed to use up to 52.6 GHz
- □ Higher Frequencies:
 - > Higher phase noise
 - Extreme propagation loss
 - Lower power amplifier efficiency
 - Stricter power spectral density regulatory requirements
 - > Good for V2X, IAB, and non-terrestrial operation

Integrated Access and Backhaul

mmWave backhaul is more cost effective than fiber backhaul for short distances required for small cells

Ref: Qualcomm, "Expanding the 5G NR ecosystem and roadmap in 3GPP Release 16 and beyond," Sep 2018, 35 pp., https://www.qualcomm.com/media/documents/files/expanding-the-5g-nr-ecosystem-and-roadmap-in-3gpp-rel-16-beyond.pd

IoT Techniques

□ Non-orthogonal Multiple Access (NOMA):

- Scheduled or grant-free access
- > Allows higher device density and network efficiency

Grant-Free Uplink:

- > Contention-based access
- > Random upload of small data bursts
- Mesh Networking:
 - > Mesh on unlicensed spectrum with upload on licensed
 - > Extension of D2D

► For low-power devices Ref: Qualcomm, "Expanding the 5G NR ecosystem and roadmap in 3GPP Release 16 and beyond," Sep 2018, 35 pp., https://www.gualcomm.com/media/documents/files/expanding-the-5g-nr-ecosystem-and-roadmap-in-3gpp-rel-16-beyond.pc

Private 5G Networks for Industrial IoT

Dedicated network for an enterprise

- Factory Automation, Transport Industry, Electrical Power Distribution, Augmented Reality
- □ Small cell hosted or self-contained core network
- \Box Locally managed \Rightarrow Sensitive data not exposed
- □ Interoperable inside/outside the site
- □ Licensed, unlicensed, and shared spectrum
- □ Ultra-reliable low-latency/time sensitive networking

Ref: Qualcomm, "Expanding the 5G NR ecosystem and roadmap in 3GPP Release 16 and beyond," Sep 2018, 35 pp., https://www.qualcomm.com/media/documents/files/expanding-the-5g-nr-ecosystem-and-roadmap-in-3gpp-rel-16-beyond.pd

Summary

- 5G is defined by IMT-2020 requirements in terms of 8 parameters: a peak rate up to 20 Gbps per user, User experienced rate of 100 Mbps, Mobility support to 500 km/h, a latency of 1 ms, a density of a million connections per m², energy efficiency 100× of 4G
- 2. Will use both sub-6GHz spectrum and mmWave using a scalable OFDM numerology that allows multiple subcarrier spacing, bandwidth parts and flexible resource allocation
- 3. Initially non-stand alone operation will allow 5G radio access network to work with legacy LTE core network. Later, standalone operation with 5G radio access and core network will be added.
- 4. New architectural features include network slicing, service based architecture, and control plane/user plane split.
- 5. Next release (Release 16) will add V2X, non-terrestrial networks, private networks, and several enhancements.

Reading List

 5G Americas, "Wireless Technology Evolution - Transition from 4G to 5G, 3GPP Releases 14 to 16," Whitepaper, Oct 2018, <u>http://www.5gamericas.org/files/8015/4024/0611/3GPP_Rel_14-16_10.22-final_for_upload.pdf</u>

Books

- E. Dahlman, S. Parkvall, J. Skold, "5G NR The Next Generation Wireless Access Technology," Academic Press, 2018, ISBN: <u>9780128143230</u>
- □ A. Zaidi, et al, "5G Physical Layer: Principles, Models and Technology Components," Academic Press, 2018,302 pp., ISBN: <u>9780128145784</u>
- H. Holma, A. Toskala, J. Reunanen, "LTE Small Cell Optimization," Wiley, 2016, ISBN: <u>9781118912577</u>

References

- A. Toskala, "5G Standards and Outlook for 5G Unlicensed," June 2018, <u>https://www.multefire.org/wp-content/uploads/5G_Standard_Toskala_MUulteFire-Open-Day-Meeting.pdf</u>
- C. I, et al, "Recent Progress on C-RAN Centralization and Cloudification," IEEE Access, Vol. 2, 2014, pp. 1030-1039, <u>http://ieeexplore.ieee.org/iel7/6287639/6514899/06882182.pdf?arnumber=6882182</u>
- E. Guttman, "5G New Radio and System Standardization in 3GPP," <u>https://www.itu.int/en/ITU-T/Workshops-and-</u> <u>Seminars/201707/Documents/Eric_Guttman_5G%20New%20Radio%20and%20Sys_tem%20Standardization%20in%203GPP.pdf</u>
- G. Pfeifer, "5G Technology Introduction, Market Status Overview and Worldwide Trials," 5G and IoT Seminar, Italy, May 2017, <u>https://cdn.rohde-</u> <u>schwarz.com/it/seminario/5G_Seminar_Part1_Standardization_Market_PHY_17050</u> <u>9_Italy.pdf</u>
- □ <u>https://portal.3gpp.org/#55934-releases</u>
- ITU-R M.2083-0, "IMT Vision Framework and overall objectives of the future development of IMT for 2020 and beyond," Sep. 2015. <u>https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2083-0-201509-I!!PDF-E.pdf</u>

References (Cont)

- ITU-R M.2411-0, "Requirements, evaluation criteria and submission templates for the development of IMT-2020," Nov. 2017, <u>https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-M.2411-2017-PDF-E.pdf</u>
- ITU-R M2376-0, "Technical Feasibility of IMT in bands above 6 GHz," July 2015, <u>http://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-M.2376-2015-PDF-E.pdf</u>
- ITU-R Recommendation M.2083-0, "IMT Vision Framework and overall objectives of the future development of IMT for 2020 and beyond," Sep. 2015, 21 pp., <u>https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2083-0-201509-I!!PDF-E.pdf</u>
- ITU-R, "Workplan, timeline, process and deliverables for the future development of IMT," 4pp., <u>http://www.itu.int/en/ITU-R/study-groups/rsg5/rwp5d/imt-2020/Documents/Antipated-Time-Schedule.pdf</u>
- L. Gupta, R. Jain, H. Chan, "Mobile Edge Computing an important ingredient of 5G Networks," IEEE Softwarization Newsletter, March 2016, <u>http://sdn.ieee.org/newsletter/march-2016/mobile-edge-computing-an-</u> <u>important-ingredient-of-5g-networks</u>

References (Cont)

- Qualcomm, "Designing 5G NR The 3GPP Release 15 global standard for a unified, more capable 5G air interface," Sep 2018, 37 pp., <u>https://www.qualcomm.com/media/documents/files/the-3gpp-release-15-5gnr-design.pdf</u>
- Qualcomm, "Expanding the 5G NR ecosystem and roadmap in 3GPP Release 16 and beyond," Sep 2018, 35 pp.,
- Radiationhealthrisks.com, "Why 5G Cell Towers Are More Dangerous," <u>https://www.radiationhealthrisks.com/5g-cell-towers-dangerous/</u>
- Raj Jain, "SDN and NFV: Facts, Extensions, and Carrier Opportunities," AT&T Labs SDN Forum Seminar, April 10, 2014, <u>http://www.cse.wustl.edu/~jain/papers/adn_att.htm</u>
- □ T. Richardson, R. Urbanke, "Multi-Edge Type LDPC Codes," 36 pp., <u>http://wiiau4.free.fr/pdf/Multi-Edge%20Type%20LDPC%20Codes.pdf</u>
- V. Bioglio, C. Condo, I. Land, "Design of Polar Codes in 5G New Radio," 9 pp.
- W. Peng, et al, "Outage and Capacity Performance Evaluation of Distributed MIMO Systems over a Composite Fading Channel," Mathematical Problems in Engineering 2014, September 2014, 13 pp.,

Wikipedia Links

- □ <u>https://en.wikipedia.org/wiki/3d_beamforming</u>
- □ <u>https://en.wikipedia.org/wiki/3GPP</u>
- □ <u>https://en.wikipedia.org/wiki/4G</u>
- □ <u>https://en.wikipedia.org/wiki/5G</u>
- □ <u>https://en.wikipedia.org/wiki/5G_NR_frequency_bands</u>
- □ <u>https://en.wikipedia.org/wiki/Antenna_diversity</u>
- <u>https://en.wikipedia.org/wiki/Backhaul_(telecommunications)</u>
- <u>https://en.wikipedia.org/wiki/Beam_steering</u>
- https://en.wikipedia.org/wiki/Beamforming
- □ <u>https://en.wikipedia.org/wiki/C-RAN</u>
- <u>https://en.wikipedia.org/wiki/Channel_state_information</u>
- <u>https://en.wikipedia.org/wiki/Comparison_of_mobile_phone_standards</u>
- □ <u>https://en.wikipedia.org/wiki/Comparison_of_wireless_data_standards</u>
- https://en.wikipedia.org/wiki/Control_channel
- □ <u>https://en.wikipedia.org/wiki/Cooperative_MIMO</u>
- https://en.wikipedia.org/wiki/Discrete-time_beamforming

Wikipedia Links (Cont)

- □ <u>https://en.wikipedia.org/wiki/Duplex (telecommunications)</u>
- https://en.wikipedia.org/wiki/Edge_computing
- https://en.wikipedia.org/wiki/Femtocell
- https://en.wikipedia.org/wiki/Fronthaul
- □ <u>https://en.wikipedia.org/wiki/History_of_smart_antennas</u>
- □ <u>https://en.wikipedia.org/wiki/List_of_5G_NR_networks</u>
- □ <u>https://en.wikipedia.org/wiki/List_of_mobile_phone_generations</u>
- https://en.wikipedia.org/wiki/LTE-WLAN_Aggregation
- □ <u>https://en.wikipedia.org/wiki/LTE (telecommunication)</u>
- □ <u>https://en.wikipedia.org/wiki/LTE_Advanced_Pro</u>
- □ <u>https://en.wikipedia.org/wiki/MIMO</u>
- https://en.wikipedia.org/wiki/Mobile_broadband
- https://en.wikipedia.org/wiki/Mobile_edge_computing
- □ <u>https://en.wikipedia.org/wiki/Mobile_phone_radiation_and_health</u>
- □ <u>https://en.wikipedia.org/wiki/Multefire</u>
- □ <u>https://en.wikipedia.org/wiki/Multi-user_MIMO</u>
- □ <u>https://en.wikipedia.org/wiki/Network_function_virtualization</u>
Wikipedia Links (Cont)

- <u>https://en.wikipedia.org/wiki/Next_Generation_Mobile_Networks</u>
- <u>https://en.wikipedia.org/wiki/Orthogonal_frequency-division_multiple_access</u>
- □ <u>https://en.wikipedia.org/wiki/Orthogonal_frequency-division_multiplexing</u>
- https://en.wikipedia.org/wiki/Phased_array
- https://en.wikipedia.org/wiki/Precoding
- <u>https://en.wikipedia.org/wiki/Radio_access_technology</u>
- https://en.wikipedia.org/wiki/Radio_Network_Controller
- https://en.wikipedia.org/wiki/Radio_Resource_Control
- <u>https://en.wikipedia.org/wiki/Radio_resource_management</u>
- https://en.wikipedia.org/wiki/Remote_radio_head
- □ <u>https://en.wikipedia.org/wiki/Service-oriented_architecture</u>
- □ <u>https://en.wikipedia.org/wiki/Single-carrier_FDMA</u>
- □ <u>https://en.wikipedia.org/wiki/Smart_antenna</u>
- https://en.wikipedia.org/wiki/Software-defined_networking
- https://en.wikipedia.org/wiki/Time-division_multiplexing
- https://en.wikipedia.org/wiki/Vehicle-to-everything

Wikipedia Links (Cont)

<u>https://en.wikipedia.org/wiki/Vehicular_ad_hoc_network</u>
<u>https://en.wikipedia.org/wiki/Wireless_electronic_devices_and_health</u>

Acronyms

- □ 3GPP 3rd Generation Partnership Project
- □ AT&T American Telephone and Telegraph
- BBU Broadband Unit
- **BWP** Bandwidth Part
- □ CA Carrier Aggregation
- □ CBG Code block group
- CDMA Code Division Multiple Access
- CGNAT Carrier Grade Network Address Translator
- □ CoMP Co-ordinated multi-point transmission/reception
- CP Cyclic Prefix
- □ CRC Cyclic redundancy check
- CSI Channel State Information
- □ dB DeciBel

- □ dBm DeciBel Milliwatt
 - DL Downlink
- DMRSDemodulation reference signals

eCoMP	Enhanced Co-ordinate Multi-Point transmission/reception
eICIC	Enhanced Inter-Cell Interference Cancellation
eMBB	Enhanced Mobile Broadband
eMBMS	Enhanced Multimedia Broadcast Multicast System
eNB	Evolved Node-B
EPC	Evolved Packet Core
FCC	Federal Communications Commission
FDD	Frequency Division Duplexing
FEC	Forward Error Correction
FFT	Fast Fourier Transform
FR	Frequency Range
FWA	Fixed Wireless Access
GEO	Geo-stationary
GHz	Giga Hertz
gNB	5g Node-B
HARQ	Hybrid Automatic Repeat Request

High-Power User Equipment HPUE Integrated Access and Backhaul IAB ICIC Inter-cell interference cancellation ICNIRP International Commission on Non-ionizing radiation Identifier ID Institution of Electrical and Electronic Engineers IEEE IMS IP Multimedia System International Mobile Telecommunications IMT IoT Internet of Things IP Internet Protocol International Telecommunications Union-Radio ITU-R International Telecommunications Union ITU kHz Kilo Hertz LAA License Assisted Access LDPC Low Density Parity Check Code Low-Earth Orbit LEO

- □ LoRa Long Range wide area wireless
 - LTE Long-Term Evolution
- MAC Media Access Control
- MBB Mobile Broadband
- MEC Mobile Edge Computing
- □ MHz Mega Hertz

- MIMO Multiple Input Multiple Output
 - MME Mobility Management Entity
 - mMTC Massive Machine Type Communication
 - mmWave Milimeter wave
- NFV Network Function Virtualization
- NOMA Non-Orthogonal Multiple Access
- □ NR New Radio
- □ NSA Non-stand alone
- OFDM Orthogonal Frequency Division Multiplexing
 - OFDMA Orthogonal Frequency Division Multiple Access

- PDCCH Physical Downlink Control Channel
 - PHY Physical Layer
- PRB Physical Resource Blocks
- PTRS Phase-Tracking Reference Signal
- PUCCH Physical Uplink Control Channel
- QAMQuadrature Amplitude Monitor
- QoSQuality of Service
- RAN Radio Access Network
- RAT Radio Access Technology
- **REC** Recommendation
- □ REP Report
- □ RF Radio Frequency
- RLCRadio Link Control
- □ RNC Radio Network Controller
- RRH Remote Radio Head
- RS Reference Signal

SA Standalone Single-carrier frequency division multiplexing SCFDM SCS Subcarrier spacing SDN Software Defined Networking Self-organizing network SON Sounding Reference Signal SRS SUL Supplementary Uplink Time Division Duplexing TDD **Technical Specification** TS **Transmission Time Interval** TTI UE User Element UL Uplink URLLC Ultra-Reliable low-latency communication VM Virtual Machine Volte Voice over LTE World Radio Conference WRC