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Stochastic Processes

e It is often possible to represent the behaviour of a system by a
collection of “states”.

e The system being modelled is assumed to occupy one and
only one state at any moment in time.

e The evolution of the system is represented by transitions from
state to state.
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Stochastic Processes

An example of this could be the behaviour of the weather:
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Formal definition of a Stochastic Process

A stochastic process is defined as a family of random variables
{X(t), te T}
e T represents the index set.

» T can be discrete: T ={0,1,2,3,...}: Discrete time

stochastic process.
» T can be continuous: T = Rxq: Continuous time stochastic

process.

o The values assumed by the random variables X(t) are called
states. The set of all possible values of X(t) is called the
state space: 2.

»  can be discrete: {Rainy, Sunny, Cloudy}
» €2 can also be continuous.
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Chains

When Omega is discrete, the stochastic process is called a chain.
For the rest of the course we will be concerned with:

Homogeneous Markov Chains.

27



Chains

When Omega is discrete, the stochastic process is called a chain.
For the rest of the course we will be concerned with:

Homogeneous Markov Chains.

e Discrete

e Continuous

27



Chains

When Omega is discrete, the stochastic process is called a chain.
For the rest of the course we will be concerned with:

Homogeneous Markov Chains.

e Discrete

e Continuous

Applications:

Biology

Economics

(Queueing Theory)

(Board games)
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Discrete Markov Chains
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Definition of a Discrete Markov Chain

For a discrete Markov chain we observe the state of a system at a
discrete, but infinite set of times. We may take:

T=N={0,1,2,...}

The state of the system is then denoted as Xp, X1, Xo,.... A
discrete time Markov chain is then a stochastic process that
satisfies the following relationship:

P(Xn+1 = Xn+1|Xn = Xny .- 7XO = XO) = P(Xn+1 = Xn+1|Xn = Xn)

For ease of notation we write the probability of going from state /
to state j at time period n as:

pi(n) = P(Xns1 = j|Xo = i)
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Transition Probability Matrix

poo(n) po1(n)
p20(n) p11(n)
p20(n)  p21(n)

po(n)  pia(n)

P(n) is a stochastic matrix:
e P(n) is a square matrix.
o > ;pij(n)=1forallieQ
e pjj(n) >0 foralli,jeQ

pog(n) Ce
pi2(n) ...
p2o(n) ...

Pi2.( n)
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Homogeneous Markov Chains

In a Homogeneous Markov Chain the transition probabilities do not
depend on the amount of time that has passed:

P(k) = P(0) for all k

This is what we consider in this course.
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Weather Example

This stochastic matrix:

corresponds to:

[EEE )

R = O

~N oo W

8

12 /27



State Vector

We can describe the state of a Markov Chain by a vector: 7(".
W}") denotes the probability of being in State j at time n:

° e 771(.") =1 forall n

n)

° 77} > 0 for all j, n.
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Weather example

Assume 7(®) = (1,0,0), what is 7(1)?

)
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Weather example

Assume 7(®) = (1,0,0), what is 7(1)?

)

<)

(2,.5,.3)
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Powers of Transition Probability Matrix

In general:
an+1) — ~(n)p

Thus:
() — 2(0)pn
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Weather Example

70 = (1,0,0)

Probability
1

—Sunn
—Cloudy
—Rainy

0.8

0.6

0.4

0.2+

L n
2 4 6 8 10
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Weather Example

7(© = (0,1,0)

Probability
1

—Sunn
—Cloudy
—Rainy

0.8

0.6

0.4

0.2+

L n
2 4 6 8 10
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Weather Example

70 =(0,0,1)

Probability
1

—Sunn
—Cloudy
—Rainy

0.8

0.6

0.4

0.2+

n

L L L 1 1
2 4 6 8 10 16 /27



Weather Example

7© = (1/3,1/3,1/3)

Probability
1k

—Sunn
—Cloudy
—Rainy

0.8

0.6

0.4

0.2+

I I L I Ln
2 4 6 8 10 16 /27



Weather Example

Probability

1

0.8

0.6

0.4

0.2

70 = (.25, .25, 5)

—Sunn
—Cloudy
—Rainy

1
10
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Limiting and Steady State Distribution

o If the limit:
lim P"
n—o0
exists, then the probability distribution m = lim,_ 70 pn s
called the limiting distribution. (Note that this can depend on
7(0)).

o If a limiting distribution exists and it is independent of 7(%) it
is called a steady state distribution. Such a distribution
satisfies:

T=7P
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Weather Example

m = .2m1 + .1mo + 173
T=mP = { mp = 571 + .1m + .2m3
w3 = .3m + .8m + 773

Solving this gives:
11

leﬁc

21
WQZWC
T3 =C

For some c. Recalling that m; + m + m3 = 1 gives:

m=g~.11
T =~ 21
T3 = oF ~ .68
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Continuous Markov Chains
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Transition Rates

In a discrete time Markov chain:
o T={1,2,3,...}
e Interactions between states given by transition probabilities
In a continuous time Markov chain:
o T =R>g
o Interactions between states given by rates at which transitions
happen.
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Transition Rate Matrix

qoo(t) qoi(t) qoz2(t) ...
gio(t) qui(t) aqu2(t) ...
go0(t) qoi(t) qg(t) ...

q/'o‘(t) Qil.(t) Cliz.(f)

Q(t) is a transition rate matrix:

Q(n) is a square matrix.
e qii(t) = —Z#iqu( ) for all i € Q
e gjj(n) >0 forall i#jeQ

qykt)
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Homogeneous Markov Chains

In a Homogeneous Markov Chain the transition rates do not
depend on the amount of time that has passed:

Q(t) = Q(0) for all t

This is what we consider in this course.



Example

The following continuous Markov chain:
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Transient and Steady State Distribution

e We have the following expression for the transient distribution:

dn(t)
dt

= n(1)Q

thus:

k +k
(t) = 7(0)e9 (]HZQ ! )

o The steady state distribution (if it exists) may be obtained by
solving the following equation:

Q=0
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Example

7(0) = (1,0,0,0)

Probability
1k
-1
-2
=3
—4
0.8
0.6
0.4+
0.2}
L t
2 4 6 8 10
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Example

7(0) =(0,1,0,0)

Probability
1k
-1
-2
=3
—4
0.8
0.6
0.4+
0.2
L t
2 4 6 8 10
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Example

7(0) = (0,0,1,0)

Probability
1k
-1
-2
=3
—4
0.8
0.6
0.4+
0.2
L t
2 4 6 8 10
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Example

7(0) =(0,0,0,1)

Probability

1k

-1

-2

=3

—4
0.8
0.6
0.4+
0.2

L t
2 4 6 8 10
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Weather Example

—3m +1m + 173+ 0wy =0
1my —5m + 3134+ 0y =0
Omy +4m —4m3 + 1wy =0
2m1 +0m 4+ 03 — 3 =0

TQ=0=

Solving this gives:

1 Cc

T = %C
3 = %C
7T4_2C

71’1:%%.17
WQZ%%.ZI
7T3:2l4%'29
71'4:%%.33
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Equivalence of Continuous and Discrete Markov Chains
There is an equivalence between Continuous and Discrete Markov
Chains:

o If 7P = m then:
m(P—-1)=0
(P — 1) has all the properties of a transition rate matrix
(check this)
o If Q@ = 0 then:
T(QAt+1I)=m

If we take At to be sufficiently small (so that the probability
of 2 transitions occurring in 1 time period is negligible) then
(QAt + 1) is a stochastic matrix corresponding to the
discretized Markov chain. 1 possibility is to take:

1
~ max; |qiil
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